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construction of § 6 implies that the Hanf number is at least (2%)*, but the proof
of Theorem 5.1 does not carry over as written. The application of the Erdés~Rado
theorem uses the fact that an arbitrary model of a Scott sentence has at most
89 Lo 2-types. For models of an arbitrary L, ,, sentence this cannot be assumed.

In § 6 we invoked Theorem 4.1 to produce B of power 2%° satisfying ¢g. It
turns out that (in the notation of § 4) N(d, S,;) = {d} in ¥ = U* and, in the con-
struction of B, € is all of B*—B. To find a case where, by contrast, the simple
expedient Qf = B* — B* does not suffice one may examine A—PY. The gaps created
by removing P{' reappear in B, but may not be added to Q%, as a back and forth
argument confirms. In general, € is the largest subset of B* which may be added to
Q¥ without modifying the Q¥, i>0.

It is not difficult to show that the model B of ¢y in the case N(d, S;) = {d}
of §4 has at least 2™ nonisomorphic elementary submodels. Tt follows that for any
denumerable 2, if @y has more than one (nonisomorphic) model, then it has at least
2% In the case of the 2 of § 6 it can be shown that 8 has a “universal” property:

if €F gy, then €<B. We do not know whether all @y with spectrum Card 2™

possess this property. Another question about gy with spectrum Card<2™ stems
from the fact that in Theorem 2.1 we are able to give structural characterizations
of orderings whose spectra are Card and {50}, but none for these. It is clear from our
analysis that orderings in which the union of the scattered orbits is dense, yet which
have a nonscattered orbit, possess this spectrum. However, there are also dense
orderings with the same spectrum but no scattered orbit.
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Continuous monotone decompositions of
planar curves

by

J. Krasinkiewicz and P. Minc (Warszawa)

Abstract. In this paper we prove that if X is a planar curve and f: X— Y is a monotone
open surjection onto a nondegenerate continuum Y such that either (1) £~ '(y) is a A-dendroid
for each y € Y, or (2) £~ '(») is locally connected for each y €Y, then fis a homeomorphism. We
give also some examples showing that the theorem is in a sense the best possible.

1. Introduction. In this paper we are going to discuss continuous monotone
decomposition of certain metric continua. It is well-known that the investigation
of continuous monotone decompositions of continua is equivalent to investigation
of continuous monotone and open transformations of continua. All the results of
this paper are expressed in the language of mappings. In [12] B. Knaster showed
that there is a continuous monotone and open map f from an irreducible continuum
onto the unit interval 7 = {0, 1] such that each fiber f~'(r) is nondegenerate. Since
then there has been a remarkable interest in investigations of structure of the fibers
for such mappings defined on irreducible continua (see e.g. [10] and [17]). These
investigations were in some sense closed by E. Dyer [8] who proved that for
every continuous monotone and open surjection with nondegenerate fibres from
an irreducible continnum onto a nondegenerate continuum there is an indecom-
posable fibre.

From this result it follows in particular that in the above Knaster’s example
there must be some f& I such that f~*(t) is indecomposable.  There are examples
of irreducible and nonirreducible continua admitting monotone open surjections
onto nondegenerate continua such that all fibers of the surjections are indecomposable
(even' pseudoarcs) (see [1], [4] and [L1]). It should be noted that the set of inde-
composable fibres in such situations is of a particular Borel type. In fact, we have
the following theorem easily resulting from a theorem of Mazurkiewicz.

1.1. TaeoreM. Let f: X — Y be a continuous monotone open surjection from
a continuum X. Then the set of all y € Y such that f ~'(y) is indecomposable (hereditarily
indecomposable) is a Gg-subset of Y.
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To prove the above theorem let us first observe that by the theorem of Mazur-
kiewicz the set of all indecomposable (hereditarily indecomposable) subcontinua
of X constitute a G;-set in the hyperspace C(X) (see [15], p. 207, Remark 5). From
our assumptions it follows that the map f ~1: ¥— C(X) is an embedding (see [15],
p. 68). Combining these facts one easily obtains the conclusion of the theorem.

1.2. Remark. Let f; X and Y be as in L.I. Tt is easily seen that the set
{re¥: f7Y(y) is snake-like} is a G,-subset of Y. This fact together with 1.1 give
a simple proof of Theorem 1 in [5].

Theorem 1.1 indicates that some sorts of constructions are not possible. In
particular it is not possible to have a continuous decomposition of a circle-like con-
tinuum into arcs and a countable collection of indecomposable continua with the
quotient space being a circle, as is claimed in [4], p. 191, 1.14-18.

Let us remark that the G,-set occurring in Theorem 1.1 can be empty even in the
case where X is a locally connected curve (i.e. I-dimensional continuum). Moreover,
there is a continuous monotone oyen map f from the Menger curve onto the Hilbert
cube such that each fibre of f 45 locally connected (homeomorphic to the Menger
curve) (see [1] and [19]). The essential feature of this example is the cyclicity of
locally connected fibres, because, as has been proved by E. Dyer [9], there is no
continuous monotone open map f from a curve onto a nondegenerate continuum
such that each fibre of f is a nondegenerate dendrite (locally connected continuum
containing no simple closed curve). The fact that the Menger curve in the example
of Anderson-Wilson is not planar is also essential. We prove that if X is a planar
curve, then each continuous monotone open map on X with locally connected fibres
is a homeomorphism (see 2.8).

