It is easy to write formulas \(\psi(x, y, z, X, Y, Z_1, Z_2, Z_3) \) in the topological language stating (in \(T \)) that \(x, y \in X \) and \(X \in Z_1 \), \(Y \in Z_2 \), \(x \sim z \pmod{Z_3} \) and there exists \(y' \in Y \) such that \(y \sim y' \pmod{Z_1} \) and \(y' \sim z \pmod{Z_3} \).

In order to interpret DL in \(T \) it is enough to find \(X, Y, Z_1, Z_2, Z_3 \subseteq \mathbb{R}^2 \) such that \(\{X\} = 2^x \) and \(\psi \) defines a one-one correspondence between \(\{(x, y) : x, y \in X\} \) and \(\{(x, z) : z \in \mathbb{R}^2\} \). Let \(Q \) be the set of rational numbers. Choose \(X = R \times \{0\}, Y = \{0\} \times R, Z_1 = R \times Q, Z_2 = Q \times R \) and \(Z_3 = \{(a, b) : a - b \in Q\} \). Then \(\psi(x, y, z, X, Y, Z_1, Z_2, Z_3) \) holds iff there exist \(a, b \in R \) such that \(x = (a, 0), y = (b, 0) \) and \(z = (a, b) \).

References

Accepté par la Rédaction le 26, 9, 1977

Borel sets with \(F_{\delta\delta} \)-sections

by

J. Bourgain (Brussels)

Abstract. Let \(E, F \) be compact metric spaces. We characterize Borel sets \(A \) in \(E \times F \) with \(F_{\delta\delta} \)-sections.

Introduction. We consider two fixed compact metric spaces \(E \) and \(F \). The class \(\mathcal{A} \) will consist of the Borel subsets \(A \) of \(E \times F \) such that for each \(x \in E \) the section \(A(x) = \{y \in F : (x, y) \in A\} \) is closed in \(F \). We will prove the following:

Theorem 1. If \(A \) is a Borel subset of \(E \times F \) such that each section \(A(x) \) is \(F_{\delta\delta} \) in \(F \), then \(A \) belongs to the class \(\mathcal{A} \).

This is an extension of the work of J. Saint-Raymond (see [13]), who established:

Theorem 2. If \(A \) is a Borel subset of \(E \times F \) such that each section \(A(x) \) is \(F_{\delta} \) in \(F \), then \(A \) belongs to the class \(\mathcal{Q} \).

Theorem 1 is also related to my earlier paper [2].

Preliminaries. \(N \) will denote the set of all positive integers. Let \(\mathcal{A} = \bigcup N^\infty \), taking \(N^0 = \{0\} \). Thus \(\mathcal{A} \) consists of the finite complexes of integers. If \(c \in \mathcal{A} \), let \(|c| \) be the length of \(c \). If \(c, d \in \mathcal{A} \), we write \(c < d \) if \(c \) is an initial section of \(d \). Let \(\rho_n \) be an enumeration of all prime numbers. If we associate \(0 \) to \(\emptyset \) and the integer \(n \) to the complex \(c = (n_1, ..., n_k) \), a one-one map of \(\mathcal{A} \) into \(N \) is established. The induced ordering of \(\mathcal{A} \) will be called the standard ordering. Let \(\mathcal{N} = N^\infty \). If \(v \in \mathcal{A} \) and \(c \in \mathcal{N} \), we write \(c < v \) if \(c \) is an initial section of \(v \).

If \(L \) is a compact metric space, then \(K(L) \) consists of all closed subsets of \(L \) and is equipped with the exponential or Vietoris topology. This topology is compact metrizable. I recall the following result (see [7]).

Lemma 1. Let \(P \) be a Polish subspace of the compact metric space \(L \). Then the subspace \(K(P) \) of \(K(L) \) consisting of those compact sets \(K \) in \(L \) such that \(K = K \cap P \) is Polish.

1 — Fundamenta Mathematicae T. CYLIS
A Banach space \mathcal{V} on a set Ω will be a family of subsets of Ω containing the empty set. A subset of Ω is said to be \mathcal{V}-analytic if it is the result of Souslin operation performed on members of \mathcal{V}. For more details, I refer to [7].

I also remember the separation theorem of Novikov, which will be often used in this paper:

Lemma 2. Let (A_n) be a sequence of analytic subsets of the Polish space \mathcal{P} satisfying $\bigcap_n A_n = \emptyset$. Then there exists a sequence (B_n) of Borel subsets of \mathcal{P} such that $A_n \subseteq B_n$ for each n and $\bigcap_n B_n = \emptyset$.

The reader can find a proof of this result in [7].

If \mathcal{A} is a subset of $\mathcal{E} \times \mathcal{F}$, let $\mathcal{A}^x = \{y \in \mathcal{A} : x < \pi(y)\}$ be the subset of $\mathcal{E} \times \mathcal{F}$ defined by $\mathcal{A}^x = \{y \in \mathcal{A} : x < \pi(y)\}$ for $x \in \mathcal{E}$. Consider for each $x \in \mathcal{E}$ a finite covering $(U_i)_{i \in I}$ of \mathcal{F} by open sets with diameter less than 2^{-x}. It is easily verified that $\mathcal{A}^x = \bigcap \bigcup \{U_i \in \mathcal{U} : x < \pi(y)\}$.

