from a planar continuum X onto Y such that $f^{-1}(y)$ is decomposable for each $y \in Y$. Must Y be (hereditarily) locally connected?

One can prove that Y is hereditarily decomposable. It would be interesting to know what is a characterization of the continua Y in terms of intrinsic properties.

Added in proof. The answer to the problem is affirmative: E. Dyer, Continuous collection of decomposable continua, Proc. Amer. Math. Soc. 6 (1955), pp. 351-360. Moreover, one can prove that Y must be regular.

References

F$_c$-sections of Borel sets

by

J. Bourgain (*) (Brussel)

Abstract. It is shown that if E, F are compact metric spaces and A is a Borel subset of $E \times F$, then $(x \times F; A(x) = F_{x}$ in $F)$ is coanalytic in E.

Introduction. Throughout this paper, E and F are compact metric spaces. If A is a set that contains $E \times F$ and $x \in E$, let $A(x) = \{ y \in F : (x,y) \in A \}$, which is called a section of A. It is already known that if A is Borel in $E \times F$, then $(x \times E; A(x) = F_{x}$ in $F)$ is closed in F and $(x \in E; A(x) = F_{x}$ in $F)$ is coanalytic. I refer for instance to [1] and [4]. It follows from a result in my recent paper [2] that the set $(x \in E; A(x) = F_{x}$ in $F)$ is a universally measurable subset of E. We will obtain here the following refinement:

THEOREM 1. If A is Borel in $E \times F$, then $(x \in E; A(x) = F_{x}$ in $F)$ is coanalytic in E.

The main point in the proof of this result is a useful description of the fact that a set in F is F_{c}.

If L is a compact metric space, then $K(L)$ consists of all closed subsets of L and is equipped with the exponential or Vietoris topology. This topology is compact metrizable. I recall the following result (see [4]).

LEMMA 2. Let P be a Polish subspace of the compact metric space L. Then the subspace $F(P)$ of $K(L)$ consisting of those compact sets K in L such that $K = K \cap P$, is Polish.

We denote by s the set of all finite complexes c in $\bigcup N$, where $N = \{ 0 \}$.

PROPOSITION 3. Let A be Borel in E and $B = F \Delta A$. There is a compact metric space G and a G subset H of F such that $A = \pi(H)$, if $\pi : F \times G \to F$ is the projection. Let $B = \bigcup B_{i,0}$ be an analytical representation of B, where the $B_{i,0}$ are closed in F and $B_{i,0+1} \subset B_{i,0}$. Take a countable base $U_{i,0}$ for the topology of $F \times G$.

Then A is not F_{c} in F if and only if there exists $(p_{i}, K_{i}) \in \bigcap A_{i}$ satisfying:

(*) Aspirant, N. F. W. O., Belgium.
1. \(K_0 \neq \emptyset \).
2. \(\forall c \in \mathcal{A}, \forall n \in \mathbb{N}: \pi(K_{n_0}) \subset \pi(K_n \cap U_n) \).
3. \(\forall c \in \mathcal{A}, \forall n \in \mathbb{N}: U_n \cap K_c \neq \emptyset \Rightarrow B_{p_{n_0}, \ldots, p_{n_k}} \cap \pi(K_n) \neq \emptyset \).

The proof of this proposition is rather technical. Let us first show how to derive Theorem 1.

Proof of Theorem 1. It is clear that \(E \) can be assumed \(\sigma \)-dimensional. Let \(A \) be Borel in \(E \times F \) and \(B = (E \times F) \setminus A \). There is a compact metric space \(G \) and a \(G_2 \) subset \(H = E \times F \times G \) such that \(A = \pi(H) \), if \(\pi: E \times F \times G \rightarrow E \times F \) is the projection. Let \(B = \bigcup \bigcup B_{i,k} \) be an analytic representation of \(B \), where the \(B_{i,k} \) are closed in \(E \times F \times G \) and \(B_{i,k+1} \subset B_{i,k} \). Since \(E \) is \(\sigma \)-dimensional, there is a countable base \(\{U_n\}_n \) for the topology of \(E \times F \times G \) such that \(U_n(x) = U_n(x) \) whenever \(x \in E \). If \(x \in E \), then it follows from Proposition 3 that \(A(x) \) is not \(F_{\alpha} \) in \(F \) if and only if there exists \((\rho, K_{n_0}) \in \prod \prod (N \times F(H)) \) verifying the following conditions:

1. \(\forall c \in \mathcal{A}, K_c \subset \{x \} \times F \times G \).
2. \(K_0 \neq \emptyset \).
3. \(\forall c \in \mathcal{A}, \forall n \in \mathbb{N}: \pi(K_{n_0}) \subset \pi(K_n \cap U_n) \).
4. \(\forall c \in \mathcal{A}, \forall n \in \mathbb{N}: U_n \cap K_c \neq \emptyset \Rightarrow B_{\rho_n, \ldots, \rho_{n_k}} \cap \pi(K_n) \neq \emptyset \).

