Continuous functions on products of topological spaces

by

J. Gerlits (Budapest)

Abstract. Let f be a continuous function from the product space $X = \prod \{X_i; i \in I\}$ onto the T_3 -space Y. Well-known results of Miščenko, Engelking and others state that under certain conditions f depends only on few coordinates. In section 2 of the paper some generalizations of these theorems are given; e.g. if the cardinal $a > \omega$ is a caliber for X and Y does not contain topologically the Cantor cube of weight a then f depends on < a coordinates (Corollary 3). In section 3 local-type variants are considered.

1. Let $\{X_i; i \in I\}$ be a family of topological spaces, $X = \prod \{X_i; i \in I\}$ the topological product and $f: X \to Y$ a mapping onto the T_2 -space Y.

A well-known theorem of A. Miščenko [8] asserts that if α^+ is a caliber for X and $\psi Y \leq \alpha$ (¹) then f depends at most on α coordinates.

Our main aim in this paper is to prove a generalization of this theorem. Some applications, to derive a generalization of a theorem of R. Engelking [4] and a new result for dyadic compacta, will be given.

We shall use the usual set-theoretic notions; cardinals are identified with initial ordinals. All undefined terms can be found in [3] or [7].

In the sequel we shall need the following definitions and theorems.

DEFINITION (N. Sanin [10]). A cardinality α is said to be a *caliber* for the topological space X if given any sequence $\{G_{\xi}; \xi < \alpha\}$ of non-empty open sets in X, there exists a set $A \subset \alpha$, $|A| = \alpha$ with $\bigcap \{G_{\xi}; \xi \in A\} \neq \emptyset$.

(1) If R is a topological space, $x \in R$, $A \subseteq R$, $x \in \overline{A}$,

$$\begin{split} \psi(x, R) &= \min\{|\mathcal{G}|; \ \mathcal{G} \text{ is an open system, } \bigcap \mathcal{G} = \{x\}\},\\ \chi(x, R) &= \min\{|\mathcal{G}|; \ \mathcal{G} \text{ is a nbd-base of } x \text{ in } R\},\\ a(x, A) &= \min\{|B|; B \subset A, x \in \overline{B}\},\\ t(x, R) &= \sup\{a(x, A); A \subset R, x \in \overline{A}\},\\ t(R) &= \sup\{t(x, R); x \in R\} \end{split}$$

(R) is the tightness of the space R.

5*

THEOREM (N. Sanin [10]). Suppose α is a cardinality, $cf(\alpha) > \omega$ and $\{X_i; i \in I\}$ is a family of topological spaces, $w(X_i) < cf(\alpha)$ for $i \in I$; then α is a caliber for the product space $X = \prod \{X_i; i \in I\}$.

THEOREM (A. Hajnal [6]). Suppose H is a set and $\varphi: H \rightarrow P(H)$ is a set-mapping (that is, for each element x of H, $\varphi(x)$ is a subset of H). If there exists a cardinality β with $|\varphi(x)| < \beta < |H|$ for each $x \in H$, then there exists a set $F \subset H$. |F| = |H| such that F is "free" with respect to φ , i.e., $\varphi(x) \cap F \subset \{x\}$ for each $x \in F$.

We shall use this theorem only in the special case when $\beta = \omega$; that was first proved by S. Piccard [9].

2. DEFINITION 1. Let $\{X_i: i \in I\}$ be a family of sets, $X = \prod \{X_i; i \in I\}$. $A \subset X$, f be a function from X to the set Y. The set $J \subset I$ determines f in A if $p \in A$. $q \in X$, p|J = q|J implies f(p) = f(q).

Denote by $\operatorname{ord}(f, A) = \min\{|J|; J \subset I, J \text{ determines } f \text{ in } A\}$. Note that if A = Xthen J determines f in X iff f depends only on the coordinates in J.

Denote by D the two-point discrete space.

Now we can formulate our main result.

THEOREM 2. Let $\{X_i; i \in I\}$ be a family of topological spaces, $X = \prod \{X_i; i \in I\}$, f: $X \to Y$ a mapping to the T_2 -space Y, $A \subset X$, $\alpha > \omega$ a cardinality. If α is a caliber for the subspace A and $\operatorname{ord}(f, A) \ge \alpha$, then there exists a subspace $C \subset X$, $C \cap A \neq \emptyset$ such that C is homeomorphic with D^{α} and $f \mid C$ is a homeomorphism.