Therefore we obtain:

Lemma 3. If \mathcal{A} is analytic in $\mathcal{E} \times \mathcal{F}$, then also \mathcal{A}^x is analytic.

Lemma 4. If \mathcal{A} and \mathcal{B} are analytic in $\mathcal{E} \times \mathcal{F}$ and $\mathcal{A} \cap \mathcal{B} = \emptyset$, then there exists a member C of \mathcal{F} such that $A \cap C \subseteq C \cap B = \emptyset$.

Proof. Take the open set U_i as before. For each $x \in \mathcal{E}$ the set $\mathcal{K}_x = \mathcal{B} \cap \mathcal{E}$ is analytic in $\mathcal{E} \times \mathcal{F}$. Since $\mathcal{K}_x \cap \mathcal{B}_x = \emptyset$, a sequence (T_i) of Borel subsets of $\mathcal{E} \times \mathcal{F}$ is obtained such that $\mathcal{K}_x \subseteq T_i$ for each x and $\bigcap T_i = \emptyset$. Now, for each x and each i, we have $\mathcal{K}_x \subseteq T_i$, and $\mathcal{K}_x \subseteq \bigcap T_i = \emptyset$. Hence there exist Borel sets B_i in \mathcal{B} with $\mathcal{E} \times \mathcal{F} \cap (B_i \cap T_i) = \emptyset$. For each $x \in \mathcal{E}$ take $\mathcal{K}_x = \bigcup_{i \in I} (B_i \times U_i)$, which belongs to \mathcal{F}. Then $A \cap C_i \cap (C \cap B) = \emptyset$.

The set $C = \bigcup_i C_i$ satisfies the required properties.

A result about transfinite systems. The proof of various results in the remainder of the text is considerably shortened by the use of the following lemma:

Lemma 5. Let \mathcal{K} be a Polish space \mathcal{P} be given. Assume for all $x \in \mathcal{E}$ and $x < \pi_0$, a subset \mathcal{K}_x of \mathcal{P} can be defined, such that the following conditions are satisfied:

1. If $x \in \mathcal{E}$, then \mathcal{K}_x is analytic in \mathcal{P}.
2. If $x \in \mathcal{E}$ and $x < \pi_0$, then $\mathcal{K}_x = \mathcal{K}_{x < \pi_0}$.
3. If $x \in \mathcal{E}$, $x < \pi_0$, and $x \in \mathcal{P}$, then there exists $\mathcal{K}_x \in \mathcal{K}_{x < \pi_0}$ with $x = \pi_0(k)$.

Proof. Suppose $\mathcal{K}_x \neq \emptyset$ for each $x < \pi_0$. Then there is some $\xi \in \prod \mathcal{P}$ such that $\xi_0(k) \in \mathcal{K}_x$ for each $k \in \mathcal{N}$.

Proof. If $x \in \mathcal{E}$, let $\mathcal{K}_x = \mathcal{B} \times \mathcal{P}$ be a continuous map with image \mathcal{K}_x.

By induction we will define for every $x < \pi_0$ elements $\pi_{x,1}, \ldots, \pi_{x,y}$, such that the following conditions are satisfied:

1. $\pi_{x,1} = \pi_0(k)$ if $k \geq \mathcal{L}$.
2. For each $x < \pi_0$, there exists $\xi \in \prod \mathcal{P}$ so that $\xi_0(k) \in \mathcal{K}_x$ for each $k = 1, \ldots, y$.

Since $\mathcal{K}_x \neq \emptyset$ for every $x < \pi_0$ and $\mathcal{K}_x = \mathcal{B} \times \mathcal{P}$, there must be some $\pi_{x,1} < \mathcal{N}$ such that $\pi_0(\mathcal{K}_x) \neq \emptyset$ for each $x < \pi_0$. Assume now $\pi_{x,1}, \ldots, \pi_{x,y}$ obtained. Let $x < \pi_0$, then there exists $\xi \in \prod \mathcal{P}$ such that $\xi_0(k) \in \mathcal{K}_x$ for each $k = 1, \ldots, y-1$. Therefore there is $\xi \in \mathcal{K}_x$ with $x < \pi_{x,y}$. Then $\mathcal{K}_x \neq \emptyset$ and $\mathcal{K}_x = \mathcal{B} \times \mathcal{P}$.

Again there must exist $\mathcal{K}_x \in \mathcal{K}_{x < \pi_0}$ such that for each $x < \pi_0$, there is $\xi \in \prod \mathcal{P}$ with $\xi_0(k) \in \mathcal{K}_x$ and $\mathcal{K}_x \neq \emptyset$ for each $k = 1, \ldots, y$. Hence there is $\xi \in \prod \mathcal{P}$ satisfying $\xi_0(k) \in \mathcal{K}_x$ for each $k < \pi_0$ and the lemma is established.