Remark that \(\Omega = \prod (N \times F(H)) \) is Polish.

To obtain that \((x \in E: A(x) \neq \text{not } F_{\alpha}) \) is analytic in \(E \), it is enough to prove that the subset of \(E \times F \) consisting of those elements \((x, (\rho, K_n)) \) satisfying conditions (1), (2), (3), (4) above is analytic in \(E \times F \). The reader will easily verify that this set is in fact closed. So the proof is complete.

Thus it remains to prove Proposition 3. We introduce some notations. If \(c \in \mathcal{A} \), let \(B(c) = \bigcup \bigcup B_{i,k} \). Suppose \(c \in \mathcal{A} \) and \(X \) closed in \(H \), then \([c, X] \) will denote the \(\sigma \)-algebra generated by \(\{c, X\} \) and \(\pi(X) \). We also need the following:

Lemma 4. If \(c \in \mathcal{A} \) and \(X \) closed in \(H \) satisfy \([c, X] \), then there exists \(p \in \mathcal{N} \) such that \([c, p] \subset X \).

We now prove the following:

Lemma 5. Let \(c \in \mathcal{A} \) and \(X \) closed in \(H \). Then there exists a nonempty closed subset \(Y \) of \(H \) with \(\pi(Y) = \pi(X) \), so that \([c, Y \cap U] \) whenever \(U \) is open and \(U \cap Y \neq \emptyset \).

Proof. If the claim is true, then for every nonempty closed subset \(Y \) of \(H \cap \pi^{-1}(\pi(X)) \) there is an open set \(U \) of \(F \times G \) such that \(U \cap Y \neq \emptyset \) and \([c, Y \cap U] \) does not hold. A standard construction yields us then a countable closed covering \(\bigcup_{\lambda} \{Y_{\lambda}\} \) of \(H \cap \pi^{-1}(\pi(X)) \) so that \([c, Y] \) does not hold for each \(n \). Hence there is a sequence \((p_\lambda) \subseteq F_{\alpha} \) of \(F_{\alpha} \)-sets of \(F \) such that \(\pi(Y_{\lambda}) \cap A \neq \emptyset \), and \(B(c) \cap A = \emptyset \). Clearly the set

\[F = \bigcup \{\pi(Y_{\lambda}) \cap \{\pi(Y_{\lambda}) \cap \bigcup_{\lambda} B_{p_{\lambda}, \ldots, p_{\lambda_k}} \cap \pi(K_n) \neq \emptyset \} \}

is still \(F_{\alpha} \) in \(F \). Furthermore \(B(c) \cap F = \emptyset \) and \(\pi(X) \cap A \subset \bigcup \{\pi(Y_{\lambda}) \cap A \subset F \}

which contradicts \([c, X] \).

Lemma 6. Assume \(A \neq F_{\alpha} \). Then for each \(c \in \mathcal{A} \) we can define \(p_n \in \mathcal{N} \) and \(K_n \in F(H) \) verifying:

1. \(K_0 \neq \emptyset \).
2. \(\pi(K_{n_0}) \subset \pi(K_n \cap U_n) \).
3. \(U_n \cap K_n \neq \emptyset \Rightarrow K_n \neq \emptyset \).
4. \(U_n \cap K_n \neq \emptyset \Rightarrow \{p_n, \ldots, p_k\} \subset K_n \cap U_n \).

Proof. The construction will be made by induction on the length of \(c \).

Since \(A \neq F_{\alpha} \), we have \([0, \alpha] \). By successive application of Lemma 4 and Lemma 5 we find some \(p_n \in \mathcal{N} \) and some nonempty closed subset \(Y \) of \(H \), so that

\[\{p_n, \ldots, p_k\} \subset \pi(K_n \cap U_n) \]

and \(\pi(Y) = \pi(X) \). If \(U \) is open and \(U \cap Y \neq \emptyset \), take \(K_n \in F(H) \). If \(U_n \cap K_n \neq \emptyset \), then \([p_n, \ldots, p_k] \subset K_n \cap U_n \).

Again by successive application of Lemmas 4 and 5 we find some \(p_n \in \mathcal{N} \) and some nonempty closed subset \(Y \) of \(H \) with \(\pi(Y) = \pi(X) \). If \(U \) is open and \(U \cap Y \neq \emptyset \), take \(K_n \in F(H) \). If \(U_n \cap K_n \neq \emptyset \), then \([p_n, \ldots, p_k] \subset K_n \cap U_n \).

It is easy to verify that this set is in fact closed. So the proof is complete.

