Continuous functions on products of topological spaces
by

J. Gerlits (Budapest)

Abstract. Let f be a continuous function from the product space X = II {X}; i<I} onto
the Ty-space Y. Well-known results of Mi¥€enko, Engelking and others state that under certain
conditions f depends only on few coordinates. In section 2 of the paper some generalizations of
these theorems are given; e.g. if the cardinal a>w is a caliber for X and Y does not contain
topologically the Cantor cube of weight o then f depends on <a coordinates (Corollary 3). In
section 3 local-type variants are considered. :

1. Let {X;; iel} be a family of topological spaces, X = [] {X;; ieI} the
topological product and f: X — ¥ a mapping onto the T,-space Y.

A well-known theorem of A. Misenko [8] asserts that if o™ is a caliber for X -
and Y Y <o (*) then f depends at most on « coordinates.

Our main aim in this paper is to prove a generalization of this theorem. Some
applications, to derive a generalization of a theorem of R. Engelking [4] and a new
result for dyadic compacta, will be given.

We shall use the usual set-theoretic notions; cardinals are identified with initial
ordinals.- All undefined terms can be found in [3] or [7].

In the sequel we shall need the following definitions and theorems.

DerNITION (N. Sanin [10]). A cardinality « is said to be a caliber for the
topological space X if given any sequence {Gy; ¢<a} of non-empty open sets in X,
there exists a set Adca, |4] = o with () {Gy; e 4} # O.

® If R is a topological space, x eR, 4 CR, x €4,

p(x, B) = min{|8[; § is an open system, [ | § = {x}},
2(x, B) = min{|G|; § is a nbd-base of x in R},
a(x, Ay =min{|B|; BCA4, x B},
t(x, R) = sup{a(x, A); ACR, x ¢4},
t(R) = sup{t(x, R); x e R}

(R) is the tightness of the space R.
5!
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TueorEM (N. Sanin [10]). Suppose o is a cardinality, cf(@)>w and {X;; iel}
is a family of topological spaces, w(X;)<cf(c) for ieI; then o is a caliber for the
product space X = [[{X;; iel}. B

THEOREM (A. Hajnal [6]). Suppose H is a set and ¢: H— P(H) is a set-mapping
(2hat is, for each element x of H, ¢(x) is a subset of H). If there exists a cardinality
with | ()| <B<|H| for each x € H, then there exists a set F< H, |F| = |H| such
that F is “free” with respect to ¢, i.e., ¢(x) n Fe{x} for each x¢ F.

‘We shall use this theorem only in the special case when f = w; that was first
proved by S. Piccard [9].

2. DeFINITION 1. Let {X;: iel} be a family of sets, X = [J{X;; iel},
AcX, fbe a function from X to the set Y. The set J= [ determines fin A if p € 4,
qe X, plJ = q|J implies f(p) = f(g). .

Denote by ord(f, 4) = min{|J|; J<1, J determines fin 4}. Note that if 4 = X
then J determines f in X iff f depends only on the coordinates in J.

Denote by D the two-point discrete space.

Now we can formulate our main result.

THEOREM 2. Let {X;; i€ I} be a family of topological spaces, X = []{X,; ie 1),

Jt X — Y a mapping to the Ty-space Y, A= X, a>w a cardinality. If o is a caliber
for the subspace A and ord(f, A) >, then there exists a subspace Cc X, Cn A+ @
such that C is homeomorphic with D* and f|C is a homeomorphism.

Proof. An elementary open set in X is a set U = H {Ui; ie I} where U;c X,

. is an open set in X; for ie and I(U) = {iel; U, # X,} is finite.

Suppose o> is a caliber for 4 =X and ord(f, 4)>o«. We shall define by trans-
finite induction a sequence {{pe> 42 Ug, Ué); ¢<al.

Suppose g <o and for ¢<g are defined p;, q;, U , U} with

(@) ps€ 4, gse X, U and U} are elementary open sets,

(i) pee U;, ;e Uy, I(US) = I(UY) = I,

(i) if n<&<g then p I, = g1,

() if i€ T and pgi) = g,(i), then n(UF) = m,(U}),

M fUH N/ (UH = .

Put J = (J {I;; é<g}; now |J|<o-w<a.