Results about closed coverings. Let \mathcal{V} be the Banach space on $\prod \mathcal{P}$ consisting of the open subsets of $\prod \mathcal{P}$ which are of the form $\{x \in \prod \mathcal{P} : L \cap \mathcal{V} \neq \emptyset\}$, where \mathcal{V} ranges over the open sets in $\prod \mathcal{P}$. Let $\mathcal{P} \neq \emptyset$ be the set of \mathcal{V}-analytic subsets of $\prod \mathcal{P}$.

The following two lemmas are obvious.

Lemma 6. If \mathcal{A} is an analytic subset of $\mathcal{E} \times \mathcal{F}$, then the set $\{x \in \mathcal{E} \times \mathcal{F} : L \cap \mathcal{A} \neq \emptyset\}$ is a member of $\mathcal{P} \neq \emptyset$.

Proof. If $x \in \mathcal{E} \times \mathcal{F}$, then $L \cap \mathcal{A} \neq \emptyset$.

Lemma 7. If $\mathcal{A} \neq \emptyset$, then \mathcal{A} is an analytic subset of $\mathcal{E} \times \mathcal{F}$.

Proof. Let \mathcal{A} be an analytic subset of $\mathcal{E} \times \mathcal{F}$ such that $\mathcal{A}(x)$ is closed for each $x \in \mathcal{E}$. Then $\mathcal{A} \subseteq \mathcal{A}(x) \times \mathcal{A}(x) = \mathcal{A}$ is analytic.

Proof. There is a system $(\mathcal{A}, \mathcal{A}_x, \mathcal{A}_y)$ of open subsets of $\mathcal{E} \times \mathcal{F}$ such that $\mathcal{A}(x)$ is closed for each $x \in \mathcal{E}$.
of $\mathcal{X} \times E \times F$ defined by $\Sigma(x, x) = A(x) \cap Q_{\mu}(x)$. It is clear that Σ is analytic in $\mathcal{X} \times E \times F$. Hence $\pi_2(\Gamma) = (x) \times A(x) \notin \Gamma$.

If $\Gamma \notin \mathcal{G}$, let $\Psi(\Gamma)$ consist of the members of \mathcal{G} such that $\langle x \rangle \times A(x) \notin \Gamma$ for each $x \in E$.

Lemma 9. Let $\Gamma \notin \mathcal{G}$ and let S be analytic in $E \times F \times G$ such that $S(x)$ is closed and $\langle x \rangle \times S(x) \notin \Gamma$ for each $x \in E$. Then there exists $T \in \Psi(\Gamma)$ containing S.

Proof. There is a system $\{\Omega_\alpha\}_{\alpha \in \mathfrak{X}}$ of open subsets of $E \times F \times G$ such that $\Gamma = \bigcup_{\alpha \in \mathfrak{X}} \Gamma_\alpha$, where $\Gamma_\alpha = \{L \in \mathcal{K}(E \times F \times G); L \cap \Omega_\alpha \neq \emptyset\}$. We will consider the space $\mathcal{B} = \bigcup_{\Gamma_\alpha} F_{\alpha}$, where each $F_{\alpha} = F$. If $r \in E$ and $\pi \in \mathcal{N}$, take

$$\Omega^{*_\pi} = \{(x, y') \in E \times F^*; (x, y') \in \Omega_\pi\}$$

and define $\Omega^* = \bigcup_{\pi \in \mathcal{N}} \Omega^{*_\pi}$, which is an analytic subset of $E \times F^*$. Let further for each $x \in E$ the set $S^*_x = \{(x, y'') \in E \times F^*; (x, y'') \in S\}$ and let $S^* = \bigcap_{x \in E} S^*_x$. It is easy to deduce from the hypothesis that $S^* \cap \Omega^* = \emptyset$.

It follows that there is a sequence $\{B_\alpha\}$ of Borel sets in $E \times F^*$ with $S^*_x \cap \Omega^* \subseteq B^{*_\pi}$ for each $x \in E$ and $\Omega^* \subseteq \bigcap_{\mathcal{G}} B_\alpha$. Let $r \in E$ be fixed. Since $S^*_r \cap (\Omega^* \times \mathcal{G}) = \emptyset$, we obtain that S and $\pi \times r \times (\Omega^* \times \mathcal{G})$ are disjoint analytic sets. We now use the fact that each section $S(x)$ is closed to obtain a set T_x in \mathcal{G} such that $S(x) \cap T_x = \emptyset$. Then $T_x \cap (\Omega^* \times \mathcal{G}) = \emptyset$. We claim that the set $T = \bigcap_{x \in E} T_x$ satisfies, we only have to verify that $\langle x \rangle \times T(x) \notin \Gamma$ for each $x \in E$. Assume not, then there is $x \in \mathcal{X}$ such that $T(x) \cap \Omega_\mu(x) \neq \emptyset$ for each $x \in E$. Therefore $\bigcap_{x \in E} T(x) \cap \Omega_\mu(x) \neq \emptyset$, a contradiction.