Nevertheless one can construct an example of a planar locally connected her-
editarily decomposable continuum X admitting a continuous monotone and open
map f onto the unit interval I such that each fibre of fis a nondegenerate arcwise
connected continuum (see 3.6) (observe that X must be 1-dimensional (a curve)
according to a result of Mazurkiewicz [16]). Again the fibres in this example are not
acyclic. This is also essential, because we prove that each continuous monotone
and open map f defined on a planar curve such that the fibres of f are A-dendroids
must be a homeomorphism (see 2.7). (By a A-dendroid we mean a hereditarily de-
composable and hereditarily unicoherent continuum, It is known that A-dendroids
are acyclic curves (see [6] and [7])). We show also by an example that one cannot
replace the stipulation of hereditary decomposability of such fibres by decompos-
ability of the fibres. Indeed we shall construct an example of an acyclic planar curve
(tree-like curve) admitting a continuous monotone and open map f onto I such that
each fibre of f is a decomposable snake-like continuum (see 3.2).

Finally we shall show that for curves in E* the situation is substantially different.
To this effect we construct an example of a dendroid (= arcwise connected A -dendroid)
in E* admitting a continuous monotone and open map f onto I such that each fibre
of f is nondegenerate (see 3.3).
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1.3. Remark. In connection with Example 3.2 let us note that the existence
of such an example follows from a theorem of R. D. Anderson [1]. Unfortunately
no proof of that theorem is given in [1].

Standard notation: I=[0,1], I'=(0, 1), D = the boundary of a disc D
and D = the interior of D.

2. On triviality of certain decompositions of planar curves. In this section we shall
prove two theorems (2.6 and 2.7) asserting that some kinds of decompositions of
planar curves must be trivial. The proofs of these theorems havily depend on the
following result.

2.1. TaeoreM (E. Dyer). Let X and Y be nondegenerate continua andletf: X—Y
be a monotone open surjection. Then there is a dense Gy subset 4 of Y having the
following property: for each y € A, for each continuum Bef~(y) with nonvoid interior
with respect to £~*(3), and for each open set U< X such that U B = @, there is
a contimum Z<X containing B and a neighborhood V of y in ¥ such that
(f1ZYy VY~ U =@ and f|Z: Z—Y is a monotone surjection.

This theorem immediately follows from an argument of Dyer [8], but in this form
it is"not stated in [8]. Therefore we briefly recall the argament. For each ye Y and
£>0 we define, following Dyer, a nonnegative number C(y, &) as follows: if
FTUONK(fTHOINB, &) = @, where K(S, ¢) is the ¢-ball around S, for each proper
subcontinuum B of £~ 1(3) then let C(y, &) = 0. Otherwise let C(y, &) be the lower
upper bound of reals >0 for which there exist a proper subcontinuum B of N 6))
and a point pef~1INK{f™*(»)\B, £) having the following property: for each
§>0 there is ze ¥ such thal two different components of f ~z2) n K (B,.rl) meet
K(p, 6).

From Lemmas 3 and 4 of [8] we conclude that M = {yeY: there is an ¢>0
such that C(y, ¢) # 0} is of the Ist category F, subset of Y. Let 4 = Y\M. Take
ye A and a (proper) subcontinuum B of f~1(y) with nonvoid interior with respect
to £~ (). There are a point p € B and ¢>0 such that p efHPINK(F I ()\B, ).
Let 0<n<inf{o(a, b): ac U,be B}.

Since f is open and C(y,&) = 0, there is an open neighborhood ¥ of yin Y
and a closed neighborhood W of p in X such that for each z € V exactly one com-
ponent D, of £~ (2\U meets W. Let Z = f~(¥\V) U U‘.' D,. Observe that Z is

Z€

a compact subset of X such that f|Z is a monotone map onto Y. It follows that Z is
a continuum because Y is a continuum.

This completes the argument.

2.2, Remark. From the above theorem of Dyer it follows that every continuous
monotone decomposition of an irreducible continuum into nondegenerate elements
contains uncountably many indecomposable elements (comp. Theorem 2 in [5]
and questions following it on p. 1333). )

Before we state the promised theorems we first prove the following four lemmas
needed in the proofs of these theorems.
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2.3. LemMa. Let X be a nondegenerate continuum which is not a triod anda which
can not be mapped onto an indecomposable continuum. Then there exist two disjoint
subcontinua B, and By of X with nonvoid interiors.

Proof. By [13], 3.5 there exist two disjoint continua Bp and B} in X such that
every neighbourhood of B; contains a neighborhood of B; with connected comple-
ment. To complete the proof it suffices to show that every neighborhood U of Bj
contains a continuum with nonvoid interior.

Let ¥<V<=U be a neighborhood of B; with connected complement. By our
assumption it follows that there are at most two components of V meeting V. For
otherwise there would exist three disjoint closed sets Fo, F,, F, such that
V=F,uF, UF,and F;n V # @. Then F;n ¥ would be an open subset of X
and X would be a triod with links F; u (X" \V) and the center X\V. Hence the com-
ponent of ¥ containing B} has nonvoid interior and is a subset of U, which completes
the proof.

2.4. LemMMA. Let X be a continuum in the sphere S* and let f+ X — Y be an open
surjection such that for each y € Y the fiber () is a nondegenerate continuum which
can not be mapped onto an indecomposable continuum. Then there exists a nondegenerate
continuum Ec< Y and two disjoint subcontinua Dg and Dy of X such that f(Dq)
= f(D,) = E and the map f|D;: D;— E is monotone for i=0,1.

