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Abstract. Let D be the category of distributive lattices and lattice homomorphisms, and Dg,
that of distributive lattices with universal bounds and homomorphisms preserving these bounds.

For L ¢ Dy, let PL be the Priestley dual space of L (cf. H. A, Priestley, Ordered topological
spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), pp. 507-530),
and let CI (PL) the lattice of all continuous order-preserving functions from PL into the reals
(under the pointwise order). We show that L 1— CI(PL) defines, in a natural way, a covariant
functor F: Dyyl— D. For any L € Dy, L is a regular sublattice of FL, and for L,, Ly in Dy, and fin
Hom(L,, Ls);, Ff is an extension of f which preserves injectivity or surjectivity of f.

For any space X, let C(X) be the lattice of all continuous real-valued functions defined on X.
Our main results are, 1) FL is conditionally complete iff L is such. This generalizes a result of
Stone stating that a Boolean algebra B with dual space X is complete iff C(X) is conditionally
complete, (cf. M. H. Stone, Boundedness properties of function lattices, Canad. J. Math 1 (1949),
pp. 176-186). 2) FL is DuBois-Raymond separable iff L is such (L is DuBois-Raymond separable
iff gy <ay<az< .. <by<by<by, ai, bjeL implies theexistence of ceL such that @i < e<Cbj. See, e.8.,
R. C. Walker, The Stone-Cech Compactification, Springer 1974). Our result generalizes that of
Seever’s stating that a Boolean algebra B with dual space X is DuBois-Raymond separable iff
C(X) is such (cf. G. L. Seever, Measures on F-spaces, Trans. Amer. Math. Soc. 133 (1968),
pp. 267-280). Finally, we consider the question in which cases CI (PL) is a regular sublattice of
C(PL). Some open questions are sketched.

0. Tntroduction. This paper was inspired by the following result contained in
Stone’s 1949 paper [9]: Let B be a Boolean algebra and S(B) its dual space, and
consider the lattice of all continuous, real-valued functions defined on S(B) with
the pointwise order, which we denote by C(S(B)). Then C(S(B)) is conditionalty
complete if and only if so is B. There is a certain lack of symmetry in this situation:
One starts with a Boolean algebra and ends up with a distributive lattice. Using the
duality theory for distributive lattices as developed by H. Priestley in [6] and [7].
we are able to show that Stone’s theorem holds — in an (almost) symmetric form —
in a much wider setting: Instead of a Boolean algebra, we may take an arbitrary
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distributive lattice with universal bounds as our starting point. In fact, we show that
the map F sending any such lattice to the lattice of all order-preserving continuous
real-valued functions on its (Priestley) dual space is functorial, and we derive some of
the basic properties of this functor.

In more detail, the paper is organized as follows: Section 1 establishes the no-
tation and terminology, which roughly follows Balbes-Dwinger [1]for lattice-theoretic
and Kelley [3] for topological concepts. Section 2 contains the basic facts from
Priestley duality theory, expressed in a purely topological way. The key fact is that
every distributive lattice having universal bounds is isomorphic to the lattice of all
clopen increasing subsets of a uniquely determined compact totally order discon-
nected ordered space. In Section 3, we consider the map F defined above, establish
its functorial properties and give an intrinsic description of a real-valued continuous
order-preserving function on a Priestley space. Section 4 is devoted to the proof of
the theorem mentioned in the first paragraph: L is conditionally complete iff o is
F(L). Section 5 deals with the following concept: A poset is called Dubois—Reymond
separable iff whenever a strictly decreasing sequence sits on top of a strictly increasing
one, then the two sequences are separated by at.least one element of the poset.
Seever [8] proved that a Boolean algebra B is DuBois-Reymond separable iff
C(S(B) is. We show that this is still valid when B is replaced by an arbitrary dis-
tributive lattice L with universal bounds and C(S(B))by F(L). We should like to point
out that Stone’s as well as Seever’s result easily follow from our theorems by
restricting the order relations of the representation spaces under consideration to the
trivial ones. Finally, Section 6 deals with the question under what conditions the
lattice of order-preserving continuous real-valued functions on a dual space is a reg-
ular sublattice of the lattice of all continuous real-valued functions. Some oper{
problems are mentioned in Sections 5 and 6.

The author wishes to thank Dr. F. Dashiell of the California Institute of
Techriology for a helpful discussion on DuBois—-Reymond separability and for the
reference to Seever’s paper [8].