We will use the following stability property of \mathcal{G}:

Lemma 10. Let $\Gamma \notin \mathcal{G}$ and let A be an analytic subset of $E \times F$. If $A \subseteq \mathcal{K}(E \times F)$ then $A \cap L$ cannot be covered by countably many closed sets not belonging to Γ, then $A \notin \mathcal{G}$.

Proof. Take a compact metric space G and a G^\sharp-subset H of $E \times F \times G$ satisfying $\pi(A, H) = \mathfrak{K}(E \times F \times G)$. Let $\pi \in \mathfrak{K}(E \times F \times G)$ be fixed. Remark that $A \cap L = \pi(H \cap \pi^{-1}(L))$, where $H \cap \pi^{-1}(L)$ is a G^\sharp. It follows that $L \in A$ if and only if there exists a nonempty closed subset T of $H \cap \pi^{-1}(L)$ such that if $U \in \pi \cap L \neq \emptyset$, then $\pi(T \cap U) = \pi(T \cap U) \notin \Gamma$. Hence $L \subseteq A$ if and only if there exists a nonempty set M in $\mathcal{K}(E \times F \times G)$ satisfying:

1. $M \in \mathcal{K}(E \times F \times G)$.
2. $\pi(M \cap U) \notin \Gamma$ whenever $U \in \mathcal{G}$ and $M \cap U \neq \emptyset$.
3. $\pi(M) \subseteq L$.

Thus it remains to show that $\mathcal{K}(E \times F \times G)$ consists of the nonempty compact subsets of $E \times F$ belonging to \mathcal{G}. We will prove that the set $\mathcal{A} = \{(L, M) \in \mathcal{K}(E \times F \times G); M \neq \emptyset \}$ and L, M satisfy $(1), (2), (3)$ is \mathcal{G}-$\times \mathcal{G}$-analytic, where $\times \mathcal{G}$ is the product topology on $\mathcal{K}(E \times F \times G)$ consisting of the closed sets. Because $\mathcal{A} = \pi_{1}(E \times F \times G)$, we will then obtain that A is \mathcal{G}-analytic (see [7]).

1. Since $\mathcal{K}(E \times F \times G)$ is a G^\sharp-subset of $\mathcal{K}(E \times F \times G)$, $\pi_2(\Gamma)$ is \mathcal{G}-$\times \mathcal{G}$-analytic.

2. Clearly $\pi(A) \subseteq \mathcal{K}(E \times F \times G)$ satisfies $\pi(A \cap U) \subseteq \emptyset$. Because the map $\mathcal{K}(E \times F \times G) \to \mathcal{K}(E \times F \times G); M \mapsto \pi(M \cap U)$ is \mathcal{G}-$\times \mathcal{G}$ measurable, from the $

3. Let (Y_t) be a countable base for the topology of $E \times F$. For each $t \in E$, we have that $G_t = \{L \in \mathcal{K}(E \times F); L \cap Y_t \neq \emptyset\}$ and $\mathcal{A}_t = \{M \in \mathcal{K}(E \times F \times G); M \cap \pi^{-1}(Y_t) \neq \emptyset\}$. But the set $\{(L, M) \in \mathcal{K}(E \times F \times G); \pi(M) \subseteq L\}$ is precisely $\bigcap_{t \in E} \{G_t \times \mathcal{A}_t \} \cup \mathcal{K}(E \times F \times G)$ and hence \mathcal{G}-$\times \mathcal{G}$ analytic.

So the proof is complete.

Corollary 11. Let $\Gamma \notin \mathcal{G}$ and let A be an analytic subset of $E \times F$. Then the set $\{x \in E; \langle x \rangle \times A(x) \cap \Omega_\mu(x) \neq \emptyset \} \subseteq \mathcal{G}$ is \mathcal{G}-$\times \mathcal{G}$-analytic.

Proof. The set A considered in Lemma 10 is an analytic subset of $\mathcal{K}(E \times F)$.

We only have to remark that the map $E \to \mathcal{K}(E \times F); x \mapsto \langle x \rangle \times A(x)$ is continuous to complete the proof.

Combining Lemma 6 and Corollary 11 we obtain immediately:

Corollary 12. Let A and B be analytic subsets of $E \times F$. Then the set $\{x \in E; \langle x \rangle \times A(x) \subseteq \mathcal{G} \} \subseteq \mathcal{G}$ is analytic.

Before we pass to the proof of the theorem, let us mention the following easy corollary:

Corollary 13. Let A and B be analytic subsets of $E \times F$ such that $A(x)$ is contained in an F^\sharp-set which is disjoint from $B(x)$, for each $x \in E$. Then A can be separated from B by a member of \mathcal{G}.

This result is due to J. Saint-Raymond (see [13]).

The remainder of this section is devoted to the proof of Theorem 3. Let \mathfrak{H} be a compact metric space and set H be an \mathfrak{H}-subset of $E \times F \times G$ such that $A = \pi(H)$, where $x \in \mathfrak{H} \times E \times F \times G$ is the projection. If \mathfrak{H} is a subset of H, take $D(\mathfrak{H}) = \{(x, y, z) \in \mathfrak{H}; \text{for each neighborhood } U \text{ of } \langle x, y, z \rangle \text{ the set } \{x \in \pi(\mathfrak{H} \cap U)\} \in \Gamma\}$.