Proof. Let T Y be the set of all points such that f ~(y) contains a triod for
yeT. By the Moore triodic theorem I is countable, Let A< Y be the set as in
Theorem 2.1. Pick a point z € ANT. By Lemma 2.3 there exist two disjoint continua
By, By=f!(z) with nonvoid interiors relative to f ~1(2). There exist two sets U,
and U, open in X such that f4(z)c Uy u Uy, Up By = @ and Uy n B, = @.
By Theorem 2.1 there exist two subcontinua Z, and Z, of X and a neighborhood V'
of z in Y such that f]Z; is a2 monotone surjection onto Y and

F1Z) "N U;=@8 for i=0,1.
There is a neighborhood W<V of z in Y such that f~Y(W)c U, u U,. Let Ec W
be an arbitrary nondegenerate continuum. One easily sees that E and the continua
D, = (f|Z) “E), i = 0, 1, satisfy the conclusion of the lemma. This complets
the proof.

2.5. LEMMA. Let X be a continuum in the sphere S* and let f: X — Y be an open
surjection such that for each y € Y the fiber f~ (y) is a nondegenerate continuum which
can not be mapped onto an indecomposable continuum. Then Y is hereditarily locally
connected.

Proof. Suppose Y is not hereditarily locally connected. Then there exist a se-
quence of nondegenerate mutually disjoint continua Cy, Cy, ... in ¥ such that
C, = C, in the Hausdorff distance ([15], p. 47). By 2.4 there are three distinct points

Yos Y1, V2 € Co and two disjoint continua Dy, Dy =f ~(C,) such that Dy Af )
# @ # D, 0 f~ Yy fori = 0, 1, 2. There exist three points p; & f ~*(¥),i = 0, 1, 2,
and a positive number & such that no compoment of S*\(Dy u Dy U f “yo v
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U ) U fTH(p,)) meets each g-ball K(p;,8), i =0,1,2. Otherwise one can
construct the Kuratowski skew-curve in S2, which is impossible [14]. However
by our supposition there exists an index » such that the continuum FY(C,) meets
K(p;, ¢) for each i =0, 1,2, and f~(C,) is disjoint from D,uD uf“”l(y ) U
Uy uf T (»,), a contradiction. ' °

For a continuum X by C(X) we denote the h i i
' ‘ yperspace of nonvoid suby
of X with the Hausdorff metric. i € subeontinna

2.6. LeMMA. Let ¢ : 1 — C(I?) be a mapping with disjoint values, i.e. e noel)=9
Jor r # s, such that (t) N Ix{0} # @ # o(f) N I'x {1} for each te I Then o(t)
is irreducible between ¢ (¢) N Ix{0} and o(f) A Ix {1} for each tel.

Proof. For zeI* let z' denote the first coordinate of z. For rel let
ree()nIx{0}and g, e o(r) n Ix {1} be arbitrary points. Observe that

() if pce[ps,, ps,]s then se sy, 5]

If not, then the set {p,, g,} separates I2 between p,, and Ps-But U o)

re[so, 511

is a continuum containing p,, and p,,, and ¢(s) is a continuum containing p, and g,.
It follows that for some re [s9, 5,] the continuum ¢(s) meets @(r). Hence s = :
a contradiction. '

To prove the lemma it suffices to show that ¢ (z) is irreducible between p, and ;-
Suppose, to the contrary, that there are a continuum C= e (f) containing p, and ¢,
and a point x & ¢ (?)\C. Let D=I? be a disc missing C and containing x in its relativc;
interior with respect to I There is an interval [t,, 1,] <1 containing ¢ in its interior
such that @ (r) n D # @ for each re [z,, 7,]. It follows from (0) that p; lies in the
interior of [pj,, p;,]. Hence {p,,q} separates I*> between p, and Dy, Since
@(to) v DU @(ty) is a continvum in I? containing p,, and Py, and Ccl? is
a continuum containing p, and gq,, then Cn (et u DU @(t;)) # @. Hence
@(t) N @(t;) # @ for some i =0, 1, a contradiction.

2.7. THEOREM. Let X be a curve in S* and let f: X — Y be an open surjection
onto a nondegenerate continuum Y. If for each y € Y the fiber f~*(y) is a A-dendroid,
then f is a homeomorphism.

Proof. Suppose the theorem fails. Using Lemma 2.5 we may assume (without
loss of generality) that Y is an arc such that £~ !(y) is nondegenerate for each yeY.
Thus Lemma 2.4 implies that X contains a subcontinuum separating S2. Hence X
separates S since dim X = 1. On the other hand, since all fibers f~1() are acyclic,

the continuum X is acyclic too (see [2]). This is a contradiction completing the
proof.

2.8. THEOREM. Let X be a curve in S* and let f: X — Y be an open surjection
onto a nondegenerate continuum Y. If for each y € Y the fiber £~X(3) is a locally
connected continuum, then f is a homeomorphism.