1. Preliminaries. Unless. otherwise mentioned, L (sometimes with subscripts)
always signifies a distributive lattice with a greatest and a smallest element. Dy de-
notes the category of all such lattices together with lattice homomorphisms preserving
zeros and units, while D is the category of all distributive lattices and lattice homo-
morphisms. .

An ordered space is triple (X, ¢, <) consisting of a set X, a topology © on X
(identified with the set of all -open subsets of X) and a (partial) order relation <
on X. A subset A< X is called increasing or an upper end iff x € A, yeXand x<y
together imply ye 4. Decreasing subsets or lower ends are defined dually. Note
that A< X is increasing iff X\4 is decreasing. A function J between ordered spaces
is called increasing ot order-preserving iff x <y implies fx < fyfor all x, y in the domain
of f (decreasing or order-reversing iff fx >y holds for all X, ¥ with x< ). We denote
by U(X) the collection of all open increasing and by L(X) that of all open decreasing
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subsets of X = (X, 7, <), writing simply U and L if no confusion is likely to arise.

.U and L obviously define topologies on X — coarser than 7 — which we call the

upper and lower fopologies of X, respectively. For A< X, cld4, U-cl4 and L-cl4
denote the closure of 4 with respect to 7, the upper and the lower topology on X,
respectively, and similarly for other topological operations. Note that for any 4< X,
L-clA is the smallest closed upper end containing 4, and dually U-cl4 the smallest
closed lower end over A. Similarly for L-int4 and for U-int4. An ordered space
is totally order disconnected iff for every two elements such that not x<y there exist
a clopen upper end J and a clopen lower end D satisfying J n D = &, xeJ and
ye D. We let CU and CL stand for the sets of all clopen members of U and L,
respectively. We denote by TOD the category of all compact totally order-discon-
nected ordered spaces together with continuous order-preserving maps. The following
lemma summarizes some of the properties of the spaces in TOD.

LemMA 1. Let X e TOD. Then:
(i) CU and CL are open bases for U and L, respectively.
(i) If F X is closed, the smallest upper and lower ends containing F are closed.
(iii) Let Fl,’ F, be closed, disjoint, Fy increasing and F, decreasing. Then there
exist disjoint sets Uy e U, U,eL such that F,.cU, and F,<U,.
Proofs may be found in Priestley [5], [6] or in Nachbin [4]. Finally, R always
stands for the set of real numbers.‘

2. Priestley duality. The representation theory for distributive lattices as devel-
oped in Priestley [6], [7] may be phrased — to the extent we are going to use it —
as follows: .

THEOREM 2. Dy, is isomorphic with the dual ¢of TOD.

The underlying contravariant functor -P: Doy — TOD may be described as
follows: Any L e Dy, is (lattice-) isomorphic with the lattice of all clopen upper ends
of a uniquely determined space PLe TOD, in short, L =~ CU(PL). For
feHom(L,, L,), Pfe Hom(PL,, PL;) may be given by .

(*)  Pf(xy) = ) {Ce CUPLY, x,ef'CANU {Ce CU(PL,), x,&f'C}
for all x, e PL,

where f': C U(15L1) —» CU(PL,) is the lattice homomorphism induced by f and the
isomorphisms L, & CU(PL) (i=1,2). .
This description is a topological version of that given in [6] or [7]. As an 11;
Tustration, we show in detail that Pf is indeed well-defined; Let Ci_ (1 <*i<n), C;
(1<j<m) belong to CU(PLy) such that x, ef'C; and x, ef'Cj. ) He?ce
C=Cn..nC and C*=Ctfu..u Cy, belong to CU(PLy) and, f* being
a lattice homomorphism, x, €f’C and x, gf'C*. This implies C\C* # @, for
otherwise C<C*, whence f/CSf'C* and x, ef'C*, a contradiction. Let R be
the right-hand side of (+). So R has the finite intersection property and, c'onsequently,
is nonempty, since PL, is compact. It remains to show that R is a singleton. Let
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¥, z€ R and not y<z By total order disconnectedness, there exists Cy € CU(PL,)
such that ye Cy, z€ Cy. Now if x, €f'Cgy, then Co2R and hence ze C,. If
%, €f'Co, Co N R = @ and hence y € C,. These contradictions show that (not y<z)
is not possible, whence by symmetry y = z. B :
It is easy to show that Pf'is.continuous and order-preserving. Moreover, if /' is
one-to-one (onto), then Pf is onto (one-to-one), see (7). v
THEOREM 3. L is complete iff in PL the following condition holds: For all U e U,
L-clUe U, and for oll LeL, U-clLe L. ‘ '
" Proof ([7], p. 521). This condition is called extremal order disconnectedness. Bl

