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Fixed points and locally connected
cyclic continua in E°

by

Piotr Minc (Warszawa)

Abstract. In this paper is given an example of a locally connected continuum Y < E® such
that Y separates E® and has the fixed point property.

It is well known that a planar locally connected acyclic continuum has the
fixed point property. On the other hand, each locally connected continuum separating
the plane admits a fixed point free mapping. The case differs in E3. There is an
example of a locally connected acyclic continuum contained in E 3 without the fixed
point property (see [1]). K. Borsuk posed the problem whether there exists a locally
connected continuum Y<E?® which separates E* and has the fixed point property
(see also [S5] Problem 7. p. 68). The aim of this paper is to give such an example.
The construction gives also an example of a locally connected and acyclic continuum
lying in E® and containing a simple closed curve which is not contractible in it.

The author acknowledges his gratitude to Professors K. Borsuk, K. Sieklucki,
and H. Toruficzyk for valuable conversations during preparation of this note.

1. Combinatorical preliminaries. In this section we introduce some notions which
are needed later.

Let G be a free group with two generators, a and b. Let e denote the neutral
element of G. Denote also @, = bab™! and b, = aba™'. Let T be the set
{a,a"* a;,a7*, b,b”", by, by *}. Define a function i: T*—{—-1,0, 1} by the

formula
1 if e¢=d,
ic,dy=4-1 if c¢=d71,
0 if ec#d#ct.

Denote i,(c) = i(a, ¢)+i(ay, ¢) and iy(c) = i(b, c)+i(by, ¢) for ceT.
Let » be a function from {1, 2, ..., n} into T. Define an integer 7(x) as follows:

n—1

n
TG0 = 3, b(x() ¥ ile®D).
j=1 1=j+1
1 — Fundamenta Mathematicae T. CVII/I
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2 P. Minc

1.1. LemMA. Let % be a function from {1,2, ..., n} into T, such that for some r
@<r<n—1) one of the following conditions holds:

@) #(r—1) = a, x(r) = b and x(r+1) = a™*,
@) %(r—1) = a, x() = b~ and n(r+1) = a”*,
Gii) %(r—1) = b, x(r) = a and x(r+1) = b7%,
V) ®(r—1) = b, () = a~* and x(r+1) = b7
Let y be a function from {1,2,...,n—2} into T defined as follows:

) = %()) for j=1,2,.,17-2,
YD=(12) for = rorl e n=2
and
by in case (i),
yr—=1) = |b7* in case (i),
ay in case (iii) ,
ai'  in case (iv).
Then
1 in case (i),
w(P)~1(0) = | =1 in case (ii),
—1 in case (i),
1 in case (iv).

Proof. Case ().
n—1 n
()= 3 i) 3 ixh)
-2 r=2 n
T O T, e @)+0+ 3 e+
b3 )T ) Y i)

r—

2 r—1 n—2
TG 5, 0O 5 6O1-1+

j=

-,

I

-2

+ T O+ T 460) 3 1)

I=j+1

r—2 n—-2 n—2
~1+ 3 W00) | 3, MO Hbe-D) T i0)+
n—3 n—2
+ 2 () Y, Wh®)
Jj=r 1=j+1
=1(y)—1.
The other cases are proved similarly.

1.2. LEMMA. Let x be a function from {1,2, ...,n} into T. Suppose that there
are integers v and s such that 1<r<s<n and either
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0 #()efa, a™ Y ay, a7} for r<j<s and Y, i(x())) = 0 or
j=r

(i) x(j) e {b, b~ by, by} for r<j<s and Y, i(x(j)) = 0.
j=r
Let y be a function from {1,2,...,n—s+r—1} into T defined by the formula

. % (j) for 1gj<r,
1) = {x(j+s—r+ ) for r<jsn—s+r—1.
Then (%) = t(y). ’
Proof. Case (j).

n—1

)= % W) | 3 ile()

j=1

r—1 r—1 n
= Y (M T ax=D)+0+ ¥ ixD)]+0+
j=1 1=j+1 I=s+1

n—1 n
+ -=2+1 (2 (/) 1'2:; 1i,,(u )

=1(9)-
Case (ii). ;
r—-1 r—1 n
) = Y B(xGN[ Y aleD)+0+ S iG]+
Jj=1 I=j+1 I1=5+1
K} n n—1 n
+ Y a0+ ¥ wlxO)]+ T i) ¥ i=0)
i=r I=s+1 j=s+1 I=j+1
r—1 n—s+tr—=1 n—str—2 n—str—1
=Y ar0) Y wbO)+0+ T a0(0) X LbhO)
j=1 1=j+1 i=r =j+1
= ().
1.3. LeMMA. Let % be a function from {1,2,...,n} into T such that
e =x(D)x(2) ... x(n) .
Then
w0 = 3, ilbs, #0)= X e, %)
Proof. In the case where x(j)e {a,a™* b,b""} for all j= 1, .., n, one can
prove using 1.2 that t() = 0. Thus the lemma follows from 1.1.
1.4. Lemma. Let % be a function from {1,2, ..., n} into T such that ©(x) # 0.
Suppose that Ny, N, ..., Ny are mutually disjoint subsets of {1,2, ..., n} such that
1 T

U N, ={1,2,..,n} and there is a number lo (1<lo<1) such that
s=1
G ®()ela,at,ay, a7} for je N, and Y, i(x(}) = 0 for 1<s<hs, and
&y
(i) #()e{b, b, by, bT'} for je Ny and Y iy(x())) = 0 for ly<s<l.
&, ;
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Then there are natural numbers s, 53, ji, ja, ja and Ja such that 1<s;<ly,
lo<s;<], 1K1 <ja<J3<js<n, and either j,, js € N, and j,.jo € Ny, or j,,js & N,
and j,, jy € Ng,.