By ord( f, 4) >« there exist two points Po> 4o> Py € 4, g, € X, polJ = q,|J with
I(py) # f(q,)-

. The space Y is T, and fis continuous so there exist two elementary open sets
U,, Uy with p, e UL, q,e UL, fF(UD nf (Up) = @. Evidently we can suppose that
I(Ug) = I(U;) = I, and if ieI,, p,(i) = g,(i), then 7 (Ug) = n(UD).

It is now very easy to check that the sequence {{p;, g, UZ, Usy, E<o+1}
satisfies our conditions (i)—(v). .

Using now that « is a caliber for 4 and Usn A4 # @for £<a, we can assume
that pe d n () {Ug; &<al.

For each {<a putJ; = {ie I; n(U{) # =,(U})}. Evidently, Jy<1,. If n <& <,
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then, by (iii) and (iv), J; n I, = &; hence the sets {J,;; £<o} are pairwise disjoint.
By (v), the sets J; are non-empty (£ <o).

If ¢é<a, put (&) = {n<o; J, " I; # B}

The set I, is finite and the J,’s are disjoint, hence [ (£)] <o <« for each &<a.
Using now Hajnal’s theorem on set-mapping, we can suppose that

*) Jenl,#90 iff (=1 (E<a,n<a).

Let now g be the following function from D into X: if xe D% iel put

g() ifieJ; and x(&) = 1.
p()  otherwise.

g(x)(@) = {

The definition of g is meaningful because the sets J, are disjoint. The function g is
continuous; indeed, it is enough to prove that «; o g is continuous for each ie I

If i e - J, for each &<a, then w; o g is constant; if i e J; for an ordinal £ <a,
then m;0 g is constant on two complementary clopen sets of D%

We assert now that for each xe D* and é<o g(x) e Ug(g).

Note thatif ie I-J; or'e = 0, then p(i) e 7(Ug). Indeed, p e Uy for each £ <o;
on the other hand, if i e I—J;, then p(i) e 7 (Ug) = n(U;) by the definition of J;.
Now, we have to prove that for each ie I, g(x)() € ni(UZf@)). This is evidently true
if i¢ I, because, then m(UF®) = X,. If ie I,—J,, then, by (%), i¢J, for each
n<oa hénce gx)() = p()e ni(Ug‘m). Finally, let ieJ,. If x() =0, gx)(®
= p()em(UFD); if x(2) = 1, 9()() = 4:0)) and gz U} s0 g(x)() e nfUF®).

Now, if x,ye D% x # y, then there exists a é<a with x(&) # y(£). Hence
Flg@erUs®), flgOefU®) and fUFP)nfUF) =G by (), so
Flog@) = fg(»)- :

The space Y is T, consequently & = fo g is a homeomorphic embedding of D*
into Y. Put K= h(D®<cY, C =g(D)=X. Now s = fog is a homeomorphic
mapping from D* onto K and g and f are continuous; so g is a homeomorphism

_of D* onto C. ®

Applying the theorem for the case 4 = X, we get the promised generalization
of the theorem of A. MiSgenko: -

COROLLARY 3. Let the cardinality w>w be a caliber for the product space
X =T[{X; iel},f: X— Y a mapping into the T-space Y. If Y does not contain
a topological copy of D”, then f depends on <o coordinates. B

If A = {p}, then each cardinality a>w is a caliber for 4, hence

COROLLARY 4. Let X = [[{X;; iel}, f+ X— Y a mapping onto the T,-space Y,
pe X If ord(f, p)=a>w, then there exists a set C, pe Cc X such that C is homeo-
morphic with D* and f|C is a homeomorphism.

The following lemma will be useful for us.

LemMa 5. Let X = [ {Xy; iel} be the topological product of the spaces X;,
w(X) <o for each ie I, where a>w is a regular cardinality. Suppose AcX and for
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each pe A there exists a set J = J(p)=1, |J| <« such that g e X, p|J = g|.J implies
ge A. Then « is a caliber for the subspace A.

Proof. For each i e/ choose a base B in X, |B,|<a, X;6B,. A set Uck
isabasic open setif U = [[ {U;; iel}, Uie B, forieTand I(U) = {iel; U; # X}
is finite. It is enough to prove that if {U,; s S} is a family of basic open sets in X
with |S| = a and U, n 4 # @ for se .S, then there exists a set S’ =S, [$'| = o such
that N {U; seS}nd #@.