Proof. An elementary open set in X is a set $U = \prod \{U_i; i \in I\}$ where $U_i \subset X_i$ is an open set in X_i for $i \in I$ and $I(U) = \{i \in I; U_i \neq X_i\}$ is finite.

Suppose $\alpha > \omega$ is a caliber for $A \subset X$ and $\operatorname{ord}(f, A) \ge \alpha$. We shall define by transfinite induction a sequence $\{\langle p_{\xi}, q_{\xi}, U_{\xi}^{0}, U_{\xi}^{1} \rangle; \xi < \alpha\}$.

Suppose $\varrho < \alpha$ and for $\xi < \varrho$ are defined p_{ξ} , q_{ξ} , U_{ξ}^{0} , U_{ξ}^{1} with

(i) $p_{\xi} \in A$, $q_{\xi} \in X$, U_{ξ}^{0} and U_{ξ}^{1} are elementary open sets.

(ii) $p_{\varepsilon} \in U^0_{\varepsilon}, q_{\varepsilon} \in U^1_{\varepsilon}, I(U^0_{\varepsilon}) = I(U^1_{\varepsilon}) = I_{\varepsilon},$

(iii) if
$$\eta < \xi < \varrho$$
 then $p_{\xi}|I_n = q_{\xi}|I_n$,

(iv) if $i \in I$ and $p_{\xi}(i) = q_{\xi}(i)$, then $\pi_i(U_{\xi}^0) = \pi_i(U_{\xi}^1)$.

(v)
$$f(U^0_{\xi}) \cap f(U^1_{\xi}) = \emptyset$$
.

Put $J = \bigcup \{I_{\xi}; \xi < \varrho\};$ now $|J| \leq \varrho \cdot \omega < \alpha$.

By ord $(f, A) \ge \alpha$ there exist two points $p_o, q_o, p_o \in A, q_o \in X, p_o | J = q_o | J$ with $f(p_o) \neq f(q_o)$.

The space Y is T_2 and f is continuous so there exist two elementary open sets $U_o^0, \ U_o^1$ with $p_o \in U_o^0, \ q_o \in U_o^1, \ f(U_o^0) \cap f(U_o^1) = \emptyset$. Evidently we can suppose that $I(U_{\varrho}^{0}) = I(U_{\varrho}^{1}) = I_{\varrho}$ and if $i \in I_{\varrho}$, $p_{\varrho}(i) = q_{\varrho}(i)$, then $\pi_{i}(U_{\xi}^{0}) = \pi_{i}(U_{\varrho}^{1})$.

It is now very easy to check that the sequence $\{\langle p_{\varepsilon}, q_{\varepsilon}, U_{\varepsilon}^{0}, U_{\varepsilon}^{1} \rangle, \xi < \varrho + 1\}$ satisfies our conditions (i)-(v).

Using now that α is a caliber for A and $U_{\xi} \cap A \neq \emptyset$ for $\xi < \alpha$, we can assume that $p \in A \cap \bigcap \{U^0_{\xi}; \xi < \alpha\}$.

For each $\xi < \alpha$ put $J_{\xi} = \{i \in I; \pi_i(U_{\xi}^0) \neq \pi_i(U_{\xi}^1)\}$. Evidently, $J_{\xi} \subset I_{\varepsilon}$. If $\eta < \xi < \alpha$,

then, by (iii) and (iv), $J_{\xi} \cap I_n = \emptyset$; hence the sets $\{J_{\xi}; \xi < \alpha\}$ are pairwise disjoint. By (v), the sets J_{ξ} are non-empty ($\xi < \alpha$).

If $\xi < \alpha$, put $\varphi(\xi) = \{\eta < \alpha; J_x \cap I_x \neq \emptyset\}.$

The set I_{ξ} is finite and the J_{μ} 's are disjoint, hence $|\varphi(\xi)| < \omega < \alpha$ for each $\xi < \alpha$. Using now Hajnal's theorem on set-mapping, we can suppose that

(*) $J_* \cap I_n \neq \emptyset$ iff $\xi = \eta \ (\xi < \alpha, \eta < \alpha)$.

Let now q be the following function from D^{α} into X: if $x \in D^{\alpha}$, $i \in I$ put

$$g(x)(i) = \begin{cases} q_{\xi}(i) & \text{if } i \in J_{\xi} \text{ and } x(\xi) = 1\\ p(i) & \text{otherwise.} \end{cases}$$

The definition of g is meaningful because the sets J_{z} are disjoint. The function g is continuous; indeed, it is enough to prove that $\pi_i \circ g$ is continuous for each $i \in I$.