Proof. Suppose that the lemma fails. Let n be the smallest natural number
satisfying the assumption but not satisfying the conclusion of the lemma.

There are /,,/,,...,/. such that, either Iy forall s =1, 2, ..., ror
lo<L<ifor all s = 1,2,...,r, and there are j; and j, such that 1<ji<j,<nand
UJNI, = {Ji,/1+1, . 1o}
o=

Let y be a function from {1, 2, ..., n—j,+j, ~1} into T defined by the formula

() = {%(j) for
"= WGtia—ii+ 1) for

I<j<jy,
Jisjsn—jy+j~1.
By 1.2 7(x) = 7(p). Now from our supposition the lemma follows.

2. Perforated discs. Let C be a continuum lying in the plane E2 By ¢ we denote
the union of C and of all bounded components of E>~ C. By C we denote the bound-
ary of C in E% .

Let CcE® bea simple closed curve. By the orientation +1 of C we mean
the clock-wise orientation. By the orientation —1 we mean the opposite one. Note
that the orientation of C determines the orientation on any subarc of C.

2.1. PROPOSITION. Let Cy and C, be two simple closed curves with the orienta-
tion +1. Let I« Cy n C, be an arc. If Cy = C,, then the orientations of I determined
by C; and C, agree.

If &, n &, = C; 0 C,, then the orientations of I determined by C, and C,
are opposite.

By a perforated disc with n-holes (n = 0, 1, ...) we mean a two-dimensional
continuum F< E? such that F is the union of #+1 mutually disjoint simple closed
curves.

IfCcFisa simple closed curve, then we say that F determines the orientation +1
on Cif F=C, and the orientation —1 in the opposite case.

2.2. PROPOSITION. Let Fy and F, be two perforated discs. Let I be an arc contained
inFy n Fy. If Fy © F,, then the orientations on I determined by Fy and F, are identical.
IfE, 0 Fy = F, O F, then the orientations on I determined by F, and F, are opposite.

Let L be a one-dimensional polyhedron, and let K<L be an oriented simple
closed curve such that K n I,— K is void or consists of a single point p. Denote by r the
Tetraction of L onto K with r(L—K) = {p}. Let C be another oriented simple closed
curve and let f be a mapping of C into L. By w(f, C, K )} we denote the integer j
such that (1/).(c) = &/, where ¢ and k are generators of the fundamental groups
of C and K, respectively, determining the chosen orientation of C and K.

Note that w(f, C,K) is equal to the number of oriented components of

SF7YK~{p}) which f maps onto K— {p} and preserves the orientations minus the
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number of the remaining components of f~!(K~{p}) which are mapped onto
K—{p}. o _

If Fis a union of a finite number of mutually disjoint perforated discs and
f+ F— L, then by w(f, F, K) we denote the sum of w(fic, C, K) where C runs
over all components C of F with orientations delermined by the component of F
which contains C (fjc denotes f restricted to C). .

2.3. PROPOSITION. Let F be a perforated disc and let f, be a mapping of F
into an oriented simple closed curve K. Then w(fy, F, K) = 0 if and only if there exists
a mapping f: F— K such that fiy = fo.

2.4. PROPOSITION. Let Fy and F, be two plane sets such that

(i) each of the sets Fy, F, and F{ U F, is a union of a finite number of mutually
disjoint perforated discs, and

(i) F;nFy = F, n F,. N

Let £ be a mapping of F, U F, into a one-dimensional polyhedron L containing
an oriented simple closed curve K as in the preceding definition. Then w(f, F;, K)+
+w(f, Fy, K) = w(f, F{ U Fa, K).

We finish the section by the following

2.5. LEMMA. Let F, be a disc and let F be a perforated disc. Suppose f: F— Fy
is a mapping such that f(F)cF, and w(f, F, Fo) = 0. Then there is a homotopy
H: Fx[0, 11— Fy such that

() H(u,0) = f(u) for ueF,

(i) H(v,t) = f(v) for ve F and t€[0, 1] and

(iii) H(u, 1)e Fy for ueF.

Proof. By 2.3 there is a mapping g: F— F, such that g ; = fiz. Define
g1 (Fx{0}) v (Fx[0, 1)) U (Fx{1})— F, by the formula

fw) for (v, 1)e(Fx{0}u FxI[0,1],
gw) for t=1.

An extension of g, over the whole of Fx [0, 1] has the desired properties.

g.v, ) = {

3. Basic constructions. In this section we construct a locally connected acyclic
continuum X< E® In Section 4 we shall show that X contains a simple closed
curve A§ which is not contractible in X. The continuum Y is the union’ of X a-nd
a disc D meeting X at 45. In Section 5 we shall prove that ¥ ha.s the fixed point
property. In this section we shall only show that X has the fixed point property and
Y satisfies the Lefschetz fixed point theorem.

The notation established in this section will be used freely throughout the rest
of this paper. ‘

Let S, and S, be two mutually disjoint circles. Fix two points, z e Sy and
z,6S,. Let Z, (v = 1, 2) denote S,x [—2, —1] with points (z,, —2) and (zy, —1)
identified. Attach Z, to Z, by homeomorphisms sending {z;}x[—2, —1] onto
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S, x{—2} and S, x.{—~l} onto z,x [—2, —1]. Denote the resulting space by U. v =1{z}x[0,11x{n},
One can assume thatZ; « Uand Z, < U. There is an embedding of U into the Cartesian P, = (zy,n) = (z5,1) .
three-space E* such that -
In this notation C* = | (Cyu Zy).
O (e bz =0 x20. 520 = S, fi d"=o' tati S, determines by the natural projection the
"Note that the fixed orientation on etermines by the natu
Un{(x,y,2)eE¥ z =0, x>0, y<0} = S, x{~2}, Note that the ,

orientations on A4} and B,.

