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DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIR

Density-preserving homeomorphisms
by

Jerzy Niewiarowski (£46dz)

Abstract. The work consists of two parts. In the first part it is proved that the sum and the
product of linear homeomorphisms preserving density points are homeomorphisms preserving
density points and the inverse homeomorphism need not to preserve density points. The second
part deals with homeomorphisms transforming a plane into a plane. This part includes the proof
of the theorem on interval sets — an analogue of the theorem of Bruckner for linear homeo-
morphisms.

The notion of a homeomorphism preserving density points was introduced by
Bruckner in [1]. Bruckner proved that if g is a homeomorphism of [0, 1] onto itself,
then a necessary and sufficient condition for fo g to be approximately continuous
for every approximately continuous real function f defined on [0, 1]is that 2 = g~¢
preserves density points. He studied also the conditions, in terms of differentiability
properties, for a homeomorphism to preserve density points.

In the first part of this work we shall study some properties of the class of
linear homeomorphisms preserving density points. We shall prove that the sum

and the product of such homeomorphisms (under some additional conditions)

are also homeomorphisms preserving density points, but the inverse homeomor-
phisms need not preserve density points.

Recently, in [4], U. Wilczyriska has proved that the above cited theorem of
Brucknér is true also in the case of functions of several variables. In the second part
of this work we shall deal with homeomorphisms transforming a plane (or its sub-
sets) into a plane. We shall prove an analogue of the theorem of Bruckner concerning
so-called interval sets. All theorems and proofs will be formulated in the two-dimen-
sional case only for the sake of simplicity. It is easy to see that the theorems are also
true for every dimension n. We shall study the case of weak and strong density points.

We shall start with recalling the basic definitions in the formulation sujtable
for our purposes.

DrrFINITION 1. If B<R is a measurable set, pg € R an&, P denotes the closed
interval in R, then the number

. |Bn Pl
D(py, B) = lim ————
ap~o  |Ply
> posP .
is called the density of B at a point p, (if the limit exists).
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The upper, lower and one-sided density is defined in a similar way with obvious
modifications. In the case of non-measurability of B one can define outer density
by using the outer Lebesgue measure.

DEFINITION 2. If B R? is a measurable set, p, € R* and K denotes the square
in R? (with the sides parallel to the axes of coordinates), then the number

BnK
D(po, B) = lim 1B Kl
a-o K|,
poeK.

is called the weak density of B at a point p, (if the limit exists).

DERINITION 3. If B<R? is a measurable set, p, € R> and P denotes the closed
interval in R2, then the number

BnP
D{p,, B) = lim ! L
ap-o [Py

poeP

is called the strong density of B at a point p, (if the limit exists).

We shall say that p, is a point of density (of dispersion) of the set B< R if and
only if D(py, B) = 1 (D(py, B) = 0). Similarly one can define the point of one-sided
density or dispersion in the one-dimensional case and the point of weak or strong
density of dispersion in the two-dimensional case.

DERINITION 4. A homeomorphism A: R — R is said to preserve density points
onto

provided for every measurable set B< R A(p) is a point of density of the set 2(B)
whenever p is a point of density of B.

DEFINITION 5. A homeomorphism 4: R> - R? is said to preserve weak (strong)
onto

density points provided for every measurable set BcR> h(p) is a point of weak
(strong) density of the set /2(B) whenever p is a point of weak (strong) density of B.
It is not difficult to see that a point p is a point of density (weak or strong)
of a set B if and only if p is a point of dispersion of a complementary set CB. Hence
a homeomorphism preserves density points if and only if it preserves points of
dispersion. Moreover, sometimes it is much easier to prove that a homeomorphism
preserves points of dispersion, and so the above remark is very useful.