We now prove the first part of Proposition 3. Assume \(A \neq F_{\alpha} \) and \((p_n, K_n) \) be as in Lemma 6. We only have to verify condition 3. If \(U_n \cap K_n \neq \emptyset \), then \(K_n \neq \emptyset \) and accordingly there is some \(r \in \mathcal{N} \) with \(U_n \cap K_n = \emptyset \). Hence

\[\{p_n, \ldots, p_k\} \cap U_n \cap K_n \subset \emptyset \].

In particular, we have that \(B_{p_n, \ldots, p_k} \cap \pi(K_n) \neq \emptyset \).

Finally, we pass to the proof of the second part of Proposition 3. Assume \(A \neq F_{\alpha} \) with each \(F \) closed in \(F \). We will show that the assumption of the existence of \((p_n, K_n) \) in \(\prod (N \times F(H)) \) satisfying 1, 2, 3 leads to a contradiction.

By induction we define sequences \((\alpha_n) \) and \((\beta_n) \) verifying following properties:

1. \(K_0 \neq \emptyset \).
2. \(U_n \cap K_n \neq \emptyset \).
3. \(U_n \cap K_n \neq \emptyset \).
4. \(\pi(K_n \cap U_n) \subset F(H) \).
5. \(\pi(K_n \cap U_n) \subset K_n \cap U_n \).
Since \(A \subset \bigcup F_{ii} \), we have \(K_{0} \cap H = \bigcup (K_{0} \cap H \cap \pi^{-1}(F_{ii})) \). Because \(K_{0} \cap H \) is a nonempty \(G \) subset of \(F \times G \), there exist \(l_{i} \in N, n_{i} \in N \) and \(U \) open with \(U_{n_{i}} \subset U \), \(K_{0} \cap H \cap U_{n_{i+1}} \neq \emptyset \) and \(K_{0} \cap H \cap U \subset \pi^{-1}(F_{ii}) \).

Since \(K_{0} \cap U_{n_{i+1}} \neq \emptyset \), we have \(K_{0} \neq \emptyset \). Clearly \(K_{0} \cap U \subset \pi^{-1}(F_{ii}) \) and thus \(K_{0} \cap U_{n_{i}} \subset \pi^{-1}(F_{ii}) \).

Assume \(l_{i}, n_{1}, \ldots, l_{i}, n_{0} \) obtained. Since \(A \subset \bigcup F_{i+1,j} \), we have \(K_{n_{i}, \ldots, n_{0}} \cap H = \bigcup (K_{n_{i}, \ldots, n_{0}} \cap H \cap \pi^{-1}(F_{i+1,j})) \). Again \(K_{n_{i}, \ldots, n_{0}} \cap H \) is a nonempty \(G \) in \(F \times G \) and therefore there exist \(l_{i+1} \in N, n_{i+1} \in N \) and \(U \) open, such that

\[
U_{n_{i+1}} \subset U, K_{n_{i}, \ldots, n_{0}} \cap H \cap U_{n_{i+1}} \neq \emptyset
\]

and

\[
K_{n_{i}, \ldots, n_{0}} \cap H \cap U \subset \pi^{-1}(F_{i+1,j+1}).
\]

Because \(K_{n_{i}, \ldots, n_{0}} \cap U_{n_{i+1}} \neq \emptyset \), we have \(K_{n_{i}, \ldots, n_{0}} \cap U_{n_{i+1}} \neq \emptyset \). Furthermore

\[
K_{n_{i}, \ldots, n_{0}} \cap U_{n_{i}} \subset \pi^{-1}(F_{i+1,j+1})
\]

and hence

\[
K_{n_{i}, \ldots, n_{0}} \cap U_{n_{i}} \subset \pi^{-1}(F_{i+1,j+1})
\]

This completes the construction.

Take \(r = (n_{0}) \). Since \((K_{i,j} \cap U_{n_{i}}) \subset (K_{i,j} \cap U_{n_{i}}) \), we have that \((K_{i,j} \cap U_{n_{i}}) \subset (K_{i,j} \cap U_{n_{i}}) \). Because \(U_{n_{i}} \cap K_{i,j} \neq \emptyset \), it follows that \(B_{n_{i}, \ldots, n_{0}} \cap (K_{i,j} \cap U_{n_{i}}) \neq \emptyset \). Therefore we obtain for each \(k \) that

\[
F_{ii} \cap \cdots \cap F_{i+1,j+1} \cap B_{n_{i}, \ldots, n_{0}} \subset \pi(K_{i,j} \cap \cdots \cap F_{i+1,j+1} \cap B_{n_{i}, \ldots, n_{0}})
\]

By the compactness of \(F \), we conclude that \(\bigcap F_{ii} \cap \bigcap B_{n_{i}, \ldots, n_{0}} \neq \emptyset \). But

\[
\bigcap F_{ii} \subset A \text{ and } \bigcap B_{n_{i}, \ldots, n_{0}} \subset B,
\]

contradicting the fact that \(B \subset A \).

Thus Proposition 3 is established.

References