If $i \in I - J_{\varepsilon}$ for each $\xi < \alpha$, then $\pi_i \circ g$ is constant; if $i \in J_{\varepsilon}$ for an ordinal $\xi < \alpha$, then $\pi_i \circ q$ is constant on two complementary clopen sets of D^{α} .

We assert now that for each $x \in D^{\alpha}$ and $\xi < \alpha$ $g(x) \in U_{\xi}^{x(\xi)}$.

Note that if $i \in I - J_{\xi}$ or $\varepsilon = 0$, then $p(i) \in \pi_i(U_{\xi}^s)$. Indeed, $p \in U_{\xi}^0$ for each $\xi < \alpha$; on the other hand, if $i \in I - J_{\xi}$, then $p(i) \in \pi_i(U_{\xi}^0) = \pi_i(U_{\xi}^1)$ by the definition of J_{ξ} . Now, we have to prove that for each $i \in I$, $q(x)(i) \in \pi_i(U_t^{\mathbf{x}(\xi)})$. This is evidently true if $i \notin I_{\varepsilon}$, because, then $\pi_i(U_{\varepsilon}^{\mathfrak{x}(\xi)}) = X_i$. If $i \in I_{\varepsilon} - J_{\varepsilon}$, then, by (*), $i \notin J_{\eta}$ for each $\eta < \alpha$ hence $g(x)(i) = p(i) \in \pi_i(U_{\xi}^{x(\xi)})$. Finally, let $i \in J_{\xi}$. If $x(\xi) = 0$, g(x)(i) $= p(i) \in \pi_i(U_{\xi}^{x(\xi)}); \text{ if } x(\xi) = 1, \ g(x)(i) = q_{\xi}(i) \text{ and } q_{\xi} \in U_{\xi}^1 \text{ so } g(x)(i) \in \pi_i(U_{\xi}^{x(\xi)}).$

Now, if $x, y \in D^{\alpha}$, $x \neq y$, then there exists a $\xi < \alpha$ with $x(\xi) \neq y(\xi)$. Hence $f(g(x) \in f(U_{\varepsilon}^{x(\xi)}), f(g(y)) \in f(U_{\varepsilon}^{y(\xi)})$ and $f(U_{\varepsilon}^{x(\xi)}) \cap f(U_{\varepsilon}^{y(\xi)}) = \emptyset$ by (v), so $f(q(x)) \neq f(q(y)).$

The space Y is T₂ consequently $h = f \circ q$ is a homeomorphic embedding of D^{α} into Y. Put $K = h(D^{\alpha}) \subset Y$, $C = g(D^{\alpha}) \subset X$. Now $h = f \circ g$ is a homeomorphic mapping from D^{α} onto K and g and f are continuous; so g is a homeomorphism of D^{α} onto C.

Applying the theorem for the case A = X, we get the promised generalization of the theorem of A. Miščenko:

COROLLARY 3. Let the cardinality $\alpha > \omega$ be a caliber for the product space $X = \prod \{X_i; i \in I\}, f: X \to Y \text{ a mapping into the } T_2\text{-space } Y.$ If Y does not contain a topological copy of D^{α} , then f depends on $<\alpha$ coordinates.

If $A = \{p\}$, then each cardinality $\alpha > \omega$ is a caliber for A, hence

COROLLARY 4. Let $X = \prod \{X_i; i \in I\}, f: X \to Y$ a mapping onto the T_2 -space Y, $p \in X$. If $\operatorname{ord}(f, p) \ge \alpha > \omega$, then there exists a set C, $p \in C \subset X$ such that C is homeomorphic with D^{α} and $f \mid C$ is a homeomorphism.

The following lemma will be useful for us.

LEMMA 5. Let $X = \prod \{X_i; i \in I\}$ be the topological product of the spaces X_i , $w(X_i) < \alpha$ for each $i \in I$, where $\alpha > \omega$ is a regular cardinality. Suppose $A \subset X$ and for

69

each $p \in A$ there exists a set $J = J(p) \subset I$, $|J| < \alpha$ such that $q \in X$, p|J = q|J implies $q \in A$. Then α is a caliber for the subspace A.