I. Linear homeomorphisms. Recall that the set A= R is called an interval set
o

at a point x, if and only if A= {J [a,, b,], where b,, | <a,<b, and a, o, b, o
1

n=
or b,<a,<byy, and a, Mx,, b, /x, (see [1]). .
The following lemma will be very useful in the proofs of several theorems. We
shall omit the easy proof of the lemma.
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LemMA 1. Let A = |J [a,, b,] be an interval set at a point x, (from the right).
n=1

A function

W(x) = 4 n [xoiﬂ

X—Xg

has a local minimum at every point x = a, and a local maximum at every point x = b,.
THEOREM 1. If f and g are increasing homeomorphisms preserving density points
defined on the interval [0, 11, then h = f+g is a homeomorphism preserving density
points.
Proof. In virtue of Theorem 3 of [1] it suffices to prove that k preserves one-
sided points of dispersion of interval sets.

Let x, be a point of right-hand dispersion of the interval set 4 = | [a,, b,),
n=1

where an\x(): bn\&xos bn+1<an<bn'
So we have

3 (6o-r@)
M TS N S

0
kZ (g (GRS} (f’k))
2 lim = =0
@ nro g (by)—g(x0)
Let {k,} be an arbitrary sequence such that k, — 0,.. In virtue of Lemma 1 we
have

i A 0 [hxo), (o) +Klly _ o [h(A) 0 [h(xo), Al

® %, S T By — o)
But
A TG, B DICICARIICH) ) ) (fB—f @)+ B)—g (@)

S by) —f (x0)+9 (B) — g (o)
k; (fG)~f (@) k; (9 (G —9(@)
F b))~ (x0) 9(by)—g (xo0)

So from (1), (2) and (3) it follows that A (x,) is the point of right-]:\and dispersion
of the set A(4). The proof for lefti-hand points of dispersion is similar.
THEOREM 2. If f and g are increasing homeomorphisms preserving density points
and transforming the interval [0, 1] onto itself, then the homeomorphism h = f-g
preserves density points.
1*

h(By)—h(xo) h(by)—h(xo)

=
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Proof. We have .
(4) f(x)-g(x) — eln(f(x)a(x)) — elnf(x)+1ng(x)

for x>0. It is not difficult to see that the function Inx preserves density points in
the interval (0, 1] (see [1], Corollary 2). Observe that a superposition of homeo-
morphisms preserving density points preserves density points. From (4) in virtue
of Theorem 1 it follows that h = f-g preserves density points in (0, 1].

We shall now prove that 4 preserves also density points at 0. Let 0 be a point

0
of right-hand dispersion of the interval set 4 = | [a,, b,]. We have for every
n=1

natural n
k:i; (/609 (B~ (@)g (@) kgf LCAICICARICH) ki 9(@)(f b —1 (@)
7@ T Tae®) TGoaGw
T O60-s@) 3 (F6I-(@)
9(B,) - F)

From Lemma 1 we conclude that 4 preserves the right-hand point of dispersion
at 0.

THEOREM 3. There exists a homeomorphism f transforming the interval [0, 1]
onto the interval [0, a], where a>0, preserving density points and such that the inverse
homeomorphism does not preserve density points.

Proof. Let x, = 27", y, = Y (i™%. Let f(x,) = v, and let f be a linear

function in every interval [x,., x,]; moreover, let £(0) = 0. Denote E, = [x,,,, x;],
e; = f(E) = [y;41,y;] The function f is a homeomorphism transforming [0, 1]
onto [0, y;]. We shall show that f preserves points of dispersion and £~ does not
preserve points of dispersion. From Corollary 1 in [1] it follows that f preserves
density points in the interval (0, 1]. We must only prove that f preserves right-hand
points of dispersion of every interval set at a point x = 0. Let Z = {J Z;
J=1
= U [x}, x/], be an interval set at a point 0. We can suppose (dividing, if necessary,
some of the intervals Z;) that every Z; is included in a certain E;. Denote by