Un{(x,y,2)e E*; z =10, x<0, y<0} = S,x {—2}, Let 74: [0, o) — (—00, o0) be defined by the formula

Un{(x,y,2)eE* z =0, x<0, y>0} = S, x{~1}

ti-?i(—1+sint) for mn<t<(2n+Drn, neN,
(comp. Fig. 1). Observe that U has the same homotopy type as one-point union of () = 1+1
two circles, namely S;x{—1} and S, x{~2}. {_—!_-% (—1-2sinf) for Qn+lm<t<@n+d)m, neN.
t+

Define the function ¢,: [0, co) — E? by the formula

sinz 1
(P1(t) = <r1(t) > *’““)

1’ t+1)”

Figure 2 shows the result of the projection of ©4([0, c0)) into the plane

{x,y,2)€E* z=0}.
)
N\~ |

e

Fig. 1

Note that any orientation on S, (v = 1, 2) determines, by the natural projection,
orientations on'S, x { —1} and S, x { —2}. There are orientations on S; and .S, such
that if @, a,, band b, areelements of n,(U) corresponding, respectively, to the orien-
tations on Sy x {—1}, Sy x{—2}, S, x{—2}and S, x{—1}, then a; = bab~! and
b, = aba™! (see Fig. 1). Fix these orientations on $; and S,.

Let N denote the set natural numbers (inclu’ding 0). In the set (S x [0, 1]x N) U
U (S;x[0,1]xN) U (UxN), for each neN and zeS; uS, identify points
(z, —2,n)and (z, 1, n), (z, —1, n) and (z, 0, n+1). Observe that the resulting space
is a tangle of two canals, say C* and C>. Denote this space by C* U C2. Points of
C' U C* we shall denote as points of (S; x [0, 1]x N) U (S, x [0, 11x N) U (Ux N).

e

——

Fig. 2
For each ne N and v = 1, 2 let us adopt the following notation: '
Let r,: [0, 00) — (—o0, o0) be defined by the formula
S 3(sin(r+m)+1)
1) = F(sin(t+m)+1).

Z,‘,’:va{n}, ra(t) 2( )

. 3 .
Cy=8,x[0,11x{n}, ° Define ¢,: [0, c0) — E* as follows:

1 1
- s {

An = Syx {0 x{n}, @t = ("z(t)’ T Z:ﬁ)‘
By =8,x{l}x{n}, ‘
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Figure 3 shows the image of the projection of ¢;([0, w)) U ¢,([0, c0)) into the plane
{(x,y,9) e E3 z = 0.

Let J,(f) (v = 1,2) denote the straight segment between points (r,(z), 0,0)
and ¢,(t). If (v, 2) # (v, t'), then the intersection of J,(z) and J,.(t") is either void
or consists of a single point (r,(), 0,0) = (r,(¢"),0, 0).

Fig. 3

Let us adopt the following notation: P, = () {7(0); te0, )} for v = 1,2,
andJ = {(x,y,2) € E*; —1<x<1, y = z = 0}. There is an embedding of C! U C?
into E? such that

L. Ly = ¢,([0,4xn]) for v=1,2,

2. L= o(3r+2(n—Dm, n+2nn]) for v=1,2 and n = 1, 2, ...

3. (P U Py N (CHu CF) = 0y([0, 00)) L. p,([0, o)),

4. diamS,x {t}x {n}<27"forv=1,2,n =1, 2, ... and te[~2, —1]Ju 0, 1],

5. the sets {(x, », 2)e C}; x = —$}and {(x,y,2)e C?;x = 1} are both unions
of two disjoint circles, for ne N.

Denote P; U P, U Ct U C? by X. A schema of X is illustrated in Figure 4.
Denote also by Cyp the compoment of (C!u C?)n {x,m2eX; —4<x<gy)
containing C; . Note that Cjf is of the homotopy type of C3, s0 C*is of the homotopy
type of a one-point union of two circles.

Let D be a disc in E® such that 4} is its boundary and D N X = A}, Denote
X U D by Y. Observe that X and Y are both locally connected, X is acyclic and ¥
separates E® into two components. :

3.1. LeMMA. X and Y are QANR-spaces (see [4], comp. [6]).

Proof. Since ¢,([0, c0)) is homeomorphic to the (sin(1/x))-curve (the closure
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of {(x,y) e E?; y = sin(1/x), 0<x<1}), ;2([0, 0)) € QANR (see [6]). If we identify
points (3—x, 0) and (3+x, 0) for 0<x<%, in the (sin(1/x)-curve we obtain a con-
tinuum homeomorphic to ¢4([0, oo)j Hence, by [4, 4.3], ¢,([0, ©)) e QANR.
Let F, (v = 1, 2) be a continuum obtained from ¢, [0, o) x S; by the identification
of each {x}x.S; with a point, where x&J.

Fig. 4

By [4, 4.1 and 4.3] we get F, e QANR.

Let D' be a disc in E3 such that A2 is its boundary and D' n ¥ = 43. Let ¥
be the union of ¥ u D’ and of the two bounded components of E*~(Y u D).
It is easy to see that ¥ is an ANR-space. There is a neighbourhood V of X—J in Y—J
such that X is a retract of ¥ and the boundary of ¥V in ¥—J consists of two com-
ponents, K; and K,, such that K, is homeomorphic to F, (v = 1, 2). By [4, 4.3],
K, U K, uJe QANR. By [4, 2.2], there are a neighbourhood ¥; of K; U K uJ
in ¥ and a quasi-deformation H of ¥, onto K; W K, U J in ¥. It is easy to see that
Hy: (V, U ¥)x[0, 0)— ¥ defined by the formula

veV,
veV -V

v for

Hi, 1) = {H(u, t) for

is a quasi-deformation of ¥, to Vin ¥. Hence Ve QANR. Since X is a retract of v,
XeQANR (see [4, 4.7]). Again by [4, 4.3] we infer that ¥ e QANR.
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By'[4, 3.1] we get the following
3.2. COROLLARY. X has the fixed point property.