Proof. Suppose the theorem fails. By 2.5 we may assume that Y is an arc ab
3 — Fundamenta Mathematicae T. CVIIl/2
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such that £ ~%(y) is nondegenerate for each y eY. By Lemma 2.4 there is a nonde-
generate continuum E< Y and there are two continua Dy and Dy in X such that
E =f(Dy) = f(Dy) and fID;: D;—E is a monotone map. Without loss of
generality one can assume that E=Y. Let 2 be a decomposition of § 2 defined as

follows:
/\\
G = {(f]go)\—l(}’): (f1 D)™ (M}yey L {points of S2(Dy v D)},
where

(D)) = (f1D)~'(») v {the union of all components of
S/ D)"'(y) each of which does not contain Dy_;}, for i=0,1.
Observe that 9 is an upper semi-continuous decomposition of $2? into continua
nonseparating S>. By the Moore theorem we have S%% = S 2 Note that the image
X of X in $*/9 behaves similarily as X itself, i.e. % is a curve and there exists an
open monotone surjection f of X onio ¥ such F-1(y) is locally connected. Further-
more there exist two disjoint arcs Do and Dy in % such that  restricted to each D,
is 2 homeomorphism and each fiber of 7 meets both Do and Dy. Let L, F~Ya)
be an arc with endpoints p, € Dy and g, € B,, and let L,=f~*(8) be an arc with
endpoints py e Dy and g, € D;. Note that L, L L,u Dy u D, is a simple closed
curve. Let O, and Q; denote the complementary dises in S?/% bounded by that
curve. Let M; = {yeX: ) n Qs connected}, i = 0, 1. Since MyuM; =Y,
then either M, or M, has nonvoid interior in Y. Without loss of generality we
may now assume that M, =Y. Let Z=Xn Qo and let g = 71Z. Note that g is
an ‘open surjection onto Y such that g~1(3) is a locally connected continuum
meeting both D, and D;. By Lemma 2.6 it follows that each fiber g~*(y), for
y e Y\{a, b}, is irreducible between Do ~ g~ %(») and By n g7*(); hence g~ (p) is
an arc. But by a theorem of Dyer [9] (comp. 2.7) this is impossible. This contra-

diction completes the proof.

. 3. Some examples. In this section we present the examples mentioned in the
Introduction.

3.1. LemMA. Let Y and Z be continua and let ¢: Y — C(Z) be a mapping with

disjoint values, i.e. p(x) N @(y) = @ for x # y. Then X = U @(y) is a contimum

yeY
and there is a unique monotone open mapping f+ X — Y onto Y such thatf~*(5) = ¢()
for each ye¥.

Proof. The first statement is proved in [11], 1.2, p. 23. Define: f&)y =y if

x € @(3). Let ¥ be an open set in Y. First we shall show that f~*(V) is open in X.-

Let xef~(¥) and suppose there is a sequence’ x,; Xz, ... from X\f ~4(¥) con-
verging to x. Let x, € ¢ () = f~1(»,). We can'assume that {y,} convergesto a point’
¥o. Since y, ¢V, then yo ¢ V. On the other hand @(yo) 2 x, which implies that
¥o-=f () € ¥, a contradiction. This. proves that f is continuous.
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Now we shall show that f is open. Let U be open in X. Then

. FO) ={y: 0N U+ G}
is open in Y because ¢ is continuous.

The monoteneity and uniqueness of f are evident, which completes the proof.

3.2. ExszyFE. There exists a planar tree-like continuum ¥ admitting a monot-
one open surjection f onto I such that £ ~1(¢) is a decomposable snake-like continuum
for each tel (comp. {1]).

. Proof. First we establish some notation. Let I, = I'x {0} and I, = Ix{1}.
Pomts_of I, will be denoted by the letter p (with subscripts) and by the letter ¢ (with
subscripts) we denote points of I;. By pg we mean an arc with endpoint p and q.
By A4 we denote the collection of all arcs p,g, in I* such that p,g, n Iy = {p,} and
psgsn I, = {q}). If z;, z, € I?, then z,z, denotes the straight line segment between
z, and z,. If p; q,; p, 4, € A are disjoint then [p, gy, p,g,] denotes the disc bounded

by the simple closed curve p;q; U p,q, U pps U G1q,. If Fis a family of sets,
then F* denotes the union of elements of F.

Let Uy, U,, ... be a base for open sets of I2. One can construct two sequences:

(i) a sequence of discs D, D,, ... in I? and

(i) a sequence of finite collections 4,, 4,, ... contained in 4 such that setting
"X, =I\"U Int.Dj,

jsm

m=1,2,..,

the following conditions are satisfied for each n>1:

e
O, {0}xI,{I}xIed,cA4,.; and two different elements of 4, are disjoint,

@), ifL,,L,e A, are different and [Ly, L,] ™ Af = L; U L,, then [L, ,‘Lz] n X,
can be covered by l/n-chain % such that the first link of ¥ contains
[Ly, LI n Iy, and [Ly, Lol 0 X,c{xe I*: o(x, Ly<1/n} for i = 1,2,

@)y A4inUD;=9,

J<n

@, Dyin(@u..uD)=6, .
(5. D,n (I, I)is an arc contained in Iy,
6), UNX,#9.