3. Lattices of continuous increasing real-valued functions. For any ordered
space X, the set CI(X) of all continuous increasing real-valued functions on X is
a distributive Jattice under the pointwise order. Obviously, CI(X) is a sublattice of
the Jattice C(X) of all continuous real-valued functions on X. However, CI(X)

is not a subring of the ring C(X), since the difference of two increasing functions need

not be increasing. .

Let Xy, X, TOD and he Hom(X,, X;). Define CI(h): CI(X,) — CI(X,)
by CI(h)(f) := fe h for any fe CI(Xy). Being the composition of two continuous
increasing mappings, this clearly defines a member of CI(X,).

LemmMa 4. CI is a contravariant functor from TOD to D. If ki is one-to-one, CI(h)
is onto, and if h is onto, CI(h) is one-to-one.

Proof. The first part is immediate. So let e Hom(X,, X;) be one-to-one, and
consider an arbitrary function g € CI(X,). We have to construct fe CI(X,) such
that g = fo h. Since / is one-to-one, X, is a closed homeomorphic copy of X,
contained in X;. Consequently, goh™*: hX, — R is continuous and increasing.
By the Nachbin-Tietze extension theorem (see Nachbin [4], p. 48, or Priestley [5]),
there exists f'e CI(X;) extending g o 2~*. Cleatly, foh = g, so CI(h) is onto.

Now let 2 e Hom(X,, X;) be onto, and consider £, f' € CI(X;), /5 f'. Hence

there is an x; € X, such that fx; # f'x,. & being onto, we may find x, € X, such '

that  x; = hx,” Thus  CI() (f) (k) = (fe B) (x5) = fxy # F'xy = (f'B) (xz)
= CI(h) (f) (x2). ‘So CI(h) (f) # CI(W) (f) and CI(h) is one-to-one. M

For the rest of the ‘paper, we shall be concerned with the properties of the
composite functor F: Dgy — D defined by F = CIo P. The next theorem sums up
some of the basic properties of F:

THEOREM 5. (i) F is covariant functor from Dy to D.

(i) For any L e Dy, L is a sublattice of FL: moreover, the embedding L~ FL
is regular.

Let fe Hom(Ly, L,). Then:
(iii) If f is one-to-one (onto), then Ff is one-to-one (onto).
(iv) Ff is an extension of f.

(i) and (iii) are clear from the preceding discussion. Proofs for (i) and (iv) are
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based on the following two lemmata, which describe the members of CI(X)

(X e TOD) intrinsically in purely topological terms.

For any real-valued function f on a space X and for aeR, define

Py(e) = pos(f—d) = {x e X; fx>a}. We have the following .

Lemya 6. Let X TOD and DR be dense. Assume {W,; Ae D} is a family
of open upper ends of X such that

W N wW,=0,

@ UW,= X,

(i) Ay, Ay € D, Ay <Ay imply Wy, 2clW),. ‘ .

Then f: X — R defined by fx = sup{Ae D, x¢€ W,} is continuous and increasing.
If additionally

i) W, = U {W,: u>2} for all L& D, '
then W, = P;(J) and (iil) holds in the stronger form Ay, Ay €D, Ay <l imply

oL-clW,,.
T Convers:l;, if g2 X — R is continuous and increasing, the family {Py1), A€ D}
has the properties ()—(v). . )

Proof. Assume {W,, Ae D} has the properties (-(ii). (i) and (ii) guarantee
that f is well-defined. o 1

1) f is increasing: Let x,y€ Y, x<y and fx = o. This implies x € W, for al
Ae D, A<ao. Since the sets W, are increasing, y € W, for all Ae D, A<a, and so

Zo = X,

Pz 2) ff is continuous: Consider ‘the open interval (g, —)ER. [~ l(i , ——?
= {xeX;sup{ieD,xe€ W)>g}={xeX;xe W, for some A== U ?{W:',ll. >ﬁ;
is open as the union of open sets. Similarly for the closed interval [g, —): {V ' 5?, }
={xe X;sup{Aie D;xe W;}=o} = {xeX;xe W,_foralllig} =N{ 3 h<g .
Now if A<g, choose A’ e D such that A< <g; ‘fhen by!(m) W,2clW, ,t ené:e
N {Wy A<e} = ) {clW,; A<g}, closed as an intersection of closed‘ ;es.(_ )o
fY(—, @) is open and f is continuous. Assume now that {W,} also satisfies (iv).
Then: .