Lemma 14. If \mathfrak{H} is analytic, then $D(\mathfrak{H})$ is analytic. If moreover B is a Borel subset of H with $D(\mathfrak{H}) \subseteq B$, then $\pi(\mathfrak{H} \cap U) \subseteq B$ is contained in a member of \mathcal{G}.
Proof. Let (U_i) be a countable base for the topology of H. For each $i \in \mathbb{N}$, the set $\pi(X \cap U_i)$ is analytic by Lemma 3 and thus

$$E_i = \{x \in E : \pi(x \cap U_i) \not\in \Gamma\}$$

is coanalytic by Lemma 8. Hence $D(X) = X \setminus \bigcup_i \{E_i \in X \cap U_i\}$ is analytic.

If $D(X) = B$, then $X \setminus B = \bigcup \{E_i \in X \cap U_i\}$, where $X \setminus B$ is analytic and each set $E_i \in X \cap U_i$ is analytic in $E \times F \times G$. Therefore there are analytic sets (D_i) so that $D_i \in (E \times F) \cap U_i$ and $X \setminus B = \bigcup D_i$. We obtain that $\pi(X \cap U_i) \not\in \Gamma \cup \{D_i\}$ for all $i \in \mathbb{N}$.

Let λ, γ be the transfinite system obtained as follows:

$\lambda_0 = H$,

$\lambda_{\alpha+1} = D(\lambda_\alpha)$.

If γ is a limit ordinal, take $\lambda_\gamma = \bigcup_{\alpha < \gamma} \lambda_\alpha$.

It is easily verified that the sets λ_α are closed in $\lambda(x)$ for all $x \in E$ and the system $(\lambda_\alpha)_{\alpha < \gamma}$ is decreasing. Using Lemma 14, we obtain

Lemma 15. For each $\alpha < \omega_1$, the set λ_α is analytic.

Lemma 16. If $\alpha < \omega_1$, and B is a Borel subset of H containing λ_α, then $\pi(H \setminus B)$ is contained in a member of $\hat{\Theta}(\Gamma)$. Proof. By induction on $\alpha < \omega_1$. If $\alpha = 0$, the statement is obvious. Let the statement be true for $\alpha < \omega_1$ and let B be a Borel subset of H containing $\lambda_\alpha = D(\lambda_\alpha)$. By Lemma 14, we obtain $D^{+} \in \hat{\Theta}(\Gamma)$, with $\pi(H \setminus B) \subseteq D^{+}$. Hence H is contained in $B \cup \pi^{-1}(D') \cap H_i$, which is still Borel. By induction hypothesis, there is $D'' \in \hat{\Theta}(\Gamma)$, with $D'' \subseteq \pi(H \setminus B \cup \pi^{-1}(\Gamma))$.

Clearly $\pi(H \setminus B) \subseteq D'' \cup D'$. Finally let γ be a limit ordinal and (λ_α) an increasing sequence of ordinals converging to γ and satisfying the lemma. If B is a Borel set containing λ_α, then $\lambda \cap (H \setminus B) = \emptyset$. Thus there is a sequence (B_α) of Borel sets such that $\lambda \cap B = B_\alpha \cap B = \emptyset$. Let $n \in \mathbb{N}$ be fixed. Since $\lambda \cap B = \emptyset$, we obtain $D_\alpha \subseteq \hat{\Theta}(\Gamma)$, so that $\pi(H \setminus (B \cup B_\alpha)) \subseteq D \alpha$.

If we take $D = \bigcup_{\alpha < \omega_1} D_\alpha$, we get $\pi(H \setminus B) \subseteq D$, completing the proof.

Lemma 17. There exists $\alpha < \omega_1$ such that $\lambda_\alpha = \emptyset$.

Proof. Assume $\lambda_\alpha \neq \emptyset$ for each $\alpha < \omega_1$. Then A is contained in a member of $\hat{\Theta}(\Gamma)$. Thus it remains to prove:

Lemma 18. Let A be an analytic subset of $E \times F$. Then for each $\alpha < \omega_1$ and the set $A \in \hat{\Theta}(\Gamma)$, $E \times F \cap \lambda_\alpha = \emptyset$.

Proof. Assume $\lambda_\alpha \neq \emptyset$ for each $\alpha < \omega_1$. We take $Q = (L \in \mathbb{F}(H) : \pi(L) = \emptyset)$, which is a Polish subspace of $\mathbb{F}(E \times F \times G)$. For $k \in \mathbb{N}$ and $\alpha < \omega_1$, define $\mathcal{Q}_\alpha = \{(L_1, \ldots, L_k) \in Q^k : L_1 \cap H \cap D(L_{k+1} \cap H) \text{ if } 1 \leq k \leq k \}$ and $L_i \in H \cap H_i$. We verify that the conditions of Lemma 5 are satisfied.