For a mappi11g f: Y— Y, A(f) denote the Lefschetz number of £, i.e. A(f)
= Y (=1 Tr(fy;), where Tr(fy;) is the trace of the homomorphism fy; induced

iz0
by f on the jth (Vietoris or Cech) homology group of Y, over the rationals. Again
by [4, 3.1] we get the following

3.3. COROLLARY. Y satisfies the Lefschetz fixed point theorem, i.e. each mapping
i Y= Y with A(f) # 0 has a fixed point.

'4. Auxiliary lemmas. In this section we prove the most significant Lemma 4.4
of this paper. As a corollary we conclude that A is not contractible in X The follow-
ing three lemmas are needed in the proof of 4.4,

4.1, Lemma. Let 8 be a positive real number. For v = 1, 2 and forn =1, 2, ... let
Q. be an arc with endpoints c) and d,, contained in the plane. Suppose that the following
conditions are fulfilled for all n>1:
M Qv 2D Q(Q} voH =9
Jj#n

(i) dist(c!, Q%)>4, dist(d},
(i) Of N Q2 # @ and
(iv) there is a simple closed curve K,=E* such that
a. K, Q) consists of two points, e} and €,*%, for v=1,2,
b. points el and & separate K, between e? and e, and

c. sets ¢, d) and QF n Q2 are contained in three distinct components of
v—{en ent?} for v=1,2.

%> 6, dist(c?, Q1)>8 and dist(d?, Q3)>9,

Then the set U Qr is unbounded.
n=1

Proof. We claim that if Cis a continuum such that ¢}, d! e Cand Q2 " C = &
for some n, then C U Q) separates the plane between ¢ and 47,

Suppose that this is not true. Let L= Q2 —{e2, }} be an arc containing Of n Q2.
Since sets C U Q; and Q) U L do not separate the plane between ¢2 and dZ, and
(CuQHN(QruL) =0}, theset Cu Q) U Ldoes not separate the plane between
cy and d?, either (see [3, § 61, I, Th. 7]). Let g be the canonical mapping of E* onto
the quotient space of E? decomposed onto L and single points. By [3, § 61, IV Th 8],
g(E? is homeomorphic to the plane.

Let Qcg(Q,) be an arc with endpoints g(c)) and g(dl). Observe that
g(0}) n Q = g(L) is a single point and, by (iv), Q cuts sufficiently small neigh-
bourhoods of g(L) onto two components intersecting g(Q2). Thus points g(cZ)
and g(d}) belong to two different components of g(EH—(Q u g(C)), but this is
impossible, because Q! U C U L does not separate the plane between these points.
This contradiction proves the claim.

Now, suppose that the lemma fails. Choosing a convergent subsequence of (Q})
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©0
in the hyperspace of a disc containing J 0%, one can assume without loss of gen-
n=1

erality that Q,l,cB(Q},%é) for all » and j, where B(Q}, 16) denotes %4-ball
around Q}. By (ii) we get

1. (B(c2,38) U B, 1) n U 0} =@
: 1

Similary, choosing convergent subsequences of (¢1y and (dY), one can assume that
there are two }6-balls B, and B, such that ¢f € B, and d; ¢ B, for all n. By (ii)
we infer

2. 07N (BiU By =

Let 61 bea component of E*—(B, U B,uU 0! U @) which contains infinitely
many 02s (see 2 and (1)) By the claim, 2 and (1) there is another component, G7,
of E*~(B, u B, U Q} U @3) which contains ¢? or d?. By 1, G contains a % d-ball.

Now, take n, such that Q2 <G,. Let G, be a component of G;— O, which
contains infinitely many Q2’s. By the claim, 2, (ii) and (iii) there is another component,
G}, of Gy— QL which contains ¢, or d; . By 2, G, contains a $5-ball. Repeating
the argament, we construct an infinite sequence of mutually disjoint 16-balls lying
in a bounded plane region. This contradiction completes the proof.

Let us prove the following

4.2. LEMMA. Let F be a perforated disc with k holes, and let f: F— X be a mapping.
Then there is an ng € N such that for each nzno and for each simple closed curve S
contained in f~(CY), the mapping fis is homotopzc in C# to a constant map.

Proof. By the compactness of F there is a >0 such that if (x;, Xx,) <& then
o(f(x), f(xz))<} for each x;, x, € F. Let m be a natural number such that there
is no family of m mutually disjoint &- balls contained in F. Suppose that there are
k+m naturals ny, ..., Agi,, Such that f~ L (on ;) contains a simple closed curve R;,
with ﬁ g, Dot homotopic in C to a constant map for j = 1, 2, ..., k+m. The curves

Ry, ..., Ry+,, are mutually dlS_)Olnt One can easily see that there are least m com-
k+m

G,, of F— | R; such that the boundary (with respect to the plane)

j=1

ponents Gy, ...,

k+m

of each of them is contained in |J R;. Observe that f(G))—{(x,», 2} € E*; |x> %}
j=1
is nonvoid. Hence each set G; contains a g-ball. This contradiction completes the

proof.

4.3, LemMmA. Let F be a perforated disc and let Ji F— X be a mapping such
that (Y= Aj. Then there exist a mapping f and a sequence Fo; Fy, ... of subsets
of F such that

O fig = fiés

(i) 7 is homotopic in X to [ relatively to F, s

(iii) each F; (j=0,1,..) is the union of a finite number of mutually disjoint
perforated discs,
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(iv) F, n F; is the union of a finite number of mutually disjoint.arcs and simple
closed curves for n # j,

(] f(st)Cle, f(FBj-t—l)cc}? a”‘{f(szH)CC? Jor j=0,1,..,
W /it o= U B,
n=90

Proof. Let us adopt the following notation: Cj = T4, for j=0,1,..
and v = 1,2,3.