3) W, = P;(): Let Ae D and x e Py(1). Hence fx ;:fx>k andhxe T/V,‘I;or
all p<a, especially, x € Wj. Conversely, if xe W, = U {W,; u>A}, then xe W,
for some u'>J, that is, fxzu >A and x e Py(A). .

4) Assume Ay <A, Since W), = Py(2) for all Le D, we infer that

Wi = Prd)2f Byt A2), =) =: 02Ps(h) = Wi, -

f is continuous and increasing, so Q is closed and increasing, whence
Q=L-clW,, and W,,2L-clW,,. ) .
As for 1he converse, it is easy to check that for any g € CI(X), {P,2); »e D}
satisfies ()~(iv). W . |
In view of Lemma 6 we may identify members of CI(X) with systems of sets
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{W} satisfying ({)}~(iv) above. The next (obvious) lemma characterizes the order
relation on CI(X) in the same terms: ’

Lemma 7. Let f, g € CI(X). Then fzg iff P{A)2P,J) for all Ae D, where D is
any dense subset of R.

Proof of Theorem 5. (ii) Identify L with CU(PL) =: CU, let Ce CU and
define a family of sets {Wy; o e R} by the following:

(4] for w>1,
W =1{C for 1>u>0,
PL  for O>a..

By Lemma 6, {W,} defines a function in CI(PL), and it is easy to see that the rule
C— {WJ; ae R} defines a lattice embedding J: L = CU(PLy— CI(PL).

It remains to prove that j is regular. Let {C;; ieI}=CU, and assume
Co = sup{C;} in CU for some Cye CU. This implies C, = L-cl U Ci:

Clearly, Co= U C; and hence C,2L-cl |J C; since C,, is closed and increasing,.
By Lemma 1(i), L-cl U C; = N{C,; C,e CUand C,2L-cl UC}Buwt G2 U
for each such C, whence C,2C, and L-cl | C;2C,, thus proving our claim.

Assume now that {P,(a); «e R} represents a function g e CI(PL) majorizing
JCi = {WEi; e R} for all i€ I. This implies, for any a <1, that P,(#) = C;. Fix o and
choose o' such that a<oa'<1. By Lemma 6, Py)2L-clP(a)2P, )= U C,.
Hence Cy = L-cl |J C;cL-clP,(a") EP () and by Lemma 7 g is seen to be greater
than or equal to jCo. In other words, j preserves the existing suprema. A dual proof
works for infima, so (i) is proved.

(iv) Letf: CU(PL,)— CU(PL,) be a lattice homomorphism. We have to show
that Ff(jC) = j(fC) for any member C of CU(PL,), where we denote by j both
of the canonical embeddings CU(PL,) into CI (PL;) (defined as in the proof of (it)).

If h: PL, — PL, is continuous and increasing, CI(%) sends any g e CI(PL)
to goh; in other words, {P,(x); ae R} is sent to {h~P(0); ae R}. Now let
Ce CU(PL,) and assume h = Pf. Then A~ 1C = JC, as easily follows from the de-
scription of Pf given in Section 2. Now for Ce CU(PLy), jC = {WE; € R}, and
by the definition of j, WSe CU(PL,) for every « e R. Putting everything together,
we see that {W¢; « € R} is sent to {fWS; ae R} by Ff, and the latter family of sets
obviously coincides with j(fC) by the definition of J. This completes the proof of
Theorem 5. &

From this point on, we forget about the functorial nature of F and restrict
ourselves to the study of some of the properties of the object map defined by F.
Any L e Doy will be freely identified with CU(PL), and similarly functions in CI(PL)
with their corresponding set families as described by Lémma. 6.

4. Completeness.”lln this section, we prove the following theorem which general-
izes the classical result of Stone in [9]:

THEOREM 8. FL is conditionally complete if and only if so is L.

©
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Proof. Of course, conditional completeness coincides with completeness in L,
L having universal bounds. :

I If part. Assume Lis complete. Consider functions f; (ie I), f, € FL such
that ;< f, for all ie L. We write Py(x) instead of P, (o) (« € R), and identify f; with
{Pf0); « € R}. It has to be shown that {f;} has a supremum in FL. Define

0@ := UP() @eD and R@):= U{L-cIQ®); p>a}

for any o e R.