1. We show that $Z = \{(L, M) \in Q^2 : L \cap H \cap D(M \cap H) \text{ is analytic in } Q^2\}$.

Let (U_i) be a countable base for the topology of $E \times F \times G$. For each $i \in \mathbb{N}$, consider $Z_i = \{(L, M) : L \cap U_i = \emptyset \} \cup \{(M \in Q : \pi(M \cap H_i) \cap E)\}$, which is easily seen to be analytic. Therefore Z_i is analytic, since $Z_i = \bigcup Z_i$.

2. This follows immediately from the fact that $(H_{\lambda_\alpha})_{\alpha < \gamma}$ is decreasing.

3. Suppose $k \in \mathbb{N}$, $\alpha < \omega_1$, and $(L_1, \ldots, L_k) \in \mathcal{Q}_\alpha$. Then $L_\alpha \in H \cap H \cap D(L_{\alpha+1} \cap H)$, and $L \cap H \cap D(L_{\alpha+1} \cap H)$ belongs to Q and $(L_1, \ldots, L_k, L_{\alpha+1}) \in \mathcal{Q}_{\alpha+1}$, since $L_{\alpha+1} \cap H \cap D(L_{\alpha+1} \cap H)$. Thus the lemma applies. For each $\alpha < \omega_1$, the set $\mathcal{Q}_\alpha = \emptyset$, because $\pi(x \cap H \cap D(L_{\alpha+1} \cap H)$ whenever $H \cap D(L_{\alpha+1} \cap H)$. Hence there exists a sequence (λ_α) in Q so that $L_\alpha, L_{\alpha+1} \subseteq \bigcup \mathcal{Z}_i$ for each $\alpha < \omega_1$. In particular there is $x \in E$ with $\pi(L_\alpha) = \emptyset$ for all $\alpha < \gamma$. If (F_α) is a sequence of closed sets not belonging to Γ, and covering $A \cap H \cap D(L_{\alpha+1} \cap H) \subseteq D$, we obtain that $\pi(x \cap H \cap D(L_{\alpha+1} \cap H)$. Let $L = \bigcup L_\alpha$, which belongs to $\mathcal{Q}(H)$. By the Baire category theorem, there is a set $\alpha \in N$ such that $\lambda \cap U_\alpha = \emptyset$.

Thus there is $\alpha < \omega_1$ with $L_\alpha \cap U_\alpha = \emptyset$ and therefore $\pi(L_\alpha, L_{\alpha+1} \cap H) = \bigcup \mathcal{Z}_i$, for which is the required (contradiction).

F_{\alpha+1}-sections of Borel sets. Let again E, F be compact metric spaces. In [3], we obtained the following result:

Theorem 4. If A and B are analytic subsets of $E \times F$, then $\{x \in E : A \cap B \in \mathcal{D}(x)\}$ is contained in an $F_{\alpha+1}$-set which is disjoint from $B(x)$ is coanalytic in E.

In this section, we will prove:

Theorem 5. Let A and B be analytic subsets of $E \times F$ such that $A \cap B \in \mathcal{D}(x)$ is disjoint from $B(x)$, for all $x \in E$. Then A can be separated from B by a member of $\hat{\Theta}(\Gamma)$.

It clearly implies Theorem 2.

Assume A and B are analytic subsets of $E \times F$. Let $L = \bigcup L_{\alpha+1}$ be an analytic representation of B, where the $L_{\alpha+1}$ are closed in $E \times F$ and $B_{\alpha+1} \subseteq L_{\alpha+1}$. By induction on $\alpha < \omega_1$, we define for each $\alpha \in \mathbb{N}$ class $\mathcal{D}(\alpha)$ of subsets of $E \times F$, by taking:

$$\mathcal{D}(\alpha) = \{D \subseteq E \times F : D \cap B_{\alpha} = \emptyset\}$$

$$\mathcal{D}(\alpha) = \{D \subseteq E \times F : \text{for each } \alpha \in \mathbb{N} \text{ there is a countable closed covering } C_{\alpha}, \text{ of } D \text{ such that } D \cap C_{\alpha} \in \mathcal{D}(\alpha) \text{ for each } \alpha \in \mathbb{N}\}$$

Lemma 18. Let A be an analytic subset of $E \times F$. Then for each $\alpha < \omega_1$ and the set $\Gamma(x) = \{L \subseteq \mathbb{F}(E) : A \cap L \in \mathcal{D}(\alpha)\}$ is a member of $\hat{\Theta}(\Gamma)$.
Proof. We proceed by induction on $\alpha < \omega_1$. Let $(O_\alpha)_\alpha$ be a decreasing sequence of open sets containing B_α such that $B_\alpha = \bigcap_\alpha O_\alpha$. Then
\[\Gamma^*(\alpha)(A) = \{ L \in \mathcal{E}(E \times F); A \cap L \cap B_\alpha \neq \emptyset \} = \bigcap_{\alpha < \beta} \{ L \in \mathcal{E}(E \times F); L \cap A \cap O_\beta \neq \emptyset \}\]
and hence \mathcal{P}-analytic by Lemma 6. Let now the property be established for all $\alpha < \beta$. Using the definition of \mathcal{P}-analytic, we obtain that $\Gamma^*(\alpha)(A) = \bigcup_{\alpha < \beta} \{ L \in \mathcal{E}(E \times F); A \cap L \cap O_\beta \neq \emptyset \}$ cannot be covered by countably many closed sets not belonging to $\bigcap_{\alpha < \beta} \Gamma^*(\alpha)(A)$. Since by induction hypothesis $\bigcap_{\alpha < \beta} \Gamma^*(\alpha)(A) \in \mathcal{P}$, it follows from Lemma 10 that also $\Gamma^*(\alpha)(A) \in \mathcal{P}$. This completes the proof.