Z9, ..., ZP all intervals of Z included in E;. Let Z* = U Z{, where ZF = [x;1.1, x7]
i=

and |ZF], = Z |Z{®1, (for some i Z} can be empty). I x{” denotes the right end point
of Z, then for each i and for every ke[l, j,] we have

10,51 21, _ |10, 10 2
® | gt IR T

X
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and
0, {10 Z¥; _ 2100, %71 n ZI
© ¥ < &

Xi Xji

Inequality (5) follows from Lemma 1. To prove (6) observe that |[0, xf] n Z*|,
= [0, x(’) ]nle, so it suffices to show that 2x} >x(" We have 2x;., = Xx;
and xF>x..4, 2xf>x;, but x,>x“) , and so 2x¥> (? .

If Z is an interval set such that D, (0, Z) = 0, then we shall prove that also for
the set Z* constructed in the above way
@) D.(0,Z%)=0.

From Lemma 1 it follows that the quotient for the set Z* takes maximal values
at points x§, and so (7) is an immediate corollary of (6).

Observe that f(Z*) = G f(ZF), where
i=1
F@) = LD = D F 6 )] <e

So the image of Z* is an interval set £(Z*) having the same structure with respect
to {e;} as has Z with respect to {E;}.

Suppose that Z is an interval set at a point 0 such that D,(f(0),f(Z%) = 0.
Then from an inequality similar to (5) (for y{?” instead of x{"") we conclude that
also D.;r(f(O),f(Z)) =0,

So we have proved that if / preserves right-hand points of dispersion of sets of
the form Z*, then f preserves also right-hand points of dispersion of arbitrary
interval sets at 0. Then we shall consider only interval sets of type Z*.

Let A = |J 4;, be an interval set such that 4;< E; and the left-hand end point
i=1

of A; coincides with the left-hand end point of E;. Let a; = |4,];. Suppose that
D,(0, 4) = 0. Wc shall prove that D.(f(0), f (4) = 0 From the assumption it

foIIowsthat(Za,) ( Z 2 ‘+a,,) —»0 so(Za,) (22 ‘) —>0 Put g = a; 2.
We have -
(f a): (if 279 2qg,: 27 = 271 (g, 2" = 271, >0,
so lime, = Ot ' '
N

Let ¢ be an arbitrary positive number. There exists a number N such that g,<e
for n>N. So for n>N we have

(/0 400 eiuf(A,,)ll)=(§2"<i2>-1-ai):(_§ G)+2n " a)
<(ZE T Z N Ch Zl HON.

i=n i=p+1

<e+e(n+ 1)n"2<3£,

because (n+1)"'< Y

i=n+1
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Then D, (f(0),f(4)) = 0 and f preserves points of the right-hand dispersion

at 0.
To prove that f~! does not preserve density points we shall construct an in-

creasing sequence of natural numbers such that for e = U ey, = U [y,,k vr> Vi
k=1

we have D.(0,¢e) = 0.
Put n, = 1. Suppose that we have chosen #;, for k>1. Let n,,, be a natural

o0
number such that Y |e,|; <le,l, (obviously such a number does exist). Observe

n=ngser

that |e,, |, = n;? and |[0, 3, ]Iy = %, i7?

i=nm

>n,t. Hence

0 U et (0l <ends+1 U enl): (10, %)
k=m k=m+1

<Qley,l): (10, p ) <2myt<2m™t,

so D,(0, ¢) = 0. Simultaneously for f~*(e) = {J E,, we have
k=1

o« <]
(U Bz (10, %, 110> (B ln): (279 = 277,
k=m i=nm
so D,(f%(0),f~*(e))=2"; hence f~* does not preserve density points.
From the above proof it follows that there exists a homeomorphism fulfilling
the Lipschitz condition and not preserving density points; obviously it is possible
to give a simpler construction of such a homeomorphism.

II. Plane homeomorphisms.

DEFINITION 6. We shall say that the function f: R*—R? is absolutely continuous
if and only if it is continuous and for every £>0 there exists a number >0 such
that, for every set Zc R?, if [Z|,<§ then | f(Z)],<e.