1) R(x) is an open upper end. R(x) is obviously increasing as a union of increas-
ing sets. Moreover, L-clQ(f) is open since L is complete (Theorem 3), so R(2) is
open. '

2) N {R(e); we R} = @. It is easy to see that

N{R(@); aeR} =) {L-c10(x); € R} .
Assume oy <a,. Then
Po(ay)2{xe X; fox=d(e+uy)} =: M2Py(a)20(%) ,
applying Lemma 6 and the definition of Q(x). Hence L-cl Q(uz) 2 Po(%y), M being
closed and increasing, and so
N {L-c1Q(); aeR}=() {Py(0); xR} = @
by Lemma 6.

3) U {R(); ve R} = X. Trivial.

4 R(@ = U {R(P); B>a}. Let xe R(w), then xeL-cl@(B) for some f>u.
Choose B’ such that B> ' >a«; then x € R(f"). Hence R(@)<= U {R(B); p>o}. The
reverse inclusion is trivial.

5) &y <oty implies R(og)2clR(xy). Observe first that R(e)<L-clQ(w) for all
oweR (if xe R(x), xeL-clQ(B) for some f>o and so x e L-clQ(x) since a<p
implies Q)= Q(f)). Now

clR(oz) SclL-cl Q(ery) = L-clQa) S U {L-c1Q(B); B>y} = R(ey) -

By Lemma 6, the function g: X — R defined by gx := sup{ue R; x & R()}

is continuous increasing and R(x) = P (o) for all ®e R. We now prove that

g = sup{f;} in FL.
Consider Py(«) for any fixed ieJ and o€ R: By Lemma 6,

P(@) = U {PB); B>} U {QWB); B>a}
€ U{L-dQ(B); B>} = R(®) = Py().

Thus g=f; by Lemma 7.
Conversely, assume that h>f; for all iel, he FL. Hence, by Lemma 7,

P(0)<P,(o) for all iel, xeR, and so Q(@)<=Py(e) for all ¢eR. By Lemma 6,
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Py(@)2L-clPy(B) whenever f>u. Clearly, Q(B)SPy(f)<L-clPy(B). Also L-clQ(f)
SL-cdP(f)SPy(x) whenever z<f. Thus R(e) = [ {L-dQ(B); f>a}SPa)
and by Lemma 7, g<h.

is proved.

II. Only if part. ‘Assume that FL = CI(PL) is conditionally complete. Let
V<PL be any open increasing set. In view of Theorem 3, it suffices to show that
L-clV is open (the dual argument will take care of U-clM for any open decreasing
subset M= PL). By Lemma 1, ¥V = |J {C, e CU(PL); C,SV}. Let x, be the charac-
teristic functions of the C,. Clearly, x;, e FL and 0<y,<1. Hence g = sup {y,}

- exists in FL. g = 1 on V; moreover g~ (1) is closed and increasing, whence g=1

on L-clV. Again by Lemma 1, L-cl¥ = () {C,e CU(PL); L-clVc C,}. Consider
a point x, not in L-cl¥. There exists, consequently, C, € CU such that x, & Cy
and C,2L-cl V. Denote by y, the characteristic function of Cy. x, = 1 on L-clV;
hence y,=>y, for all 1, and so y,=g = sup{x;}. But yo(xo) = 0, thus gx, = 0.
But x, was arbitrary in PLNL-clV, so we have g = 1 on L-cl¥ and g=0on
PINL-clV. Hence L-clV = g~*(}, —) is open as a preimage of an open set under
a continuous function. This completes the proof of Theorem 8. H

5. DuBois—Reymond separability. A Boolean algebra is said to be DuBois—
Reymond separable iff 41 <, <a3<...<b3 <by<by (a;, b; elements of the algebra)
implies the existence of an element ¢ in the algebra satisfying

;<0 <a3<..<c<...<by<b,<b, .

See Walker [10] for motivation and related topics. Of course, this definition makes
sense in any partially ordered set. The following theorem generalizes a key part of
Seever’s paper [8]. ‘

THEOREM 9. FL is Dubois-Reymond separable if and only if so is L.