Corollary 19. If A is analytic in $E \times F$, then for each $\alpha < \omega_1$ and $\alpha \in \mathcal{P}$ the set \[\{ x \in E; \{ x \times A(x) \in \mathcal{P}(E) \} \} \text{ is coanalytic.}\]
Proof. It is the same as that of Corollary 11.

For each $\alpha \in \mathcal{P}$, take $B(\alpha) = \bigcup_{\alpha < \beta} \bigcap_{\alpha < \beta} B_{\beta \beta}$. We pass to the first step in the proof of Theorem 5.

Lemma 20. Let A be an analytic subset of $E \times F$ and assume that there exist $\alpha < \omega_1$ and $\alpha \in \mathcal{P}$ such that $\{ x \times A(x) \in \mathcal{P}(E) \}$ for each $x \in E$. Then A can be separated from $B(\alpha)$ by a member of $C_{\alpha\beta}$.

Proof. If $\alpha = 0$, then $\{ x \times A(x) \in \mathcal{P}(E) \}$ for all $x \in E$. Hence, by Lemma 4, there exists a set $D \in \mathcal{P}$ so that $A \in D$ and $D \cap B_\beta = \emptyset$. Let the property be true for all $x < \beta$ and assume \(\{ x \times A(x) \in \mathcal{P}(E) \}\) for each $x \in E$. Take $\alpha \in N$ fixed. Then the set \(\{ x \times A(x) \in \mathcal{P}(E) \}\) can be covered by countably many closed sets (of F_β) with \(A \cap F_\beta \in \mathcal{P}(E)\). Since by Lemma 18, we obtain by Theorem 3 a sequence $(\delta_\alpha)_\alpha$ in $\mathcal{P}(F_\alpha)$ with $A = \bigcup \delta_\alpha$. Let $r \in N$ be also fixed. Since for each $x \in E$, the set \(\{ x \times A(x) \in \mathcal{P}(E) \}\), there exists $\alpha < \beta$ such that \(\{ x \times A(x) \in \mathcal{P}(E) \}\). Hence, using Corollary 19, the sets $C(r, p, a) = \{ x \in E; \{ x \times (A \cap \{ A(x) \in \mathcal{P}(E) \}) \} \in \mathcal{P}(\pi, p) \}$ are coanalytic and they cover E. Therefore there is a sequence $(F_\alpha(p, a))_{\alpha \in \alpha}$ of disjoint Borel sets satisfying $(F_\alpha(p, a)) \in C(r, p, a)$ and $E = \bigcup (F_\alpha(p, a))$. For each $\alpha < \beta$, we introduce the set $A_{\alpha\beta} = A \cap \bigcup (F_\alpha(p, a)) \times \mathcal{E}(E \times F)$, which is still analytic. Because $\{ x \times A_{\alpha\beta}(x) \in \mathcal{P}(\pi, p) \}$ for each $x \in E$, the induction hypothesis applies. Thus we obtain a member $D_{\alpha\beta}$ of $C_{\alpha\beta}$ separating $A_{\alpha\beta}$ from $B(\alpha)$.

If we define $D_\alpha = \bigcup_{\alpha \in \alpha} B_{\alpha\beta}$ and $D_\alpha = B(\alpha)$. Then the set $D_\alpha = \bigcup_{\alpha \in \alpha} \bigcap_{\alpha \in \alpha} \bigcup (E \times F) \cap (D_{\alpha\beta}) \cap B(\alpha)$ belongs to $\mathcal{P}_{\alpha\beta}$, $D_\alpha \supseteq A$ and $D_\alpha \cap B(\pi, p) = \emptyset$. We only have to take $D = \bigcup_{\alpha \in \alpha} D_\alpha$. The proof of Theorem 5 will be complete if the following property holds:

Lemma 21. If A is an analytic subset of $E \times F$, then one of the following 2 alternatives must occur:

1. There exists $\alpha < \omega_1$ such that \(\{ x \times A(x) \in \mathcal{P}(E) \}\) for all $x \in E$.
2. There exists $x \in E$ such that no F_α-subset of F separates $A(x)$ from $B(x)$.