There is a sequence Uy, Uy, ...
in X such that

1. U,n U, =@ for [n—k|=5 and

2. U,nAy =@ for nz1.

Observe that for each n = 0, 1, ..., there are a neighbourhood ¥, of T, in U,
and a homotopy 4,: Xx[0, 1] — X such that

of neighbourhoods of (respectively) T, T, ...

3. k-, 1) is a retraction of V, onto T,,

4. hfx,t) = x for xeT,u (X—U,) and t€[0, 1],

5. h(x,0) = x for xe X,

6. h(x,t)eT, for k=0,1,..., te[0,1] and xe T},
©0 o

7. hx,t)e X— | T, for xe X— |J T and 1€[0, 1),
k=0

k=0
oo o0
8 hix,DeT,u(X— T, for xe X— |J T and
k=0 k=0

9. o(h(x, 1), x)<<27" for xe X and te[0, 1].

The proof of existence of such a homotopy is omitted here, but can easily be
carried out by using the fact that T, is topologically a polyhedron having nice poly-
hedral neighbourhoods.

There is a set Focf~1(¥,) such that

10. both F, and ;F—F; are the unions of a finite number of mutually disjoint
perforated discs and

1. J- YTy =F,.
Define go: Fx[,1]— X by the formula

Golx, 1) = ho(f (), 2(L =) [L+d(x, Fo)I™"),

where d(x, Fy) denotes the distance between x and F,. Observe that by 5
12, go(x, 1) = f(x) for xe F, by 4
13. go(x, 1) = f(x) for xe 4} and te [+, 1], and by 3, 7 and 8
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14. {xe F; golx, ) e To} = Fy.

‘We shall construct a sequence of mappings g,, g, , ... and a sequence Fy, Fy, ...
of subsets of F satisfying the following conditions:

l . :
15. g,: Fx}~—,1[— X is continuous for n =0, 1, ...,
n+2

+2 k+2’

. 1 1
L di —, ——|]})<27" for n =0, 1, ...,
17 d1am(g,,({x}x[n+2 n+l])> or n

18. each set F, and F— |J F; (n = 0,1, ..) is the union of a finite number
i=0

1 1
16. g,(x,t) = gi(x,1) for xe F, k,n=0,1, ... and te|:~~——, I:I N [ 1:|,
n

TTTwFT T

of mutually disjoint perforated discs and F, n F— {J F; is the union of a finite
j=0

number of mutually disjoint arcs and simple closed curves,

n—!‘.'“ .
19. F,cF— | F;forn=1,2, ...,

=0

1 n n
20. {XEF; g,,(x, ;—-1+2>E U Tj} = jgon forn=0,1, ..,

j=0

1 1
21. g (Fex{tDHeT, for k,n=0,1,.., k<n and Tel;l—‘lu-z, ]—c—+—2—:l,

1 l {
22, if nzk+35, te|——F ——| and g,|x,——)e U, then g,(x,?)
n+2 n+l

n+1
1
= g x,— ), and
g,,( n+1)

. 1
23. g, (x, 1) =F(x) for n=0,1,.., xeF and teli;;a, 1:’.

By conditions 10-14, the mapping g, and the set F, satisfy 15-23. Now
suppose that g, ..., g,—1 and Fo, .., F,y have been constructed. To finish the
construction it remains to construct g, and F,. By 18 and 20 for n—1, there is
a set F, contained in

——‘"—‘T‘_ 1
- UF F; gyoi| %, =€ Vyps
F jL=)0 jm{xe 9 1(1 n—l—l) (}
which satisfies the condition 18 for z and is such that

1 " "
24. {x € F; gn—l(-xs 'ﬁ——*> € L_JOT}}C U ‘F:l .

n+l) = j=0
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1
Define g,: Fx [——+~2, 1]—9 X by the following formula:
n

1
() tef—-,1]1,
Gnq(x, 1) or [n+1 :|

gulx, 1) = h..(gn-l(xa ~~1~)> (n+2) [1—t(n+ DI +d(x, F)7
n+1

1 1
for tef|-——\, —]1,
n+2 n+l
where d(x, F,) denotes the distance between x and F,.
By 5 g, is a well-defined continuous mapping. Condition 16 immediately follows
from the formula. By 9 we get 17. Equality 20 follows from 3, 6, 7, 8 and 24. By 6
we get 21, 22 follows from 1 and 4 and finally by 2 and 4 we get 23. The construction

is completed.
The mapping g: Fx [0, 1]-— X, such that g(x, ?) = g,(x,t) for n =0, 1,...

1 . .
and te|:-—_!—_—2, l:l, is continuous (see 15, 16 and 17). Define f(x) = g(x, 0). The
n

mapping f is homotopic to f with homotopy ¢ not moving points of F (comp. 23).
By 21 f(F)<T,. Thearbitrary x € F such that f (x) e C* U C?2. There is an integer k

1
such that f(x) € T;. There is an nk+ 5 such that g,,(x, —_-ﬁ> e U,. By 22 we get
n

1 1 1 .
g(x, 1) = gux,1) = g,,(x, Ei) for te [m, ;1:—1—] By 16 and again by 22

1 1 1
we have X, 1) = gulx,t) =g, x,—— ] for m>n and te|——,—|
9@ 1) = gnlx, 1) g,,( n+1) " [m+2 n+l:|

1 n
Thus g,,(x, Wn+2) = g(x, 0) = f(x) € Ty. Therefore by 20 we get xe |J F;. Hence
j=0

o0
f{Ct*u C€? = U F,, which completes the proof of the lemma.
n=0

4.4. LEMMA. Let F be a perforated disc and let f, be a mapping of F into A} such
that w(fy, F, A3) # 0. Then there is no continuous mapping f+ F— X such that
fig = to- )

Proof. Suppose that the lemma fails. Then there are a mapping f: F— X
and a sequence Fy, Fy, ... of subsets of F such that fj; = f; and conditions (iii)-(vi)
of Lemma 4.3 are fulfilled.