Having defined the sets Dy, ..., D,and 44, ..., 4, one can easily construct D,
and A, { using the following simple lehma, the proof of whith is left to the reader,

LEMMA. Let: P be a finite subcollection of mutually digjoint elements of A such
that {0} xI, {1}x I P. Let B<I, be a closed set disjoint from P*. Then for each
>0 there is a finite collection Q<A of mutually disjoint arcs containiﬁg, P such that
BAQ*=@ and if L;,L,e Q are different and [Ly, L] n O* =L, UL,, then
[Ly,L,] edn be covered by e-chain whose the first link “contains L, Lyl oIy, and
[Ly,L]c{xel* o(x,L)<sg} for i=1,2. " C e

3=

th
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The collection A, . is obtained as the image of Q by a special homeomorphism /;
of I* onto X, which sends B to {J D;n X, and P* to A7. The number ¢>0

Jj<n
is chosen to fit condition (2),+-
This completes the construction of D,’s and A,’s.

Let X = () X,. It follows from (1),, (4), and (5), that X is a continuum not
nx1
separating the plane. By (6), we infer that X is 1-dimensional. These conditions imply

that X is tree-like [3]. Define a function ¢: I, — C(X) in the following way. If

pe U A%, then there is exactly one element L, e U 4, containing p. Set ¢ (p) = L,
n21 nx1

in this case. Otherwise consider the sequence Ey, E,, ... of discs such that pe E,
= [}, L% N X,, where L},L5€ 4, are different and [L}, L3~ A% = L} U LS.

Note that E, ,, < E, for each n>>1. In this case set ¢ (p) = () E,. By (2), the function
n21

¢ is continuous and has disjoint snake-like values such that {p} = ¢(p) 0 I, and for
each >0 the continuum ¢(p) can be covered by an s-chain whose only the first
link contains p, i.e. p is an endpoint of ¢(p) (see [3], p. 660).

The continuum Y we define as the union of X and the reflection of X is the
x-axis. Clearly, Y has the promised properties.

A. Lelek asked the question (credited by him to A. Stralka) whether there is
a dendroid (different from an arc) admitting a continuous monotone and open map
onto an arc. The answer to this question is given by the following.

3.3. ExampLE. There exists (in E%) a dendroid X and a continuous monotone

and open retraction  from X onto an arc J* = X such that all fibres of r are non-
degenerate.

Proof. First we establish some notation. Let M be the Cantor fan (i.e. the cone
over the Cantor set) and let v be the vertex of M. Let C(M) be the hyperspace of
nonvoid subcontinua of M with the Hausdorff metric dist (-,-). Let us denote

C(M,v)={AeC(M): ve d}.
Note that C(M, v) is a (contractible) continuum. We first prove that there is a con-
tinuous map f: I— C(M, v) having the following properties

@) f(t) # {v} for each te],

(i) dim{re I: pef(2)}<0 for each pe M\{v}.

This will be done by applying the Baire calegory argument to the space C(M, v).

For each £>0 let us. denote

®, = {fe C(M, v)': (1) & (for each p e M\K(v, &) each component of
- {t: pef(t)} has diameter less than &},
where K(v, &) is the open e-ball around v.
Observe that each map belonging to () @,,, satisfies conditions (i) and (ii).
L

‘We shall show that this set is nonvoid. By the Baire theorem it suffices to show that
for each ¢>0 we have
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(@) @, is open in C(M,v)’, and

(b) @, is dense in C(M, ).

Pr(?of of (a). Let fe &, and suppose there is a sequience J15S25 - from C(M, v)*
converging to f such that for each n3> 1 there is a point p, e M\K(, &) and there is
a component T, of the set {t: p, e f,(+)} such that diamT,>¢. One can assume that
Py—>p and T, —T (in C(I). It is casily seen that pPEK(v,e), diamTze and
Te{t: pef(r)}, which is a contradiction.

Proof of (b). Let geC(M, v)' and let & be a positive number. Take
to = 0<t;<..<t, = 1 such that

M diamlt;, 1,4 ,]<3e,

V)] . diamg ([, £ <%8 .
There exist Ay, Ay, ..., 4, & C(M, Y)N({v}) such that
)] Ain Ay ={v} for i#j,
@ dist(g (), 4;)<%s .

To finish the proof we need the following remark. If 4, Be C(MMN({v}) and
AN B @, then there is an arc L in C(M)N({v}) joining 4 and B such that
diamL<dist(4, B). Such an arc can be easily chosen in the union of the segments
A4 U B and B4 U B (see [15], p. 186, Th. 3.

By this remark there is a mapping f: s C(M,v) such that f(z,) = 4,,
St i D= C(M, v)\({v}) and diamf (2, t;11]) <% 4. Observe that d(f, g)<d and
Sfe ®,, which completes the proof of (b).

Thus there is a mapping f: T — C(M, v) satisfying conditions (i) and (ii). Let
us define

X= Us@x{r} (eMxD,
IF={}xI (cX)

and let r: X — I* be given by r(p,1) = (v, 1). Observe that r is a monotone open
retraction onto J*. To complete the proof it remains to show that X is a dendroid.

Let IT: X — M be given by II(p, t) = p. By (ii) it follows that dim I~ *(p)<0
for each p % v and dimII~*(v) = dim7* = 1. Hence by [15], p. 114, Th. | the set X
can be represented as a countable union of closed subsets each of dimension <1.
It follows that X is a curve. Since M is contractible one easily sees that X is
contractible as well. This implies that X is a dendroid (see [6]).

In the next example we will need the following lemma.