Proof. For each $i \in I$ choose a base \mathfrak{B} in X_i , $|\mathfrak{B}_i| < \alpha$, $X_i \in \mathfrak{B}_i$. A set $U \subset X$ is a basic open set if $U = \prod \{U_i; i \in I\}, U_i \in \mathfrak{B}_i$ for $i \in I$ and $I(U) = \{i \in I; U_i \neq X_i\}$ is finite. It is enough to prove that if $\{U_s; s \in S\}$ is a family of basic open sets in X with $|S| = \alpha$ and $U_s \cap A \neq \emptyset$ for $s \in S$, then there exists a set $S' \subset S$, $|S'| = \alpha$ such that $\bigcap \{U_s; s \in S'\} \cap A \neq \emptyset$.

By the Erdös-Radó theorem (see e.g. [7] A.2) we can suppose that the system $\{I(U_s); s \in S\}$ is a quasi-disjoint family; i.e., that for $s, s' \in S$, $s \neq s'$ $I(U_s) \cap I(U_{s'}) = K$ holds. The set $K \subset I$ is finite and $|\mathfrak{B}_i| < \alpha$ for each $i \in I$, hence we can assume that for each $i \in K$ and for each $s \in S \pi_I(U_s) = G_i$.

Choose now an arbitrary $s_0 \in S$ and $p_0 \in A \cap U_{s_0}$. In accordance with our conditions there exists a set $J \subset I$, $|J| < \alpha$ such that $q \in X$, $q|J = p_0|J$ implies $q \in A$. The members of the family $\{I(U_s) - K; s \in S\}$ are pairwise disjoint hence the set $S' = \{s \in S, I(U_s) \cap J \subset K\}$ has cardinality α . Select a point $q_s \in U_s$ for $s \in S'$ and let $q \in X$ be the point

$$q(i) = \begin{cases} q_s(i) & \text{if } i \in I(U_s) - K, s \in S' \\ p_0(i) & \text{otherwise.} \end{cases}$$

This is a meaningful definition because the sets $\{I(U_s)-K; s \in S'\}$ are pairwise disjoint. Now $q|J = p_0|J$ so $q \in A$; on the other hand, evidently $q \in \bigcap \{U_s; s \in S'\}$.

Now, let $X = \prod \{X_i; i \in I\}$ be a product of topological spaces, $w(X_i) < \alpha$ ($i \in I$), $\alpha > \omega$ a regular cardinality and $f: X \to Y$ a mapping onto the T_2 -space Y. Denote by H the set of those points $y \in Y$, for which it does not exist a compact set C, homeomorphic with D^{α} , $y \in C \subset Y$. (For example, if the topological character of y in Y is less than α , then $y \in H$.) Put $A = f^{-1}(H)$; evidently, it does not exist a set $C \subset X$, $C \cap A \neq \emptyset$, C homeomorphic with D^{α} such that f | C is a homeomorphism. This shows, by Corollary 4, that for each $p \in A$ ord $(f, p) < \alpha$ and hence the conditions of Lemma 5 are satisfied, thus α is a caliber for A. Applying now Theorem 2, we conclude that $\operatorname{ord}(f, A) < \alpha$ and so there exists a set $J \subset I$, $|J| < \alpha$ such that $p \in A$, $q \in X$, p|J = q|J implies $f(q) = f(p) \in H$ hence $q \in A$. This shows that $A = \pi_J^{-1}(B)$ where π_J is the projection on the partial product

$$X_J = \prod \{X_i; i \in J\}$$

and $B \subset X_J$. Moreover, f | A depends only on the coordinates in J.

Using that Y is a T_2 -space we immediately obtain $f | \overline{A}$ depends only on the coordinates of J, too. Hence we can conclude that if A is dense in X, then f depends only on $<\alpha$ coordinates, sharpening thus a theorem of R. Engelking [4]:

THEOREM 6. Let f be a mapping from the topological product $X = \prod \{X_i; i \in I\}$ of spaces X_i with $w(X_i) < \alpha$ to a T_2 -space Y, where $\alpha > \omega$ is a regular cardinality. If f depends on $\geq \alpha$ coordinates then for each $Q \subset X$ dense set in X there exists a point $q \in Q$ and a space C homeomorphic with D^{α} such that $f(q) \in C \subset Y$.

If the spaces X_i are compact spaces, then the conclusion is simpler.

THEOREM 7. Let f be a mapping from the topological product $X = \prod \{X_i; i \in I\}$ of compact spaces with $w(X_i) < \alpha$ onto a T_2 -space Y, where $\alpha > \omega$ is a regular cardinality. If $w(Y) \ge \alpha$, then for each $Q \subset Y$ dense set there exists a subspace $C \subset Y$ homeomorphic with D^{α} , $C \cap Q \neq \emptyset$.