Observe that

L f(Fs)=d; v BjulLj,

2. f(Fsje1)=A4} UB} UL and

3. f(Fsj42)=B] UBTU A}sy U AFey.
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Since for each v = 1, 2 there is a mapping from Cj onto an oriented circle which
maps L} onto a single point and which is an orientation preserving homeomorphism
onto 4} and Bj, by 1, 2 and Proposition 2.3 we infer that

4. w(f, F;, AD+w(f, F3, B}) = 0 and

5. w(fs Faparr AD+w(fs Fajyq, B) =0 for j=0,1,..

Similarly, since for each v = 1, 2 there is a mapping from C? onto an oriented
circle which maps B} U A%, (4 = 1,2 and p % v) otno a single point and which
is an orientation preserving homeomorphism on Bj and 4},,, by 3 and 2.3 we infer
that )

6. W(f, Fajizs B)+w(f, Fsj42, Ajp) =0for v=1,2 and j= 0, 1, ...

Observe that

7. f~'1(“B_‘;_{pj}) n F3j+v—-1 =f"(Bj~ ij}) N F3j+2 and

8. f"I(A§+1_‘{pj}) n F3j+l =f" 4~ {pP) 0 F3j+2+v for v=1,2 and
n=20,1,..

By 7, condition (iv) of 4.3 and 2.4 we get

9. W(f, Fajuy—1, B = —w(f, F3j42, Bj) for v=1,2 and n = 0,1, ...

By 8, condition (iv) of 4.3 and 2.4 we get

10. W(f, Fajua, Aja1) = —w(fs Fijpaay Ajsp) for v=1,2and n=0,1, ..

Since f~'(4g)=Fo— G E,, we have f™Y(AS~LY) n Fo=F—f"Y(LY (f(F)
= fo(F)c 4}), and by 2.;\:% infer
11. w(f, Fo, Atly) = w(fo, L, Aclx)~
Since f~(dg)=Fy—(Fo v DZF,.), we have f~1(42) n F,<f~1(L2) and
s

12. w(f, Fy, A9 = 0.

Combining 4, 5, 6, 9, 10, 11 and 12, one can easily get

13. w(f, Fajuas B}) = w(fo, F, Aé),

14. w(f, Fyju2: Ajs) = =w(fo, F, A7) and

15. w(f, Fajezs B) = w(fs Fajua, AJe) =0 for j=0,1,...

By 4.2 there is an integer no>2 such that, for each n>n, and for each simple
closed curve Scf~HC}), Jis is homotopic in C* to a constant map.

Let § be a positive real such that

16. if o(x,, x3)<&, then o(f(x(). f(x2))<} for x,, x, € F.

For each n = 0,-1, ..., let H, be the union of F;,,, and all components of
Fans Fanst> Fanss and Fa,., contained in f~'({(x, y,2) e X; |x|<4}). By (i)
and (iv) of 4.3, H, is the union of a finite number of mutually disjoint perforated
discs.

We claim that

17. there is an n >n, such that for each n>n, there is a component K, of
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F— H, such that, for each component E of Fa,, Fs,4 1, F3,4+3 Or Fy, .4 intersecting H,,
we have E—f~(CHcK,.

Suppose, conversely, that there is an infinite sequence m,, m,, ... such that for
each j=1,2,... there are E and E; components of Fa,,, Fapsqs Fapes OF
F3,,U+ 45 such that the sets E; N H, ; and Ej' n H,,, are both [nonvoid and the sets

Ej— ( ) and E"—f" ‘(C,‘,f,) are contained in two different components of
F—— . Since H,,, Hmz, ... are mutually disjoint, one can easily see that for each
k= 1,2, , the set F— U ', has at least k41 components intersecting the set

F ' {x, y,2)e X; |x|>{;}) Hence F contains k+ 1 mutually disjoint 5-balls (see 16).
Since the choice of k is free, this is a contradiction, which proves 17.

Take an arbitrary n>n, .

Let H be the union of H, and of all components of Fs,, Fs,11, F3,e3 and Fy, .,
contained in f~HCH—-K,. Let H' (v = 1,2) be the union of Fj,,, and of all
components of Fy, .-y and Fy, 4, contained in H. By (iii) and (iv) of 4.3, each
of the sets H, H! and H? is the union of a finite number of mutually disjoint per-
forated discs. Observe that H = H'u H?, f(H)<Biu A, UL UL}, , and

18. B nf ™ By v A ) —{pa})) = Ho f 7B L Ahe )= {pa))-

Note also that each component. of H—~f"Y(L}u L2 U Ll u L2, ) which is
mapped by f onto Bi—{p,}, Bi—{p,}, Ar;1—{p,} or A%.,—{p,} is contained
in K,.

By 13, 14, 15, the choice of n (n=np), 2.3 and 2.4, we get
w(f, H,B}) = —w(f, H, Ayx1) #0 and  w(f, H, BD) = w(f, H, A2.}) = 0.

Therefore, there is a component K of H such that

19. w(f, K, 43:,) # w(f, K, By).

Observe that K< K,. Let H® be a component of H which contains K.

Let I(S) be a collection of all components T of H—f~Y(L1 0 L2 UL}, ULZ, )
such that f(I) = S—{p,}, where S = B}, B?, AL,  or 42,,. Denote by I**(S)
a subcollection of those elements of I(S) which are mapped by f onto S—{p,} so
that their orientations determined by H° and S are preserved. Denote also I™(S)
= 1($)-I*1(S).