3.4. LemMaA, Let D be a disc in 82 and let Dy, D,, ... be a null-sequence of discs
contained in D such that

bir\bj=ﬁ for Q]

N

[
Then X = D\ D, is a locally connected continuum.

i=1
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Proof. It is clear that X is a continuum. Let fo: I— D be any surjective map.
One can easily construct a sequence of maps f1, /2, ..., where f,: I— D, satisfying
the following conditions for each nz0,

) Forit) =£,8)  for
@ Sfoer@) €D,y for

t ¢j;x_ 1(bu'(-l) H
tefy {(Duay)

n
1t follows from these conditions that f,(I) = D\U D, for nx>1 and that for each
i=1
n>mz0 we have

?3) d(fyn, £)<max {diam D4 ¢, diam Dy 42, ..., diam D,}.

Thus £,(1)=f,(I) fora>mand X = () £,(I). Since diam D, — 0, by (3) the sequence
nzl

fl H fZ LIRRM
proof.
In the statement of the next example we use some symbols which now we are
going to define.
Let Q, denote a union of v discs Dy, D, ..., D, forming a chain such that for
1<ig<v—1 the disc D; meets Dy, at a single point ¢; lying on the boundaries of
these discs. Let [Q,] denote the set {g;: i=1,..,v—1} and let

converges to a map f: I— D. Hence X = f(I), which completes the

6(Q,) = max{diamD;: i =1,..,v}.
Let X, denote a plane continuum defined as follows:
Z,=FrQ) VR UR,,

where R, is an arc disjoint from @, except a point g & D\{¢;} being an endpoint
of R,, and R, is a (topological) closed half line missing Ry v FrQ, such that
R,\R, = FrQ,.

The set Z,

3.5. ExampLE. There is an hereditarily decomposable locally connected plane
continunm X admitting a monotone open map f: X — I onto I such that for each
t € I the fiber £~ 1(#) is either an arc or f~(¢) is homeomorphic to Z, for some v>1
(v depending on ?). Moreover, there is a countable set B< X such that each sub-
continuum of X meeting two different fibers of f meets B.

icm®
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Proof. For each integer k> 1 we now describe the continunm M, which will be
used in the construction of X.

Let {d}}, I =0,1; n=0,1, ... be two sequences from I converging to } such
thatad = O<al<...and aj = 1>a}>... Let 0}; beacopy of 0, forsomev = 1, 2, ...

. . N i i+1
contained in the interior of the rectangle [a,’cJ-H, a,’cj+i+1]x|:i, —k—] such that

1
(1) Qf_,- is j—ﬁ-dense in that rectangle,
@ O‘(ng)j:::o 0.

The set M, is now defined as follows

M, =I"\U{ntQl: I=0,1;i=0,.,k=1;j=0,1,..}.

ae e an
PP

4 1

The continuum M,

By L we will denote the segment {3} x I. By (1) and (2) it is easy to see that
(3) each continuum in M, meeting L and ML meets the (countable) set
@ik i=0,.,k3v U [@hvIQ)

0<iSk—1
>0

Denote by 4 the set of centers of the intervals [d,d ], 1=0,1;n=0,1,..
Note that

(4) A is a countable set such that 4 = AU {{}=1L

Observe that there exist two mappings F: I— C(I?) and Gg: I'™NAxI—1I* .
baving the following properties:

(5) G, is an embedding such that Gy(7) = z for ze I*\Ax I and

i i+l i i+1
.y — - — i=0,1,..,k—1,
Gk((I\Z)x[k, A Dclx[k, A ]for i , 1, ‘

(6) F, has disjoint values such that (z,0), (¢, 1) € F(t) for each tel,
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() F@) =L, K1) 5 %, for te d, and F(t) = G ({t}x1I) for 1¢ 4,
® UFRO =M.

tel

Let t;,1,,... be a sequence of irrationals from I dense in I.

Now we show that it is possible to construct four sequences; (i) a sequence of
sets Ay, Ay, .., (ii) a sequence of sets By, B,, .., (iii) a sequence of mappings
@g, P15 s Where ¢,: I— C(I?), and (iv) a sequence of mappings Yo, Wy, ...
where ,,: I>\A,,xI— I?, such that setting

(*) Xm = U (P,"(t) for

tel

»

m=0,1,..,

the following conditions are satisfied for each nx1:

(1), 4,<=lis a set of rationals such that 4, = A, U {t;, ..., 1,} and 4,_ < 4,,

@, XX,

(), Y, is an embedding such that w,;(z) =z for ze I™\A,x I,

@, Al e\, X D) <12,

5, o, jlas disjoint _values such that (z,0), (z, I) e ¢,(¢t) for each tel and
Poldn—1 = Qu-1ldy-s,

©) @, 9,-1)<1/2",

(M @at) is an arc with endpoints (2,, 0) and (z,, 1), ,(t) = Z, for te 4, and
some v = 1,2, .. and @) = y,({z} xI) for t¢ 4,,

(8), B, is a countable subset of |J @,(¢) such that each continuum in X, meeting
ted
@(t;) and X, \¢,(t,) meets B,,

(9, each complementary domain of X,., is a complementary domain of X,
and if G is a complementary domain of X, but not of X,—1, then
diam G<1/2".