Proof. Indeed, if the above set H is dense in Y then $f(\overline{A}) = Y$ because f is now a closed mapping. But evidently $\overline{A} = \overline{\pi_J^{-1}(B)} = \pi_J^{-1}(\overline{B})$ and so $Y = (f \circ \pi_J^{-1})(\overline{B})$. Surely $w(\overline{B}) \leq w(X_J) \leq \sum \{w(X_i); i \in J\} < \alpha$ (α is regular) hence by a theorem of Arhangel'skiĭ (see e.g. [3] Corollary 2 to Theorem 3.1.11) $w(Y) < \alpha$ too.

This is a sharpening of a theorem of R. Engelking [5].

3. In this section we are investigating the local version of the issue of the preceding section.

Let $\alpha > \omega$ be a regular cardinality, $w(X_i) < \alpha$ $(i \in I)$, $X = \prod \{X_i; i \in I\}, f: X \to Y$ a continuous mapping onto the T_2 -space Y.

Now, a typical "local problem" is the following: suppose $y \in Y$, $\chi(y, Y) \ge \alpha$; can we assert that there exists a set C, $y \in C \subset Y$, C homeomorphic with D^{α} ?

The answer to this question is in general negative; indeed if $\alpha = \omega_1$, it is easy to construct a T_5 topological space Y with $|Y| = \omega$, $\chi(y, Y) = \omega_1$ for each $y \in Y(^2)$; this space Y is the continuous image of the discrete countable space N, $w(N) = \omega < \omega_1$. What is more, the answer is negative even if we assume only that $\psi(y, Y) \ge \alpha = \omega_1$.

EXAMPLE 8. The basic set of our space Y will be $N^{\omega_1} \cup \{p\}$, $p \notin N^{\omega_1}$, N^{ω_1} is an open subspace of Y and $\psi(p, Y) = \omega_1$. The existence of such a space is guaranteed by the fact that N^{ω_1} is a zerodimensional non-Lindelöf space but it can also be constructed directly. For example, a neighbourhood-base of the point p is the system

where

$$\{U_T(p); T \subset \omega_1, |T| < \omega\}$$

 $U_T(p) = \{ q \in N^{\omega_1}; \ q(i) \neq q(j) \text{ if } i, j \in T, \ i \neq j \} \cup \{ p \} .$

Evidently Y is the continuous image of the product space N^{ω_1} , $w(N) = \omega < \omega_1$, $\psi(Y, Y) = \omega_1$ for each $y \in Y$.

We assert that does not exist a set C homeomorphic with D^{ω_1} , $p \in C \subset Y$. Indeed, suppose on the contrary that $\varphi: D^{\omega_1} \to Y$ is an embedding, $\varphi(\mathbf{1}) = p$. Put

$$\Sigma = \{ q \in D^{\omega_1}; |\{\xi < \omega_1; q(\xi) = 1\}| \le \omega \};$$
$$A = f(\Sigma).$$

Evidently, $A \subset N^{\omega_1}$, $p \in \overline{A}$, moreover, if $B \subset A$, $|B| \leq \omega$, then $\overline{B} \subset A$, \overline{B} is a compact

(2) For example, take for Y a countable dense subset of D^{ω_1} .

set. Now, for each $\xi < \omega_1$, $\pi_{\xi}(A)$ is a finite subset of N; indeed, otherwise we should choose a countable set $B \subset A$ with $\pi_{\xi}(B)$ infinite and this contradicts to the fact that $\pi_{\xi}(\overline{B})$ is compact in the discrete space N. Put $K = \prod {\pi_{\xi}(A); \xi < \omega_1}$. Now $A \subset K$, K is a compact set in N^{ω_1} hence $p \notin \overline{A}$, a contradiction.

Nevertheless, the following theorem can be asserted.

THEOREM 9. Let f be a continuous function from the product space

$$X = \prod \{X_i; i \in I\}$$

of spaces X_i with $w(X_i) < \alpha$ onto the T_2 -space Y. If $\alpha > \omega$ is a regular cardinality and $y \in Y$ with $\psi(y, Y) \ge \alpha$, then there exists a set $A \subset Y$ such that $y \notin A$, $a(y, A) \ge \alpha$.