The proof falls into three parts. First, we need the concept of a Q-space. This
is obtained by modifying one of the several definitions of an F- space in the setting
of ordered spaces. More precisely, we have ‘

DerniTION. Let X be any ordered space. We call X a Q-space provided the
following condition is satisfied in X:
- Let U, V be open and disjoint,
U= U{K:, iew and K; closed decreasing} , .
V= U{M;, jew and M; closed increasing} .
Then there exist F, G closed disjoint, F decreasing, G increasing such that USF
and V<G
We will prove:

A) If L — equivalently, CU(PL) — is DuBois-Reymond separable, then PL
is a Q-space, :

icm

Meet completeness of FL is established by the dual argument, so that if part

©
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B) if PL is a Q-space, then :FL = CI(PL) is DuBois-Reymond separable and

C) FL DuBois-Reymond separable implies the same for L. ‘

A) Assume CU(PL) is DuBois-Reymond separable. By a prime ' we will mark
set complements with respect to PL. Let U, ¥ be given as in the definition of
a Q-space. Consider any pair K;, M;. Applying Lemma 1 and ‘the compactness
of PL, we may find C;e CL(PL), D;e CU(PL) such that K,=C;, M;=D;,
C;nclV =@, DynclU=@. Put Cf = C\D;, D} = DNC;-Cf, D} have the
properties just mentioned for C;, D;; additionally, they are disjoint. This gets the
induction started. Assume now that we have constructed, for 1<k<n, sets Cy € CL,
DfeCU such that Cps=Crry, DicDi,, (for k<n-1), CinDj=0,
C¥ndV=@, DindU=@, K;uU..uKcCr, Myu..uMcD;. There
exist Ce CL, DeCU suchthat CnclV=@, DnclU=@, C2K; v ..UK,;i,
DoM; U..u M. Put ’

Crvy = Cru(C\(D U DY), Dl = Dyu(DNCUC).
C*.., D, have the required properties. Moreover,
Dicpichic..ceCicCycCy,
so we may find, CU' being DuBois—Reymond separable, D e CU such that
DicDicDic..ceDc..csCy=CyeCy. ‘

Obviously, V<D and U= D', so PL is a Q-space.

B) Let X e TOD, X a Q-space. We introduce the following notation: If 4, B are
upper ends in X, we write 4 < B iff L-cl A< U-intB. To establish DuBois-Reymond
separability, we imitate Seever’s proof ([8], pp. 269-270). This adaptation rests on
the following :

LemMa 10. Let X e TOD and A, B= X, A<LB. Then there exists We U(X),
W=\ {F;; icw and F; e L(X)} such that AKW<B.

Proof. Let G = L-cld, U = U-intB, F = U’. As in the proof of 4), we may
find Ce CL(X), De CU(X) such that Cn D = &, F=C, G D. Denote by xc¢
(xp» resp.) the characteristic function of C (D, resp.). It is not hard to see that
=3 —xc+yp)eCI(X), f=1on G and f=0 on F. Let W= Py(})e U(X),
and let DSR be any countable dense subset. Then P (3) = U {f ~a,—); e D
and a>4}; hence numbering {s« e D, o>%} in some suitable way, we may put
F; = f~[a;, ~). Obviously, the F; are closed upper ends. Moreover, .AEG _C_ W
cf L, ) =: Mc U= B. Gand M are closed increasing, Wand U open increasing,
$0 L-clAS U-intW = W and L-clWgU = U-intB. This completes the proof of
Lemma 10. )

Returning to the proof of B), assume that f,, g,e CI(X) satisfy
9,159,593 <...<f3 < f,<fi. Moreover, we may assume that 0<g,x<fix<1
for all x e X. Let D be the set of dyadic rationals, Define U() = U {P, (0); me o},
V(€) = {xe X; f,x<oa for some new} (xe D). Since P, ()= U{ga"18,—);
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p e Dand f>a}, U(x) is open and a countable union of closed upper ends. Similarly,
¥ () is.open and a countable union of closed lower ends. Moreover, U(x) n V(x) =
X being a Q-space, we find F closed decreasing, and G closed increasing such that
V(@<SF, U@@<G and Fn G = &. Accordingly, U(@)SG<F' SV (x), whence
U(x)< V(«)'. With the aid of Lemma 10, it is now possible to construct a family
{W(); ae D} of open upper ends satisfying

1) Ul)<W()<V(x) for all ae D,

2) W(x)< W () whenever o, f € D and o> ,B,

N N{We; eeD} =@, U{W(@); ae D} =
in exactly the same way as outlined in Seever {8], pp. 269-—270 The famﬂy of sets
{W(x)} produces by Lemma 6 a function fe CI(X) such that

9159:<g:<.. S fSL i< fr;
so X is DuBois-Reymond separable.  *

C) Let FL be DuBois-Reymond separable and assume C;, D;e CU(PL) are
given such that C;=C,=C3<...€ D3 D, < D,. Denote by ¢, the characteristic
functions of C;, and by y; those of D;. Then ¢;, ;€ CI(PL) and

PP KO3 SY <Y, <Y, .