THEOREM 4. If a homeomorphism h: K - h (K) (where K is a square) preserves

points of strong or weak density, then h is an absolutely continuous ﬁmctlan
Proof. Suppose that /2 is not absolutely continuous. Then in virtue of Theorem 3
in [2] (p. 284) there exists a set Z such that |Z], = 0-and |2(Z)|,>0. Let g, € h(Z)
be a point of strong (weak) exterior density of #(Z) and let p, = A~ *(g,). Obviously p,
is a point of strong (weak) dispersion of Z and so / does not preserve density points.
DErlNITION 7. A set A4 is called an interval set at a point p if and only if

={ptu U P,, where P, are nondegenerate closed intervals with disjoint interiors

such that for every £>0 the set {n: P,—K(p,¢) # @} (here K(p, ¢) denotes the
square with centre at p and sides of length equal to ¢) is finite, a point p does not
belong to any P, and pe FrA4.
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Let us introduce the following operation: for every C, DcR? put CO&D
= Int(C—D). It is known (see for example [3], p. 59) that, if C and D are finite
sums of closed rectangles with- disjoint interiors, then COD is also of this form.
Using this fact one can prove without difficulty the following lemma:

LeMMA 2. If A is an interval set at a point p and ¥ is an arbitrary positive number,
then K(p, YO A is also an interval set at a point p.

Observe that the sets K(p, r)—4 and K(p, r)© 4 differ by the set of measure 0
and the homeomorphism in the following theorem is absolutely continuous; so the
remark concerning the equivalence of preservmg density and dispersion points is
still valid.

THEOREM 5. Let h be an absolutely continuous homeomorphisms of [0, 11x [0, 1]
onto itself. A necessary and sufficient condition for h to preserve strong density points
is that h should preserve points of strong density (or of strong dispersion) of every
interval set.

Proof. The necessity is obvious.

Sufficiency. Suppose that / does not preserve strong density points. There
exists a set S<[0, 1]x [0, 1] and a point py = (x,, ¥o) such that p, is a point of
strong dispersion of S and A(p,) is not a point of strong dispersion of A(S).

Let D be a set consisting of all points of strong density of .S belonging to S.
Then [D|, = |S|,. For every p € D there exists a square K, such that p € Int K, and
for every square K if pe K=K, then the following inequality holds:

®) ID A K|,>27 K],

Let X, = {(x0,7): y€R}, Yo = {(x,%0): xe R}. Foreverype D—(X, v Y,)
we shall construct a family of squares A ,. Let o(p) = min(o(p, Xp), 0(p, Yo))
and let n be a smallest natural number such that n~t<o(p). Puté(p) = o(p)—n~
Let 4, = {K: pe K=K, and d(K)<min(n™2, 6*(p))}. At last let " = U .

peD— (XnuYa)
The family % covers the set Dy = D—~(X, u Y,) in the sense of Vitali. So in
virtue of the theorem of Vitali there exists a (finite or infinite) sequence of squares
{K.} such that |[Dy— U K}, =0 and K;n K; = @ for i # .
i

Using the fact that p, ¢ K; for every i and that % is an absolutely continuous
function, one can easily prove the sequence {K;} must be infinite.

Let Ay = U K;. Suppose that P is a rectangle with side lengths @ and b, a<<b

suchthatpoeP LetN = {i: K;cP}and M = {i: K;n CP # @and K; n P # @},
We have

[P 4l, :I ikeJN l2 I ! igvf 2
[Pl, P12 [Pla.


Artur


84 J. Niewiarowski

From (8) it follows that
PoUKl, 2/Pn U & n D
ieN ieN

< 2|P ~ D,
P, P, IR

Suppose that z is a natural number such that d(P)<n~! and let m be a natural
number for which m~'<a<(n-1)"1. Obviously m>n. Let

E = {p: o(p,FrP)<m™%}.