By the Erdds-Radé theorem (see e.g. [7] A.2) we can suppose that the system
{I(U); se 8} is a quasi-disjoint family; ie., that for 5,5 €S, s #g
I(U) n I(U,) = K holds. The set K17 is finite and |8,/ <a for each i/ e/, hence
weé can assume that for each ie K and for each se § n(U,) = G,.

Choose now an arbitrary sq € S and py € 4 n U,,. In accordance with our con-
ditions there exists a set J<7, [J]<a such that ge X, ¢|J = p,|/ implies qgeAd.
The members of the family {/(U)—K; se S} are pairwise disjoint hence the set
S’ = {se S, I(U) nJ=K} has cardinality «. Select a point ¢, € U, for s € §* and
let g€ X be the point

N qu(z‘) if iel(U)-K, seS’,
%(1(1) )\Po(i)

T%lis is a meaningful definition because the sets {I(U)—K;,se S} are pair-
wise disjoint. Now g]J = po|J so ge 4; on the other hand, evidently g e ) {U,;
seS'} H
Now, let X = T]{X,; iel} be a product of topological spaces, w(X;)<a
(iel), o>w a regular cardinality and f: X — Y a mapping onto the Tz—spacé Y.
Denote by H the set of those points y € ¥, for which it does not exist a compact
set Cf homeomorphic with D% ye Cc Y. (For example, if the topological character
of y in ¥ is less than o, then y € H.) Put 4 = STM(H); evidently, it does not exist
a set CcX, Cn 4 # @, C homeomorphic with D* such that SIC is a homeo-
morphism. This shows, by Corollary 4, that for each p € A ord(f, p)<o and hence
the conditions of Lemma 5 are satisfied, thus « is a caliber for A. Applying now
Theorem 2, we conclude that ord(f, A)<u and so there exists a set J<J, [Jl<o
"such that pe 4, ge X, p|J = ¢|J implies S(@) = f(p) e H hence q e 4. This shows
that 4 = 73 '(B) where =, is the projection on the partial product

Xy =TI{x;; ie}

otherwise,

and BC_X 1. Moreover, f'|4 depends only on the coordinates in J.

I{smg that Y is a T,-space we immediately obtain |4 depends only on the
coordinates of J, too. Hence we can conclude that if 4 is dense in X, then / depends
only on <a coordinates, sharpening thus a theorem of R. Engelking f4]:

' THEOREM 6: Let f bé a mapping from the topological product X = [T{xsiel}
of spaces X; with w(X)<u« to a Ts-space Y, where a>w is regular cardinality.
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If f depends on = coordinates then for each Q <X dense set in X there exists a point
ge Q and a space C homeomorphic with D* such that f(g)e Cc Y. B

If the spaces X; are compact spaces, then the conclusion is simpler.

THEOREM 7. Let f be a mapping from the topological product X = [ {X; iel}
of compact spaces with w(X))<a onto a Ty-space ¥, where a>w is a regular cardi-
nality. If w(Y) =a, then for each Q< Y dense set there exists a subspace C< Y homeo-
morphic with D%, Cn Q # @.

Proof. Indeed, if the above set H is dense in Y then f(4) = ¥ because f is
now a closed mapping. But evidently 4 = =7 !(B) = =y *(B)andso ¥ = (fo ny )}(B).
Surely w(B)<w(X)<Y, {w(X;); ieJ}<a (x is regular) hence by a theorem of
Arhangel’skii (see e.g. [3] Corollary 2 to Theorem 3.1.11) w(Y)<a too. E

This is a sharpening of a theorem of R. Engelking [5].

3. In this section we are investigating the local version of the issue of the preced-
ing section.

Let o> be a regular cardinality, w(X)<a (e D), X = [[{X;; iel},fi X— Y
a continuous mapping onto the T,-space Y.

Now, a typical “local problem” is the following: suppose ye ¥, x(y, ¥)=«;
cai we assert that there exists a set C, ye Cc Y, C homeomorphic with D*?

The answer to this question is in general negative; indeed if @ = w,, it is easy
to construct a T's topological space Y with | Y] = w, x(y, ¥) = w, foreachye ¥ A;
this space Y is the continuous 'image of the discrete countable space N,
w(N) = w<wo,. What is more, the answer is negative even if we assume only that
Y, Y)zo =0y

ExaMmpLE 8. The basic set of our space Y will be N“* U {p}, p ¢ N, N® is an
open subspace of ¥ and Y (p, ¥) = w;. The existence of such a space is guaranteed
by the fact that N®' is a zerodimensional non-Lindeldf space but it can also be
constructed directly. For example, a neighbourhood-base of the point p is the system

{UHp); Tewy, |T|<o}
where
Ur(p) = {ge N5 q@) # q() if 1,je T, i #j} v {p}.