Observe that each element of I(B) U I(B3 w I(4L,,) U I(A,,+1) is contained
in K. Arrange the elements of the collection I(B)) U I(BZ) U I(4l,,) U I(42%,)
into a sequence Iy, I, ..., I, such that the elements occur cyclically on K according
to the orientation of K. -

Observe that, for each j =1, .., k&, if I_,EI(BI) (¢f € I(B2), ]jeI(A +1) or

Le I(42,))), then there is a component R; of Fy, (F3p1, Fapes or, respectively,
F3,,+4) such that

20. < R; and f(R)—{(x,y,2) e X; |x|<i} # @.

Let My, M, ..., My, be components of H* which meet {J {I; & I(B}) U I(4%, )}
and let My .;, My .5, ..., M;, be components of H? which meet ) {LelB)u
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U I(4Z2, )} Since S, is homotopic in C# to a constant map (n3#,>n,y, comp.
17), by 2.3 we get )

2L w(f, My, B)+w(f, My, Ayi) =0 forv=1,2 and I = 1,2, ..,1;.

Denote N; = {j; cM;} for I =1,..,1;. By 18, the sets N, N,, ..., N,
form a decomposition of {1, 2, ..., k} into mutually disjoint subsets.

Let G denote the fundamental group of Cy. G is a free group with generators a
and b corresponding to the oriented simple closed curves 4., and BZ, respectively.
The elements a; = bab~* and b, = aba™? correspond to the oriented simple closed
curves B} and 42, respectively. Let x be a function from {1, 2, ...,k} into

T={a,a"*, ap,a;',b,b7%, by, by} defined as follows:
a® if Lel'(drq),
) di if Lel(B),
% =
D= i nerm,
Bif L el%d2,)

where o = +1.
Since fix is homotopic in ct to a constant map, % (D)% (2) ...

th(al,%(J))andW(f K. 4 +1) = Z (bn”(]))

Thus by 19 and 1.3 we infer that t(x) # 0. By 18 we have w(f, My, 420
= Z z(a, %(j)) and w(f, M,, BY) = Z i(ay, %(j)) for I = 1,2, ..., I, hence by 21

wegetz (x(]))—Oforl=12 I
Sumlarly, by 18 we have w(f, M;, BY) = Z i(b, x())) and w(f, My, 42,1)
= Y i(by, %(j)) for I=1I,+1,..,1; hence by 21 we get Zz,,(u(])) =0 for
JjeN

I =1y+1,..,1;. Now, applying 1.4, we infer that there are natural numbers
15 8251, J2, /3 and ju such that 1<s, Slo<s, <y, 1</ <o <Js<ja<k, J1,Ja € Ny,
and j,,ja€ Ny, (or ji,jz €N, and j,, j, € N,,, but the proof in this case is the
same).

Let €} be a point of ;, (u = 1,2, 3, 4). Points e, and &3 cut K between e and

. Let eyeyt? be an arc contamed in M,, such that K n e"e"+2 = {e}, “} for
v=1,2 Smce eled U eZetc=H®, H® is a perforated dlsc and KcH° the set
enes N ele} is nonvoid. There are mutually dls_]omt arcs elck, e c,,, e3d! and efd?
with endpoints, respectively, ey and cf, e and ¢, e2 and 4}, and et and d?, such
that

% (k) is the identity
of G. Observe that w(f, K, BY) =

eZcl =R, e,,d,}th, e,‘fdzr:Rh,

€, c,,th, s 5

(elet uelcd L eddt Uerd) N K = {el, &2, ¢, e},
{F e, fEN}={x, y,0)e X; x<—1}
(). 7@ ={(x.y, peFsx>4)  (comp. 20).

2 — Fundamenta Mathematicae T. CVIU/L

and
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Let O be the arc efct U eled U edd! and let QF be the arc ejcy L endy U efdy.
Observe that Q} and Q7 satisfy conditions (if), (iii) and (iv) of 4.1 (for J see 16).
Note also that QF., 0%, QL. and Q2. constructed in that manner satisfy the condition

Qv U 0NN (Qmu Qp) =@ for

Hence 4.1 give a contradiction, which completes the proof of the lemma.
4.4, COROLLARY. A} is not contractible in X.

|n'—n"|Z2.

5. The main theorem. First let us prove the following
5.1. LEmMA. Each continuous mapping f from the two-dimensional sphere S*
in Y induces the trivial morphism on the (Cech or Vietoris) homology groups.

Proof. Denote by S the equator of S2. S decomposes S? into two discs S%
and S2. Let g be a mapping from ¥ onto §2 such that g(D)=S2, g(X)=S% and
)43 is a homeomorphism onto S. Observe that g induces an isomorphism on the
homology groups. Since .D has a polyhedral neighbourhood in ¥, one can assume
that f~*(D) is the union of a finite number of mutually disjoint perforated discs.
Denote by Q the closure of S?—f~*(D). Note that @ is also the union of a finite
number of mutually disjoint perforated discs. The boundary of Q is mapped by f
into A3.

~ Let F be an arbitrary component of Q. From 4.4 we infer that w(f, F, 43) = 0.
Observe that w(gf, F, S) = w(f, F, A4}) (S is oriented by the homeomorphism -
Hence w(gf, F, S) = 0. Thus by 2.5, gf|r is homotopic in S% to a mapping with
values in S with a homotopy not moving points of F. Consequently g-fis homotopic
to a constant map. But g induces an isomorphism on homology groups of ¥ and § 2,
therefore f induces the trivial morphism.‘

5.2. THEOREM. There is a locally connected continuum contained in E® which
separates E* and has the fixed point property.