From the construction of 2 it follows that |J K;<E. It is not difficult to see that
. ieM

|E|,<4(a+b)ym™*<8bm™2. Hence

PaUKL o 5 g 3
- T
|Pl, m?ab am® m n
P ddy 2P D]y 8
[P1, [Pz n’

Then pg is a point of strong dispersion of the set A4,.

B
Let L; = h(K;), By = h(4,) = U L;. There exists a set C<.S such that [C|, = 0
i=1

and S—Cc4,; so h(S—C)=h(4,) and [#(C)|, = 0 (from the absolute continuity
of k). Then %(p,) is not a point of strong dispersion of By. Let Dy(h(p,), By) = &
There exists a descending sequence {P,} of closed rectangles such that
[By N P,),>2"%|P,|, and h(p,) € IntP,.
Let R, =P,—P, . and f =L, nR,forn=1,2,..and k=1,2,.. Then
R, n By = |J I, where I is a finite or infinite sequence of disjoint sets. In any case
>

let My, ..., My, be a finite sequence chosen for each n from {I{} and such that

kn
| U Ml >27 (R, 0 Bl

@ Kk oo ke
Denote M = ) UM[. Then Mn P, = U U M]and |M n P,|,>27 [P, N Byl,,
r=1i=1 r=ni=1
and so |M N P,),>e 47 P,|,. Every set M7 is included in a certain L, let us denote
0 kr

this set by Nj. Let N = J U N;. We have M <N, so D(h(p,), N)>4"'e. Let {N,;}
r=1i=1
be a sequence of sets in which every N} appears exactly once.
Let ny be a fixed natural number. Using the fact that 4 is a homeomorphism,
it is not difficult to prove that there is only a finite number of sets N, having points
in common with CP,,.

Let 4 = 27Y(N) = U A~*(WV)). It is not difficult to see that 4 is an interval
i=1

set at a point p. The function 4 does not preserve points of strong dispersion of in-
terval sets, because Dy(py, 4) = 0 and Dy((p,), h{4))>0. The theorem is proved.
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Similarly one can prove an analogous theorem concerning weak density.
Now we shall consider the case where the homeomorphism is of the form

H(x,¥) = (hy(x), ho(3)). At first we shall prove an auxiliary theorem concerning
absolutely continuous functions.

DEFINITION 8. We shall say that the function f: R? — R? is absolutely continuous
in sense of Banach if and only if for every positive number & there exists a positive
number § such that for every elementary figure 4 (an elementary figure being a set
which is a finite union of closed intervals with disjoint interiors) if |4}, <6, then

[f(Dla<e.

THEOREM 6. If 1y and hy are homeomorphisms transforming the interval [0, 1]
onto itself and hy, h, are absolutely continuous, then the JSunction H(x,y)
= (hy(x), ho(3)) is a homeomorphism transforming the square [0, 1]x [0, 1] onto
itself, and H is absolutely continuous in the sense of Banach.

Proof. The fact that H is a homeomorphism is obvious. We shall prove the
absolute continuity. :

Let 4 be an elementary figure included in [0, 1]x [0, 1]. Let ¢>0 be an arbitrary
number. From the absolute continuity of /4, and h, it follows that there exist two
numbers #, and 7, such that for every elementary figure B<R if |B| 1<1n;, then
[h(B)| <27t for i = 1,2.

Let Ax = {y (x7 y)EA} Put El = {x: |Axl1<712}’ EZ = {x: leI1>n2}:
Ay =ANn(ExR), Ay = A—A4,.

Then for every x e [0, 1] [(4,),ly <#5, and so |H((4y),)l;<2"'e. From the
equality H{(4,),) = (H(4))n and from the theorem of Fubini it follows that

1
® |H(4y)], = Oj (HAy) dz<2" e

Now suppose that  is a positive number such that §<n,n,. If |4],<8, then
[E,ly<ny. Indeed, if |E,|y>n,, then we should have

1
IAIZ =0j ]Axlldx =Ej‘ I-Axlldx'{-E.[ lelldx>Ej IAxlldx"i'nan;a 2
23 2 1

a contradiction.