Evidently Y is the continuous image of the product space N, w(lV) = o<wy,
w(y, Y) = w, for each ye Y. ‘

We assert that does not exist a set C homeomorphic with D*!, p e C= Y. Indeed,
suppose on the contrary that ¢: D® — Y is an embedding, o) = p.

Put

I = {ge D?; |{{<wy; ¢(&) = 1}[<w},

A =fE).
Evidently, A = N*!, p € 4, moreover, if B 4, | B|<w, then Bc A, Bis a compact

(® For example, take for Y a countable dense subset of D3,
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set. Now, for each & <w,, m(4) is a finite subset of N; indeed, otherwise we should
choose a countable set B A4 with m,(B) infinite and this contradicts to the fact that
ng(B) is compact in the discrete space N. Put K = [] {n:(4); {<w,}. Now A<k,
K is a compact set'in N®* hence p ¢ 4, a contradiction.

Nevertheless, the following theorem can be asserted.

THEOREM 9. Let f be a continuous function from the product space
X=T[{x;iel}

of spaces X; with w(X;)<u onto the Tp-space Y. If a>o is a regular cardinality and
ye Y with y(y, Y)>0, then there exists a set A<Y such that y ¢ 4, a(y, A)zo.

Proof. Put F = f~%(3), G = X—F. Denote by -
U= {A=G; Y(p,f(AD U {y})>a}.

Evidently G € %; moreover, if 4eW, 4= {J {4,; é<f} and f<o then there
exists a £ < with 4, e 2. Note that if 4 €2 then ye f@. Choose now a base B,
in X; with |8, <o, X;eB; (ie I). A basic open setin X is a set U= [[{U;; i & I}
with U;e®; for iel and I(U) = {iel; U, s X,} finite.

Making use of the fact that ¥ is T, and f continuous we get a cover i of G of
basic open sets such that

f(U)=Y-{y} for each Uell.

Denote by
o= {8cl; Y{V; VeB}ell}.
Evidently U e o and if

) Beo, B= {8, <p) .

and B<a then there exists a £ <f with B, e 0.
Put now

U, = {Uell; [IU)<n} (1<0).

U= U {U,; <o and o<« implies U, e ¢ for a suitable m<w, '
Let now r be the maximal integer such that there exists a set T/, |T) = r
with ' '

WT) = {Uel,; Tcl(U)}eo (O<sr<m).

Select Tol, |To| = r with U(T,) € 0. Using now (x) and that |B,| <« for £ & T, we
get a family B<U(Ty), Beo with n,(U) = B, for each UeB, e To.

If ie I-T,, then, by the maximality of r, B, = {Ue®B; ie I(U)} ¢ 0. More
generally, if J<I—T, |J|<a, then, by (%), if 8, = U {B;; ieJ}, B;é o hence
there exists a set Ue B with I(U) A J = Q. ’

This shows that we can choose a family {Us; E<a} =B with I U I(U) =0
for é<n<a.

©

iom
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Denote now by X the set of those points in X which are contained in all but
finitely many U,’s. It is very easy to see that ¥ is dense in the set

‘ N {z '(B); teTo}
hence | {U; Ue®B}=Z. This implies, of course, that if 4 = f(Z) then ye 4.
On the other hand, if P<=Z, |P|<a then there exists a {<o with P< U, hence
fP)=f(Uy). But U;e BN hence yé¢f(U so y¢~f(ﬁP). This shows that
a(y, Ayzo. WA ‘

Assuming that “almost all” factor spaces X; are compact, we get a sharper
result.

TreoreM 10. Let f be a mapping from the topological product []{X,; ieI}
of spaces with w(X;) <o onto the Ty-space Y where a>w is a regular cardinality.
Suppose that the set {iel; X; is not compact} has cardinality <o and ye ¥,
V(y, Y)=oa; then there exists a space C, homeomorphic with D*, ye Cc Y.

Proof. Suppose it does not exist such a subset for the point y € Y.