Proof. Put $F = f^{-1}(y)$, G = X - F. Denote by

$$\mathfrak{A} = \{A \subset G; \ \psi(y, f(A) \cup \{y\}) \ge \alpha\}$$

Evidently $G \in \mathfrak{A}$; moreover, if $A \in \mathfrak{A}$, $A = \bigcup \{A_{\xi}; \xi < \beta\}$ and $\beta < \alpha$ then there exists a $\xi < \beta$ with $A_{\xi} \in \mathfrak{A}$. Note that if $A \in \mathfrak{A}$ then $y \in f(\overline{A})$. Choose now a base \mathfrak{B}_i in X_i with $|\mathfrak{B}_i| < \alpha$, $X_i \in \mathfrak{B}_i$ $(i \in I)$. A basic open set in X is a set $U = \prod \{U_i; i \in I\}$ with $U_i \in \mathfrak{B}_i$ for $i \in I$ and $I(U) = \{i \in I; U_i \neq X_i\}$ finite.

Making use of the fact that Y is T_2 and f continuous we get a cover \mathfrak{U} of G of basic open sets such that

 $f(U) \subset Y - \{y\}$ for each $U \in \mathfrak{U}$.

Denote by

$$\sigma = \{\mathfrak{V} \subset \mathfrak{U}; \ \bigcup \{V; \ V \in \mathfrak{V}\} \in \mathfrak{U}\}.$$

Evidently $\mathfrak{U} \in \sigma$ and if

(*)

 $\mathfrak{B} \in \sigma$, $\mathfrak{B} = \bigcup {\mathfrak{B}_{\xi}; \xi < \beta}$

and $\beta < \alpha$ then there exists a $\xi < \beta$ with $\mathfrak{B}_{\xi} \in \sigma$. Put now

$$\mathfrak{U}_n = \{ U \in \mathfrak{U}; |I(U)| \leq n \} \quad (n < \omega)$$

 $\mathfrak{U} = \bigcup {\mathfrak{U}_n; n < \omega \text{ and } \omega < \alpha \text{ implies } \mathfrak{U}_m \in \sigma \text{ for a suitable } m < \omega.}$

Let now r be the maximal integer such that there exists a set $T \subset I$, |T| = r with

$$\mathfrak{U}(T) = \{ U \in \mathfrak{U}_m; \ T \subset I(U) \} \in \sigma \quad (0 \leq r \leq m) .$$

Select $T_0 \subset I$, $|T_0| = r$ with $\mathfrak{U}(T_0) \in \sigma$. Using now (*) and that $|\mathfrak{B}_t| < \alpha$ for $t \in T_0$ we get a family $\mathfrak{B} \subset \mathfrak{U}(T_0)$, $\mathfrak{B} \in \sigma$ with $\pi_t(U) = B_t$ for each $U \in \mathfrak{B}$, $t \in T_0$.

If $i \in I - T_0$, then, by the maximality of r, $\mathfrak{B}_i = \{U \in \mathfrak{B}; i \in I(U)\} \notin \sigma$. More generally, if $J \subset I - T_0$, $|J| < \alpha$, then, by (*), if $\mathfrak{B}_J = \bigcup \{\mathfrak{B}_i; i \in J\}$, $\mathfrak{B}_J \notin \sigma$ hence there exists a set $U \in \mathfrak{B}$ with $I(U) \cap J = \emptyset$.

This shows that we can choose a family $\{U_{\xi}; \xi < \alpha\} \subset \mathfrak{V}$ with $I(U_{\xi}) \cap I(U_{\eta}) = \emptyset$ for $\xi < \eta < \alpha$.

Denote now by Σ the set of those points in X which are contained in all but finitely many U_{ξ} 's. It is very easy to see that Σ is dense in the set

$\bigcap \{\pi_i^{-1}(B_t); t \in T_0\}$

hence $\bigcup \{U; U \in \mathfrak{B}\} \subset \overline{\Sigma}$. This implies, of course, that if $A = f(\Sigma)$ then $y \in \overline{A}$. On the other hand, if $P \subset \Sigma$, $|P| < \alpha$ then there exists a $\xi < \alpha$ with $P \subset U_{\xi}$ hence $f(P) \subset f(U_{\xi})$. But $U_{\xi} \in \mathfrak{B} \subset \mathfrak{U}$ hence $y \notin \overline{f(U_{\xi})}$ so $y \notin \overline{f(P)}$. This shows that $a(y, A) \ge \alpha$.

Assuming that "almost all" factor spaces X_i are compact, we get a sharper result.

THEOREM 10. Let f be a mapping from the topological product $\prod \{X_i; i \in I\}$ of spaces with $w(X_i) < \alpha$ onto the T_2 -space Y where $\alpha > \omega$ is a regular cardinality. Suppose that the set $\{i \in I; X_i \text{ is not compact}\}$ has cardinality $<\alpha$ and $y \in Y$, $\psi(y, Y) \ge \alpha$; then there exists a space C, homeomorphic with D^{α} , $y \in C \subset Y$.