If we denote (4,) = {x: (x,y)e4,}, then for every ye[0,1] we have
(42’ E,, so [(4,)];<ny. Hence |(H(4,))"; <27 1. From the last inequality
it follows that

1
(10) [H(A4))l2 = 6[ ](H(Az))t|1dt<2_1€ .

From (9) and (10) we have |H(A)|, = |H(4,) U H(dy)l,<e2  +&2" 1 =g,
Tueorem 7. Let H(x,y) = (/zl(x),hz(y)) be a homeomorphism transforming
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[0, 11% [0, 1] onto itself. If hy and hy are absolutely continuous functions such that
there exist two numbers o and B for which 0<p<|hi(x)|<a<co and

0< Bl <a<oo

almost everywhere, then H preserves points of strong density.

Proof. In virtue of Theorem 6 H is absolutely continuous in the sense of
Banach. Suppose that p, is the point of strong dispersion of some measurable set S;
SO ‘

. ISaP],
an oo P 0
poeP
where P is a rectangle.
It is not difficult to verify that

ot k) o,
Sy = )

From Theorem 6 in [2], p. 414 it follows that

H(S N P), =S[£lh{(x)'h£(y)ldxdy<oczlS NPy,

[H(P)I; = IPI A1) k()| dxdy= B2 [P, .

Hence
H(S) 0 HP)lz _
HP),

@?|S n P,
BIPl,

From the fact that H is a homeomorphism of the above form and from (11)
and (12) we have

(12)

[HES) n HP), _

lim
[H(P)l,

d(H(P))~0
H(po)eH(P)

COROLLARY, If H is a homeomorphi’sm of the above form whose Jacobian is con-
tinuous and different from zero, then H preserves points of strong density.
TueoreM 8. Let H(x, y) = (hy(x), h,(»)) be a homeomorphism transforming
[0, 1]1x [0, 1] onto itself. If the following condition is fulfilled:
(¥)  for every £>0 there exists >0 such that for every measurable set S and for

. S, [H(S) n H(D),
every interval I if <§, then ——————-"=
12 [H(DI,

points of strong density.

<g; then H preserves

Proof. Let p, be a point of strong dispersion of 2 measurable set S and let I be
a rectangle including p,. Let 6>0 be an arbitrary number. We choose such a number
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6>0 that the inequality in (*) is fulfilled, next we choose such a number #>0 that,
if dIy<n (where d(I) denotes the diameter of the interval I), then
IS,
M1z
finally for n we choose such a number y>0 that if d(P)<7y, then

(14 d(H™*(PY)<n,
where P is a rectangle.

Consider a rectangle P such that H(p,) € P and d(P)<y. Let I = H™'(P).
Then from (14) it follows that d(I)<#x and from (13) and (*) we obtain the ine-
quality

3) <5;

[H(S) n HI)l,
[HD)2

So H(p,) is a point of strong dispersion of the set H(S).

Observe that Theorems 7 and 8 are also true for the case of weak density. The
proofs are quite similar.

It is nearly obvious that the rotation of a plane around the origin is a homeo-
morphism preserving points of weak density. We shall show that if the angle of ro-
tation is different from k-(27!x), then this transformation does not preserve strong
density points. Let 4 = {(x, y): y>x* or y< —x?}. It is easy to see that the origin
is not the point of strong density of A. Let & be a rotation at an angle different from
any multiple of 277, Put B = 4~ (4). Then it is not difficult to see that the origin
is the point of strong density of B. So 4 does not preserve strong density points,
because h(B) = A.

The question if there exists a homeomorphism preserving strong density points
and not preserving weak density points remains an open problem.
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