Denote by 4 = f~!(y)= X. Exactly as in the proof of Theorem 6, we can
prove that there exists a set Jc<I, |J|<a« such that 4 = =nj '(B) where Bc X.

. Bvidently we can also assume that if i € /—J then X is compact. Now A4 is a closed

set in X and so B is also a closed set in X, because 7y *(B) = 4 = 4 = n; *(B)
hence B = B.

Now w(X;}<o hence there exists a base B of X, |B|<a. For Be B, put
Fg=f(n;(B))=Y and put A = {Be B; y ¢ Fp}.

It is enough to prove that Y—{y}= U {Fs; BeWU} because then
(3} = N {Y—Fy; B} and y(y, N<|UA<|B|<e.

Let xe ¥Y~{y} and choose a point pef~!(x).

Put p' =m(p)e X;—B. The set C=n;*(p")cX is compact and so
K = f(C)c Y is compact, too, y ¢ K, x € K. Selectan open set G ¥, K@, y ¢ G.

Using the compactness of the subspace C we get a Be®B with p'e B,
7y Y{(B)cf~YG); now Ccxny(B).

So we proved x& Fye G Y—{y} hence Be2. H .

Using this theorem we can deduce a seemingly new result for dyadic compacta.
(A dyadic compactum is a Housdorffic image of a product space D)

TueoreM 11. Let R be a dyadic compactum, x e R, o> a regular cardinality;
then the following conditions are equivalent :

a) x(x, R)za,

b) there exists a set AcR with xe 4, a(x, A)>a,

¢) there exisis a subspace C<R, C homeomorphic with D", x e C.

Proof. a)—'c). This follows from Theorem 8 because in a compact space
W (x, R) = x(x, R) for each point.. ,

¢)—b). Put 4= {yeD% |[{¢<u; x({) = y(O} <a for xe D% It is very
easy to see that 4 works.

b) — a). Trivial.

3
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COROLLARY 12. Let R be a dyadic compactum, x € R; then x(x, R) = t(x, R). &

The “global” version of Corollary 12 (i.e. that for a dyadic compactum R
%(R) = t(R) holds) is a well-known fact. By & theorem of A. Arhangel’skii and
V. Ponomariov [1] #(R) = w(R) for a dyadic compactum R; moreover, if w(R) = «
and cf («) >, then there exists a point x € R and a set 4= R, such that x € 4 and
a(x, A)>a. So it is natural to guess that Theorem 11 remains true if we supposc
only that cf(#) >w. The following example is a counterexample to this conjecture;
it is a modification of a construction due to B. Efimov [2].

ExAMPLE 13. Let a>w be a singular cardinality, f = cfl () <a. Select
a sequence {ag; &<pB} with o« = sup{oy; E<f}, B<ug<o,<a for E<n<f. Put

® = {pe D% p|p =0}, ‘
P, ={peD* p(®) =1, plag—{&} =0}  (£<p),
F=0¢u | {®,; E<pl.

Now FcD” is a closed set. Indeed, if pe D* and for each &< f p(€) = 0, then
pedcF. If there is an ordinal é<f with p(&) = | and p ¢ &, then there exists
an n<da, n # & with p(n) = 1; now U = =z '(1) n n; (1) is a neighbourhood of p
and UnF=@.

Denote now by R the quotient space identifying the points of F; R is certainly
a dyadic compactum; denote by x the point ¢(F) of R where ¢ is the quotient
mapping.

IfE<plet A = {pe D% p(®) = 1, |{n<a; p() = 0} <w}. Evidently 4, @,
but if Bed,, [Bl<a; then B &, = @. This shows that in R xe As and
a(x, Ag)=a,. Specially, x(x, R)>a; for each <p hence x(x, R) = a.

On the other hand, if AcD*—F, AnF# @, let peAnF, Suppose p € &,

{<p. If Jou, is a finite set, there exists a point g€ A with p|J = gq,|J. Put

B = {q; Jeoy, J|<w}, C = m,(B)cD*,

Now, in D%, p’ = T.(p) is in the closure of the compact set C hence pecC.
This means that there exists a point ¢e B with qlag = plo, but then ge @, and
hence a(x, A)<a.<o in R.

_Quite similarly, if pe @ ~ 4 then a(p, 4)<f<a in R. Hence in R if AR,
x e A then a(x, A)<o. H
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