Let p: I — ] be the projection, i.e. p(x,y) = x. Define 4y = &, 9o = p~*

and Yo = 1z (thus X, = /) and assume the objects Ao, ..., dy—q, By, .., B,_,,

Pos s Pu—y and Yy, ..., Y, ; have been constructed for n>1. It remains to construct
Ay B, @, and Y,

Since t,¢ A,., there are two reals ro<t,<r, such that [ry, r,JcNA,_,.
By (7),—; we can also assume that there is an integer k21 such that

X i i+1 1
diamy,, . s _ — Z
W 1([ro ’1]><[k x J)<2" for

Let f: I'— [ry, r,] be a homeomorphism such that B(A) is a subset of rationals,

icm
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B(%) =1, BO) =r, and B(1) = r;. Then we define
A, =4,-4 U B(4),
Bn = lpn—l(ﬁx ]I( U

0<i<k~-1
jz0

[ou-s(r)  for 2 (ro,ry),
Wit 2 Bx 1(Fyo () for
and

b0 = {lp,,_l(z) for  ze[N((ro, ry) U A,-1)Ix T, o
e Upoy o Bx1p2Gyo(Bx1)™z) for  ze([ro, r{INB(A)) 1.

Using (1)-(8) and the properties stated in (1), ;~(9),-, one can verify that conditions
(1),~(9), are satisfied, which completes the construction.
The maps ¢, @1, ... converge to a map ¢: I— C(I?) (see (6),). Observe that

&) o(r) = @, (1) for ted, (see (1), and (5)),
(10) (t,0, ¢, Dep(r) for each zel (see (5),) .

Now we shall show that

(ol v @yl v {(1/2, ifk): i =0, .., k})),

Pult) = -

(11) ¢ has disjoint values.

Let r, se I be different. We may assume that r<s. Since {f, ,,...} is dense
in I there are two different numbers #;, #;€(r,s). For n>max{i,j} we have
(1) = @t} and @(t) = @,(t;) by (9) and (1),. Hence by (5), we have

e = inf{o(x,y): xep(t)&yep()}>0.

Suppose there is a point z € @ (r) 0 @(s). Let U be a closed connected neighborhood
of z in I* such that diamU<e. There is an index n>max{i, j} such that @,{r) N
AU # @ # @) n U. The continuum ¢,(r) v UL @,(s)=I? contains (r,0) and
(5, 0) (see (5),) and the set {(r,0), (s, 0)} separates I? between (z;, 0) and (z;, 1)
and also between (#;,0) and (7;,1). By (5), it follows that et U#* D
# ¢(t) N U. But ¢,(1) = @(t) and o,(t) = ¢(t;), which is impossible by the
choice of U and & This completes the proof of (11).

Next we prove that
(12) @@) =%, for te | 4, and some v>1, and ¢(t) is an arc for 1¢ U 4,.

top nz1

nx1
If te 4,, then () = ¢,(t) by (9). This implies that ¢(z) = ¥, for te (;JlA,,
and some v 1 and @(r) is an arc for te | A\ U 4, (see (1), and (7),). For z = 0
' nz1 w2l

or 1 we have @(z) = {0} xI or {1} I, respectively, by (1),, (3), and (7. If
tel\ | A4,, then by (7), we have
nz1

o) = limp,(t) = imy({t} xI).
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Ill’t.f(?{ItlowsI from2(4),, that the sequence y(]{t} x I, y,|{t} x I, ... converges to a mapping
(16) }1>1< —I*. Thus ¢(t) = Y({t,}x 1) is a locally connected continuum. By
L ( ).and Lemma 2.6 we infer that ¢(¢) is an arc with endpoints (¢ 0)

(¢, 1). This completes the proof of (12). 0 nd

By [11], Lemma 1.2, p. 23 and () the set X, =0, i i
continuum X is defined as follows > 0fs & coninuum. The promised

X=X, (see ).

Ey f)(; il:)idl;gglrr;a)%A 11t folllows that X is a locally connected continuam. Since
n X n (*) implies also that X = t).C ini .
:9: ¢ (). Combining (11) and Lemma 3.1

we infer that there is a monotone open map f: X — I onto I such that
13) O =0®

CT:;i izz 2(1112)1 ,:1 remains to show .that X is hereditarily decomposable. Suppose X
e T ic’?,mp(,)sable continuum Z. Then f(Z) = [r, 5] with r<s by (12)
o c,.forf ) I<Ss. <s. D‘enote by. C,, t1eT, the composants of Z such that
r,, ’ e;(c*) Y 7 mce'C, is dense in Z there is a continuum C¥*e C, such that
#,g y C*f\j;_l ere;s an index n such. that r'<t,<s'. It follows that C, n f~3(z,)
nor c*t,-\ f (;n)g ?r each teT. Since f7'(s,) = ¢(t,) = ¢.(t,), then by (8;

o 5t is, unc;untableoxt';:rzh ;r: It” vgi)ec;a:;se C:[,*CZ cXc X,). Since B, is countabléx

d T it : ifferent ¢, 7' e *
This is impossible because different composants of Zz;rseu?;sjg;?li ’Cl:‘h: ﬁiil;;gf':

for each tel.

of the argument shows also that th = UB,i
e set B = "913,, is a subset of X (see (8),, (9)

and Si)) ‘]faaving the desired properties. This completes the proof.
et Z¥ denote the union of the continuum Z, and an arc as indicated below.