Proof. Suppose it does not exist such a subset for the point $y \in Y$.

Denote by $A = f^{-1}(y) \subset X$. Exactly as in the proof of Theorem 6, we can prove that there exists a set $J \subset I$, $|J| < \alpha$ such that $A = \pi_J^{-1}(B)$ where $B \subset X_J$. Evidently we can also assume that if $i \in I - J$ then X_i is compact. Now A is a closed set in X and so B is also a closed set in X_J because $\pi_J^{-1}(B) = A = \overline{A} = \pi_J^{-1}(\overline{B})$ hence $B = \overline{B}$.

Now $w(X_J) < \alpha$ hence there exists a base \mathfrak{B} of X_J , $|\mathfrak{B}| < \alpha$. For $B \in \mathfrak{B}$, put $F_R = \overline{f(\pi_i^{-1}(B))} \subset Y$ and put $\mathfrak{A} = \{B \in \mathfrak{B}; y \notin F_R\}.$

It is enough to prove that $Y - \{y\} = \bigcup \{F_B; B \in \mathfrak{A}\}$ because then $\{y\} = \bigcap \{Y - F_B; B \in \mathfrak{A}\}$ and $\psi(y, Y) \leq |\mathfrak{A}| \leq |\mathfrak{B}| < \alpha$.

Let $x \in Y - \{y\}$ and choose a point $p \in f^{-1}(x)$.

Put $p' = \pi_J(p) \in X_J - B$. The set $C = \pi_J^{-1}(p^1) \subset X$ is compact and so $K = f(C) \subset Y$ is compact, too, $y \notin K$, $x \in K$. Select an open set $G \subset Y$, $K \subset G$, $y \notin \overline{G}$.

Using the compactness of the subspace C we get a $B \in \mathfrak{B}$ with $p' \in B$, $\pi_I^{-1}(B) \subset f^{-1}(G)$; now $C \subset \pi_I^{-1}(B)$.

So we proved $x \in F_B \subset \overline{G} \subset Y - \{y\}$ hence $B \in \mathfrak{A}$.

Using this theorem we can deduce a seemingly new result for dyadic compacta. (A dyadic compactum is a Housdorffic image of a product space D^{I} .)

THEOREM 11. Let R be a dyadic compactum, $x \in R$, $\alpha > \omega$ a regular cardinality; then the following conditions are equivalent

a) $\chi(x, R) \ge \alpha$,

b) there exists a set $A \subset R$ with $x \in \overline{A}$, $a(x, A) \ge \alpha$,

c) there exists a subspace $C \subset R$, C homeomorphic with D^{α} , $x \in C$.

Proof. a) \rightarrow c). This follows from Theorem 8 because in a compact space $\psi(x, R) = \chi(x, R)$ for each point.

c) \rightarrow b). Put $A = \{ y \in D^{\alpha}; |\{\xi < \alpha; x(\xi) = y(\xi)\}| < \alpha \text{ for } x \in D^{\alpha}. \text{ It is very easy to see that } A \text{ works.}$

b) \rightarrow a). Trivial.

COROLLARY 12. Let R be a dyadic compactum, $x \in R$; then $\chi(x, R) = t(x, R)$. The "global" version of Corollary 12 (i.e. that for a dyadic compactum R $\chi(R) = t(R)$ holds) is a well-known fact. By a theorem of A. Arhangel'skiĭ and V. Ponomariov [1] t(R) = w(R) for a dyadic compactum R; moreover, if $w(R) = \alpha$ and $cf(\alpha) > \omega$, then there exists a point $x \in R$ and a set $A \subset R$, such that $x \in \overline{A}$ and $a(x, A) \ge \alpha$. So it is natural to guess that Theorem 11 remains true if we suppose only that $cf(\alpha) > \omega$. The following example is a counterexample to this conjecture; it is a modification of a construction due to B. Efimov [2].