Accordingly, there exists f'e CI(PL) separating the two sequenccs. Put F = f~1(1),
G f 10). Then C, =C,=Cys...cFcG'c...e D, D, = D,. Applying Leroma 1,

= U{C,eCU; ¢,=G'}. Fis compact, hence FCC V.UC, =:Ceq,
Co € CU. Hence finally C;cC,=Cyc..cCoE...S Dy D2 Dl, and Theorem 9
is proved H. .

Q-spaces are the natural generalization to ordered spaces of one of .the several
equivalent characterizations of F-spaces, see [2]. It would be interesting to examine
whether there are, correspondingly, equivalent descriptions of Q-spaces, especially
- one related to the definition of an F-space as a space whose ring of continuous real-
valued functions has the property that every finitely generated ideal is principal.

Another problem remaining open is the generalization of Theorem 9 to cardi-
nality-dependent versions of DuBois-Reymond separability: Say that L has property
I(m) — m any infinite cardinal — iff {a,}, {b,} are two subsets of L of cardinalities
strictly less than m, {a,} directed upwards and {b,} directed downwards, and a,<b,
for each pair (4, u), then there exists ¢ € L such that a, < c<b, for all 4, u. Of course,

DuBois-Reymond separability is equivalent to I(xg) for any lattice. Question: Is
'Lk I(m) <> FLF I(m) true for any m?

6. CI(X) vs. C(X). As mentioned in Section 2, CI(X) is a sublattice of C(X)
for any ordered space X. In general, the corresponding embedding need not be
regular, that is, the sup of a collection { f;; ie I} = CI(X) taken within C(X) may
be strictly smaller than that taken within C7(X), provided that both suprema exist,
and similarly for infima. Two questions arise naturally: 1) For which ordered spaces X
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is CI(X) a regular sublattice of C(X) and 2) what conditions on L ensure that PL
has this property? The two theorems in this section provide partial answers.
First, we recall that an ordered space X is an I-space (see Priestley [7]) provided
that for each open V< X the smallest upper end and the smallest lower end contain-
ing ¥ are open sets themselves. The next lemma provides an alternative formulation.
LeMMA 11. X is an I-space iff 1A is increasing for every increasing A< X and
clB is decreasing for every decreasing B X. H
Proof. One half is essentially contained in the proof of Lemma 2(ii) in [7],

‘the other half is taken care of by the dual argument.

THEOREM 12. Let X be a compact I-space. Then C’I(X ) is a regular sublattice
of C(X).
Proof. Let fe C(X) and define
ff: X—>R by frx=inf{fy; y=x},

fTiX—>R by fx=sup{fy; y<x}.

. Evidently, f* is increasing and f¥ < f, f~ is increasing: and f<f~. We claim that

the followmg statements hold for any a € R:
® (f” o, =) =

@) (fF) o] =

(i) (f7) o, =) =

(i) (f7) (=0l

Ad (). Clearly, (f*)~[x, —) is increasing and contained in /'~ *[x, —). Now
let Scf™![e, —), S increasing, and consider x, € S. For all ye X, y2x, implies
fy=a, since ye S=f[a, —). Hence inf{/fy; y>x0}>ac, ‘that is, f+x0>oc and
xo € (fF)7 o, =)

Ad (D). xe(fT) (e, o] & fTx<a < (AY)E<y & fy<a) < x<y  for
some yef ™ (+, a].