=

Each continuum Z7¥ is arcwise connected.
3.6. Examp i itari
LE. There is an hereditarily decomposable locally connected planar

conti itti *—
rtnuun; X* admlttmg1 an open monotone surjection f*: X*— I such that for
each t € I the fiber (f*)~1(¢) is homeomorphic either to the circle or to Z* for some
v

~
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y>1 (v depending on t). Moreover, there is a countable subset B* of X* such
that each subcontinuum of X* meeting two distinct fibres of f* meets B*.

U 4y

n=1

is a countable dense subset of J contained in | (see (1),). Hence there is a homeo-

morphism h: I— I such that h(0) =0, h(1) =1 and MUd)n U d,=9.
. w1 w1

Let X* = Xx{0,1}/~ be the quotient space under the identification (t, i, 0)
~(h(), i, 1) for teland i = 0,1, and let j: Xx{0, 1} — X* be the projection.
Let f*: X*— I be such that

(1) = ie® {0} v e(h®)x {1})  for

Since X = U @(@t)<=T?, it follows from (10), (12) and (13) that f* has the required
tel

Proof. We adopt the notation of the preceding example. Note that

tel.

properties.
Let B* = j(Bx{0,1} u (U 4)x{0, 1}x{0}). To complete the proof it
LED

suffices to show that each subcontinuum E of X* meeting two distinct fibres of f*
meets B*.
Let ro<ri, ro, 71 €1, be such that En (f® (@) # @ for i =0, 1. Since
U 4, is dense in I, there is re U 4, such that ro<r<r,. It follows that
n>1

>1 >

E n (f¥)74(r) # @. Let E* be a component of E n ()7 1(r). If E* meets the two-
point subset j({r,0,0), (", 1, 0)}) of B*, then we are done. Otherwise E* is a subset
of X*\j(Xx {i}fori=0Qori=1,say E*c X*Nj(Xx{1}). Let Vbea neigborhood
of E* in X* such that ¥ j(Xx{1}) = & and let S be the component of EN ¥V
containing E*. Since E is a continuum and meets iwo distinct fibres of f*, the same
holds for S. Hence S is a subcontinuum of j(X % {0}) meeting two different sets
of the form j(¢(s) x {0}). Referring to the properties formulated in the preceding
example we conclude that S meets j(Bx{0}). Hence E meets B* because ScE.
In the other possible case where E* = X*/ (X x {0}) we obtain the same conclusion
using an analogous argument.

This completes the proof.

3.7. Remark. It is interesting to compare the locally connected hereditarily
decomposable continua constructed in Examples 3.5 and 3.6 with the unjversal
Sierpifiski curve. Observe that they are obtained from the 2-sphere S? by removing
from S2 a specific null-sequence of disjoint open discs whose union is dense in S7.
Note also that the boundaries of certain pairs of - the removed discs intersect.
This property can not be avoided in any similar construction leading to such

f Whyburn [18], we would obtain by such

examples. For otherwise. by a result o
a procedure a curve homeomorphic to the Sierpinski curve (hence non-hereditarily

decomposable). )
In connection with Lemma 2.5 we have the following.

PROBLEM. Suppose f: X—=Y is a continuous monotone and open surjection
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from a planar continuum X onto Y such that F) is decomposable for each
yeY. Must Y be (hereditarily) locally connected?

One can prove that Y is hereditarily decomposable. It would be interesting to
know what is a characterization of the continua Y in terms of intrinsic properties.

Added in proof. The answer to the problem is affirmative: E. Dyer, Continuous collections
of decomposable continua, Proc. Amer. Math. Soc. 6 (1955), pp. 351-360. Moreover, one can
prove that ¥ must be regular. :
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F,;-sections of Borel sets
by

J. Bourgain (*) (Brussel)

Abstract. Tt is shown that if E, F are compact metric spaces and A is a Borel subset of ExF,
then {x ¢ E: A(x) is Fq5 in F} is coanalytic in E.

Introduction. Throughout this paper, E and F are compact metric spaces. If 4
is a subset of ExF and xek, let A(x) = {ye F; (x,»)e A}, which is called
a section of A. It is already known that if 4 is Borel in Ex F, then {x e E; A(x) is
closed in F} and {x € E; A(x) is F, in F} are coanalytic. I refer for instance to [?]
and [4]. It follows from a result in my recent paper [2] that the set {x € E; A(x). is
F,sin F} is a universally measurable subset of E. We will obtain here the following
refinement:

THEOREM 1. If A is Borel in Ex F, then {x€ E; A(x) is F,; in F} is coanalytic
in E.

The main point in the proof of this result is a useful description of the fact that

a set in F is Fj,. -
If L is a compact metric space, then X (L) consists of all closed subsets of L and

is equipped with the exponential or Vietoris topology. This topology is compact
metrizable. I recall the following result (see [4]).

LemMa 2. Let P be a Polish subspace of the compact metric space L. TM@
subspace F(P) of K(L) consisting of those compact sets K in L such that K = K P,
is Polish. - R
We denote by # the set of all finite complexes ¢ in &)N", where N° = {0}

ProPOSITION 3. Let A be Borel in Fand B = F\A. There is a compz.zct metric
space G and a Gy subset H of Fx G so that A = n(H), if n: Fx G — F is the pro-
Jjection. Let B = \J () B,, be an analytical representation of B, where the B, are

'

closed in F and By =By T ake a countable base (U,), for the t{)pology of FxG.
Then A is not F,z in F if and only if there exists (p., Kocea in Cl;L(Nx F(H))
satisfying:

(*) Aspirant, N. F. W. O., Belgium.
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