J. Gerlits

EXAMPLE 13. Let $\alpha > \omega$ be a singular cardinality, $\beta = cf(\alpha) < \alpha$. Select a sequence $\{\alpha_{\xi}; \xi < \beta\}$ with $\alpha = \sup\{\alpha_{\xi}; \xi < \beta\}$, $\beta < \alpha_{\xi} < \alpha_{\eta} < \alpha$ for $\xi < \eta < \beta$. Put

$$\begin{split} \Phi &= \left\{ p \in D^{\alpha}; \ p \mid \beta \equiv 0 \right\}, \\ \Phi_{\xi} &= \left\{ p \in D^{\alpha}; \ p(\xi) = 1, \ p \mid \alpha_{\xi} - \{\xi\} \equiv 0 \right\} \quad (\xi < \beta), \\ F &= \Phi \cup \bigcup \left\{ \Phi_{\xi}; \ \xi < \beta \right\}. \end{split}$$

Now $F \subset D^{\alpha}$ is a closed set. Indeed, if $p \in D^{\alpha}$ and for each $\xi < \beta \ p(\xi) = 0$, then $p \in \Phi \subset F$. If there is an ordinal $\xi < \beta$ with $p(\xi) = 1$ and $p \notin \Phi_{\xi}$ then there exists an $\eta < \alpha_{\xi}, \eta \neq \xi$ with $p(\eta) = 1$; now $U = \pi_{\xi}^{-1}(1) \cap \pi_{\eta}^{-1}(1)$ is a neighbourhood of p and $U \cap F = \emptyset$.

Denote now by R the quotient space identifying the points of F; R is certainly a dyadic compactum; denote by x the point $\varphi(F)$ of R where φ is the quotient mapping.

If $\xi < \beta$, let $A_{\xi} = \{p \in D^{\alpha}; p(\xi) = 1, |\{\eta < \alpha; p(\eta) = 0\}| < \omega\}$. Evidently $\overline{A}_{\xi} \supset \Phi_{\xi}$ but if $B \subset A_{\xi}$, $|B| < \alpha_{\xi}$ then $\overline{B} \cap \Phi_{\xi} = \emptyset$. This shows that in $R \ x \in \overline{A}_{\xi}$ and $a(x, A_{\xi}) \ge \alpha_{\xi}$. Specially, $\chi(x, R) \ge \alpha_{\xi}$ for each $\xi < \beta$ hence $\chi(x, R) = \alpha$.

On the other hand, if $A \subset D^{\alpha} - F$, $\overline{A} \cap F \neq \emptyset$, let $p \in \overline{A} \cap F$. Suppose $p \in \Phi_{\xi}$, $\xi < \beta$. If $J \subset \alpha_{\xi}$ is a finite set, there exists a point $q_J \in A_{\xi}$ with $p|J = q_J|J$. Put $B = \{q_J; J \subset \alpha_{\xi}, |J| < \omega\}, C = \pi_{\alpha_{\xi}}(\overline{B}) \subset D^{\alpha_{\xi}}$.

Now, in $D^{\alpha_{\xi}}$, $p' = \pi_{\alpha_{\xi}}(p)$ is in the closure of the compact set C hence $p' \in C$. This means that there exists a point $q \in \overline{B}$ with $q | \alpha_{\xi} = p | \alpha_{\xi}$ but then $q \in \Phi_{\xi}$ and hence $a(x, A) \leq \alpha_{\xi} < \alpha$ in R.

Quite similarly, if $p \in \Phi \cap \overline{A}$ then $a(p, A) \leq \beta < \alpha$ in R. Hence in R if $A \subset R$, $x \in \overline{A}$ then $a(x, A) < \alpha$.

References

- A. V. Arhangel'skiĭ and V. Ponomariov, On dyadic bicompacta, Dokłady Akad. Nauk SSSR 182 (1968), pp. 993-996.
- B. Efimov, On the weighted structure of dyadic compacta, Vestnik Moscow Univ., Ser. I. Mat. Meh. 2 (1964), pp. 3-11.
- [3] R. Engelking, Outline of General Topology, Warszawa 1968.
- [4] On functions defined on Cartesian products, Fund. Math. 59 (1966), pp. 221-231.
- [5] Cartesian products and dyadic spaces, Fund. Math. 57 (1966), pp. 287-304.

- [6] A. Hajnal, Proof of a conjecture of S. Ruziewicz, Fund. Math. 50 (1961-1962), pp. 123-128.
- [7] I. Juhász, Cardinal Functions in Topology, Amsterdam 1971.
- [8] A. Miščenko, Some theorems on the topological product of spaces, Fund. Math. 58 (1966), pp. 259-284.
- [9] S. Piccard, Solution d'un problème de la théorie des relations, Fund. Math. 2 (1937), pp. 197-202.

[10] N. Shanin, On the product of topological spaces, Trudy Inst. Steklova 24, Moscow 1948.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES Budapest, Hungary

Accepté par la Rédaction le 30. 5. 1977