Proof. There is a compact metric space G and a G-subset H of $E \times F \times G$ so that $A = \pi(H)$, where $\pi: E \times F \times G \to E \times F$ is the projection. Take a countable base (U_n) for the topology of $E \times F \times G$. Let (α_n) be the standard ordering of \mathcal{P}. We will again make use of Lemma 5. We introduce for each $k \in N$ and $\alpha < \omega_1$, a subset $\mathcal{P}_{\alpha\beta}$ of $\mathcal{P}(E \times F)\times\pi$:

\[\mathcal{P}_{\alpha\beta}\]

consists of the elements $(x, p_n) \in \mathcal{P}(E \times F)\times\pi$ such that:

1. $K_\alpha \neq \emptyset$.
2. There is some $x \in E$ with $K_\alpha \subseteq \{ x \times \pi \times \pi \}$.
3. If U is open in $E \times F \times G$ and $U \cap K_\alpha \neq \emptyset$, then

\[
\{ x \in E \times F \times G; \exists (x, p_n) \in \mathcal{P}(E \times F)\times\pi \}
\]

We claim that the conditions 1, 2, 3 of Lemma 5 are satisfied:

1. In fact $\mathcal{P}_{\alpha\beta}$ is closed in $\mathcal{P}(E \times F)\times\pi$.
2. It is obviously satisfied.

Assume $\alpha = (\alpha_n, K_\alpha)$ such that an element of $\mathcal{P}(E \times F)\times\pi$ exists for each $\varphi \in \mathcal{P}_{\alpha\beta}$ and $\alpha_n \neq \alpha$. Let $\alpha_n \neq \alpha$. Then $\mathcal{P}_{\alpha\beta}$ is a countable covering of $\mathcal{P}(E \times F)\times\pi$. If $U_\alpha \cap K_\alpha = \emptyset$, then $\mathcal{P}(E \times F)\times\pi$ is given by $\varphi \in \mathcal{P}(E \times F)\times\pi$, where $\varphi \neq \varphi_n$. Clearly $\varphi \in \mathcal{P}_{\alpha\beta}$. Assume now $U_\alpha \cap K_\alpha \neq \emptyset$. Because $\alpha \varphi \in \mathcal{P}_{\alpha\beta}$ and we get $\mathcal{P}(U_\alpha \cap K_\alpha) \subseteq \mathcal{P}(E \times F)\times\pi$. Therefore there must be some $\pi \in N$ such that there is no countable closed covering $(F_\alpha(p_n))$ of $\check{\mathcal{P}}(U_\alpha \cap K_\alpha) \subseteq \mathcal{P}(E \times F)\times\pi$. For all $r \in N$. Remark that $\pi(U_\alpha \cap K_\alpha)$ is the image of $\pi^{-1}(\mathcal{P}(U_\alpha \cap K_\alpha)) \subseteq \mathcal{P}(E \times F)\times\pi$. A standard argument yields a nonempty closed subset Y of $\pi(U_\alpha \cap K_\alpha) \subseteq \mathcal{P}(E \times F)\times\pi$ such that $\pi(U \cap Y) \subseteq \pi(U_\alpha \cap K_\alpha) \subseteq \mathcal{P}(E \times F)\times\pi$.

\[\pi(U \cap Y) \subseteq \pi(U_\alpha \cap K_\alpha) \subseteq \mathcal{P}(E \times F)\times\pi\]

whenever U is open in $E \times F \times G$ and $U \cap Y \neq \emptyset$. It is clear that $Y \notin F(H)$. Let

$$r \in (N \times F(H))^{m+1}$$

be given by $i^k = \sigma$ and $i_{k+1} = (x, Y)$, which is in S_{m+1}.

Thus Lemma 5 applies and we have to distinguish 2 cases:

Case I. There is $\eta < \omega_1$ with $S_{\eta+1} = \emptyset$.

Take $x = n + 1$ and assume the existence of $x \in E$ with $[x] \times A(x) \notin F(p)$. Since

$$[x] \times A(x) = \pi((x \times F \times G) \cap H),$$

an integer p_n and a nonempty closed subset Y of $((x \times F \times G) \cap H)$ can be found with $(x \times A(x)) \cap \pi(Y \cap U) \notin F(p_n)$ whenever U is open in $E \times F \times G$ and $U \cap Y \neq \emptyset$. It follows that $(p_n, Y) \in S_{\eta+1}$, a contradiction.

Case II. There is $\xi \in (N \times F(H))^{\omega}$ such that $\xi(k) \notin S_k$ for each $k \in N$.

Let $\xi = (p_n, K_n)_{n \in N}$ and take $x \in E$ such that $K_n = [x] \times F \times G$. It is clear that ξ satisfies the following properties:

1. $\forall e \in \mathcal{E} : K_e \subset [x] \times F \times G$.
2. $K_n \neq \emptyset$.
3. $\forall e \in \mathcal{E}, \forall n \in N : \pi(K_n) = \pi(K_e \cap U)$.
4. $\forall e \in \mathcal{E}, \forall n \in N : U_e \cap K_e \neq \emptyset \Rightarrow B_{p_1, \ldots, p_n} \cap \pi(K_n) \neq \emptyset$.

It is shown in [3] that under this hypothesis, no F_{ω}-subset of F separates $A(x)$ from $B(x)$.

Acknowledgment. I am indebted to M. Talagrand, who brought [12] to my attention and suggested a similar result in the F_{ω} situation.

References