(iii) and (iv) are proved similarly. The point now is that the sets described
in (i)-(iv) are all closed under our assumptions: For (i), cl(f )~ !a, —) is increasing
by Lemma 11 and contained in f~ e, —), hence cl (f+) "o, =) = (f7) " u, —).
For (ii) and (iii) observe that, by Lemma 1 of [7], X is a so-~ -called compact ordered
space in the sense of Nachbin [4], whence ([7], pp. 508-509) it follows that the upper
and the lower end spanned by a closed set are closed themselves. For (iv), use the
other half of Lemma 11. Summing up, our assumptions imply that £ and f~ are
continuous. ‘

Now let {f; ieT}SCI(X) and assume f, € CI(X) is the sup of {fi} taken
within CI(X), g€ C(X ) the corresponding sup taken within C(X). Consequenﬂy,
g<f, Consider g*4 g™ is continuous, increasing and g*<g. Moreover, g* =f;
for all iel: Otherwise, there exist xo € X and je I such that fixe>g xo#% g7 %o
= inf{gy; y>xo}, so there exists yo>xo such that gy, < f;Xo. But f; ¢ =1%o, hence
SiYo>gyo, contradicting g = sup{ fi} in C(X).

largest upper end contained in f~'[«, —>),

smallest lower end containing f~*(+, «];

smallest upper end containing f~ oo, —=);
= largest lower end contained in f~*(«, a].
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Accordingly, g* >f, 2g>g7, thatis, g = g* = f,. Dually for infima, so CI(X)
is a regular sublattice of C(X). M o :

We recall from [7] that the minimal Boolean extension B(L) of any L & Dy,
may be obtained from PL by “forgetting the order”: more precisely, B(L) is iso-
morphic to the algebra of all clopen subsets of PL. Minimal Boolean extensions are
connected with the second question raised above in the following way:

‘THEOREM 13. If the embedding of L into its minimal Boolean extension B(L) is
regular, then CI(PL) is a regular sublattice of C(PL).

" Proof. The assamption is equivalent to PL being an I-space, see Proposition 17
of [7]. &

Theorems 12 and 13 are not fully satisfactory since they provide only sufficient
conditions. The problem of giving exact characterizations of the spaces and lattices
in question remains open.

We conclude by remarking that it is possible to generalize our key theorems
(8 and 9) to the case where L lacks universal bounds. One would then consider the
lattices- CI(P(Loy)), where Ly, is obtained from L by adjoining a zero and a unit
regardless of the fact that L already may — but need not — have such elements.
Much of the theory developed would remain valid, but we feel that the generality
gained by such a procedure does not compensate the required technical clumsiness.
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On CE-images of the Hilbert cube
and characterization of Q-manifolds

H. Torufczyk (Warszawa)

ABstract. It is shown that a locally compact ANR, X, admitting arbitrarily small (i.e. clcs.e
to idy) maps f, g: X—X with f(X) n g(X) = @ is a Q-manifold. This is applied to show that if

" 4 is a semicontinuous decomposition of Q such that each A4 e o has trivial shape then Q/# =~ Q

(resp. Q/# %[0, 1122 Q) provided Q/# ¢ AR and the union of non-degenerate elements of A is
contained in a countable union of Z-sets in Q (resp. in a countable union of finite-dimensional

compacta). A short proof of the Curtis-Schori hyperspace theorem is included in the Appendix.

In 1975, R. D. Edwards established the following profound result (see [11]
and [8], § 43):

EDWARDS THEOREM. If M is a manifold modelled on the Hilbert cube Q and
7: M— X is a proper CE-map of M onto a locally compact ANR, then

wxidy: MxQ— Xx Q

is a limit of homeomorphisms and, in particular, X x Q is a Q-manifold. ‘

However, it is of interest to know under what additional conditions on = the
space X is itself a @-manifold. Specifically, for the case M = 0, the following prob-
lems were posed in [1]:

(a) Suppose that the union S(%) of non-degenerate point inverses of = is con-
tained in a countable union of Z-sets. Is then X' = @ *?

(b) Under what conditions on 7 is Xx[0,1] = Q7

Tn connection with (a) it follows from a theorem of J. E. West that X' = @
if §(m) is contained in a single Z-set of Q; see [19]and [8], § 42. In kconncction with (b)
it was shown by J. L. Bryant and by T.A. Chapman that Xx [0, 1] = @ and
Xx X = Q if = has only one non-degenerate point inverse .4 which is an arc. This
was subsequently generalized by Z. Cerin [9] to the case 4 = [0, 11", h<co. In [1] it
is mentioned that R. D. Edwards has proved that Q/4 x [0, 1] = @ for any finite-
dimerisional compactum 4 in Q of trivial shape (unpublished).

In this note we solve (a) in affirmative and we also show that if S(x) is a countable
union of finite-dimensional compacta, then Xx[0,1] = O (see §4). In fact we

(1) We write X 22 ¥ to denote that X and Y are homeomorphic.
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