Proof. To prove the theorem, it suffices to show that Y has the fixed point
property.

Let f be a mapping from Y into itself. If f(J)<J there is a fixed point. Now,
suppose that there is a y, € J such that f(y,) ¢ J. Since Y is locally contractible
at'each point of the set ¥—J, consequently Y is locally contractible at £ (y,). Let W
be a neighbourhood of f(y,) contractible in Y. There is a neighbourhood ¥V of y,
in ¥ such that f(¥)cW.

Now, we construct an auxiliary continuum Q. Let Fbe a disc with the boundary S.
Fix a point s € S. Suppose that Fx [0, o) is embedded in E3—J such that (s, 1) is
equal ¢,(z) for te[0, ) and diam(Fx {t}) converges to zero as ¢ approaches
infinity. Denote by Q the continuum (Fx {0}] U (§x [0, c0)) U J. There is a mapping
g: O — Y inducing an isomorphism of the Vietoris homology groups of Qand ¥
and such that

® g(Fx{0}) = D
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(i) g(Sx[0, ) = C*,
(iii) g(y) = y for yeJ and
(iv) diamg(Sx {t}) converges to zero as ¢ approaches infinity.

There is a strictly monotone sequence of possitive reals t;, 75, ...
to infinity and such that g(Sx {r;})e ¥V forj=1,2,.

converging
.. (Notice that this is the unique

o
reason for ¢, being so complicated). Denote Q, = Q U U Fx{t;}, 1, = 0 and
i=1

= (Fx{tH o Sxlt, Do Fx{t;3) for j=0,1,..
Also, denote by p the inclusion of Q into Q,. Note that p, (the homomorphism
induced by p) is a monomorphism of the homology groups of Q into the homology
groups of Q.

Since fg(Sx {tH=Wforj=1,2, ..,
hig = fg, i.e. the diagram

there is a mapping #: @y — Y such that

0" 5y

P ‘r if is commutative .
Yoo
[N Y

Foreachj=0,1,
with a carrier K; and a majorant 27

. let yy={y j} be a two-dimensional true cycle (see 2, p. 40)
' such that

1. y; represents a generator of the two-dimensional homology group of X;
over the rationals, and .

"

2. 2 y; Tepresents a generator of the two-dimensional homology group of

(Fx {0}) U (SX0, tyy 1D U (Fx {t,+1}) over the rationals, for n =0, 1,
By 5.1, the true cycle i(y;) = {h(y J)} is homologousin Y to zero. Thus therels an
infinite chain «; = {«}} with a majorant {&}} and a carrier ¥, sucht hat 8z = h(y).

Letd,, iy, iz, ... be a sequence of natural numbers such that the sequence &g, &1, &2, «--»
where &, = max{eo, e, ..., &}, converges to zero.’
Put 8, = Z . Note that g = {8,} is an infinite chain with a majorant {g}

i=0
and a carrier Y.

n
Form another infinite chain x = {x,} putting %, = Y, y. Observe that s is
% P

a true cycle which Tepresents a generator of p*(HZ(Q)). Since

a6, =jg":0 ooy = z RO = ko),
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we have 98 = h(x); in other words h(x) is homologous to zero. Thus
hy(p«(H,(Q))) = 0. Since the diagram

Hy(Q)—2 Hzl( Y)
Py S

Hy(Q) —=> Hy(¥)

and gy is an isomorphism, f induces the trivial morphism on the two-dimensional
homology group of Y. Since Y has the same homologies as the two-dimensional
sphere, the Lefschetz number 4 (f) = 1, then by 3.3, f hasa fixed point, which com-
pletes the proof. ~

is commutative
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On the decidability of the theory of linear orderings
with generalized quantifiers

by

H. P. Tuschik (Berlin)

Abstract. LO(Qy, Qs ..., Om) be the theory of linear orderings with the additional quantifiers
Qg, ., Om. Under various hypotheses on set theory it is proved that LO(Qy, ..., Om) is always
decidable. This generalizes the result of the author for LO(Q,). The proof uses methods from
Leonhard and Lauchli. The theorems can be generalized to arbitrary finite sets of regular cardinality
quantifiers.

A. Ehrenfeucht proved in [1] that the elementary theory LO of linear orderings
is decidable. In [4] H. Léuchli and J. Leonhard established the same result using
games. Let us extend the elementary language of linear order by adding the generalized
quantifiers Qg, Qy, <., O, to it.

We interpret the quantifier Q, as: “there exist at least w,-many”. Generalized
quantifiers were introduced by A. Mostowski [6].

Let LO(Qy, ..., Q,) be the theory of linear orderings with these additional
quantifiers. Then we will prove that LO(Q,, Qy, ..., O, is decidable. This generalizes
the result of H. P. Tuschik [9] for LO(Q,). As a corollary we infer that LO(Q;: i<w)
is decidable. ‘

§ 1. Let L be the first order language with identity and one binary predicate <.
L™(Q) arises from L by adding the quantifiers Qy, ..., Q. LO is the following theory:

) "ix<x,

(2) x<yAy<z o x<z,

@B) x=ypvx<yvy<x.

‘We use some definitions from [4] and [9]: x <y(mod .4) denotes the order rela-
tion of an ordered set 4,|4| denoted the field of 4. B is said to be a segment of A
if B is a substructure of A4 and if x<y(modB) and x<z<y(mod.4) implies z& B,
Some special segments are the open interval (x,y) = {z€|d|: x<z<y(mod4)},
the left-open and right closed interval (x,y] = {z € |4|: x<z<y(mod4)}, the
left-closed and right-open interval [x, y) = {z e |4]: x<z<y(mod4)} and the closed
interval [x, y] = {z e |4]: x<z<y(mod 4)}. 4 map f: A — B of an ordered set 4
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