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Abstract. Let X be a paracompact o-space where each closed set has a closure-preserving
quasi-neighborhood base and an anti-closure-preserving quasi-neighborhood base. Then dim X
= Ind X. 7

0. Introduction. In this paper all spaces are assumed to be Hausdorff topological
spaces, maps to be continuous onto, and images to be those under maps. The closed
image of a metric space is shortly said to be a Lasnev space in this paper (cf. [4],
or [5]). The aim of this paper is to introduce a concept of L-spaces and to prove,
for each L-space X, the equality dim X = Ind X, where dim X denotes the covering
dimension of X and Ind X the large inductive dimension of X. Since the class of
L-spaces is, as is shown below, an intermediate class between that of Lasnev spaces
and that of M,-spaces due to Ceder [2], then the equality generalizes the cor-
responding equality for La$nev spaces which was established by Leibo [6], Theorem 1.
Restricting the class of L-spaces, we get the class of D-spaces where even the de-
composition theorem is valid. The concept of D-spaces stems from Dugundji’s
canonical covers [3] which have been considered in connection only with extendability
of maps. The concept happens to be effective to dimension theory quite unexpectedly.
As for undefined terminology refer to Nagami [8] and Kodama-Nagami [4].

1. L-spaces.

1.1. DEFINITION, Let X be a space and F a closed set of X. A subset of X is
said to be.a neighborhood of F if its interior contains F. Let % = {U,: we 4} be
a collection of neighborhoods of F. % is said to be a quasi-neighborhood base of F if
for each neighborhood U of F contains some U,. If moreover each U, is open, then %
is said to be a neighborhood base of F. If {X~U,: a e A} is closure-preserving in
X—F, then % is said to be anti-closure-preserving. If % is closure-preserving as well
as anti-closure-preserving, then % is said to be closure-preserving ‘in both sides. An
open cover of X— F is said to be an anti-cover of F. An anti-cover ¥ is said to be
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approaching (to F in X) if for each neighborhood U of F, CI(¥(X—U)) does not
meet F, where 7 (X—U) denotes the star of X—U with respect to 7.

1.2. DErFINITION. A space X is said to be an L-space if it is a paracompact
o-space satisfying the following two conditions.

(1) Each closed set has a closure-preserving quasi-neighborhood base.

(2) Each closed set has an anti-closure-preserving quasi-neighborhood base.

1.3. THEOREM. For a paracompact o-space X the following three conditions are
equivalent,

(1) X is an L-space.

(2) Each closed set F of X has a neighborhood base which is closure-preserving
in both sides.

(3) Each closed set F of X has an approaching anti-cover.

Proof. (1)=(3): Let % be a closure-preserving quasi-neighborhood base of F

and ¥ be an anti-closure-preserving quasi-neighborhood base of F. For each point x
of X—F set

W) = X—(U{0: x¢ U, Uex})u (U {X=V: x¢ X=V, Ver)).
Then W(x) is an open neighborhood of x with W(x) N F = &. Set
W = {W(x): xe X~F}.

To prove that %" is approaching to F let W be an arbitrary neighborhood of F.
Let Qian element of ¥~ ﬂ WoX—X~-V. Let U be an clement of % with
X—X-VoU. Ifxe X—(X—V U F), then W(¥)c X—X— V and W(x) n (X-W)
= @. Thus the inequality W(y) n (X—W) # @, ye X~ F, implies y e X—V and
hence W() n U = @. Therefore # (X—W)n U =@, which implies that
W(X—W)nIntU = @. Since IntUoF and Cl(# (X~ W)) n IntU = &, then
Cl#(X—W))nF=@.

(3)—(2): Let # be an approaching anti-cover of F. Since X is hereditarily
paracompact, #” is refined by an open cover % = {U,: o & A} of X—F which is
locally finite in X—F. % is again approaching to £, Let A be the collection of all
subsets B of A suc1'1 that ¥y = (U {U,: «e B}) u F are open neighborhoods of F,
Tgen {Vg: Bed}isa neighborhood base of F which is closure-preserving in both
sides.

The implication (2)—(1) is evident and the proof is finished,

1.4. THEOREM. The closed image of an L-space is an L-space.

Proof. Let f: X— Y be a closed map, X and L-space, and F a closed set
of ¥. Let _{ U,: ¢ A} be a closure-preserving quasi-neighborhood base of 1R
Then {f(U,): ae A} is a closure-preserving quasi-nejghborhood base 0‘[" F. Let
{Vi: de ) be an anti-closure-preserving quasi-neighborhood base of FoUR).

Then {Y—f(X~¥,): e A} is an anti-closure-preserving neighborhood base of 7.
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Y is a paracompact o-space as the closed image of a paracompact o-space. That
completes the proof.

The following is essentially proved in Lelbo [6]. We present a proof for the
reader’s convenience.

1.5. LEMMA. A metric space (X, d) is an L-space.

Proof. By the preceding theorem it suffices to prove that each closed set F
of X has an approaching anti-cover. For each point x € X—F set r(x) = d(x, F).
Let W(x) be the spherical region of radius }r(x) with the center x. Set
W= {W(x): x & X—F}. To see that #" is approaching to Flet U be an open neigh-
borhood ‘of F. Assume that W(x) n (X—U) # &. Then for each ye W(x), we
have d(y, X—U)<%r(x) and d(y, FYzd(x, F)—d(x, )>rx)—5r() = 2r().
Hence d(y, X—U)<d(y,F). Set V = {ze X: d(z, X—U)>d(z, F)}. Then V is
an open neighborhood of F and the last inequality assures that #"(X—U) n V = @.
That completes the proof.

By this lemma we get at once the following.

1.6. THEOREM. A Lasnev space is an L-space.

By Borges-Lutzer [1], Remark 2.7, a paracompact o-space in which each closed
set has a o-closure-preserving neighborhood base in an M -space. Thus the following
is a direct consequence of Theorem [.3.

1.7. THEOREM. An L-space is an M -space. )

1.8. THEOREM. A closed subset F and an open subset U of an L-space X are
L-spaces.

Proof. Let H be a relatively closed subset of F. Since H is closed in X, there
exists an anti-cover % of H which is approaching to H in X. Then #|F is cleatly
approaching to H in F. ' " -

Let {U,: @& A} be a locally finite (in U) open cover of U such that U,= U for
each o e 4. Let H be a relatively closed subset of U. Since each U, is an L-space
by the above argument, there exists a neighborhood base %, = {Upt 2e A}
of U, H in the relative space U, which is closure-preserving in both sides. Set

Vis U {Ugy,: aed}, &= (A €[] {4a: €4},
U= (Ve e[| A}
Then % is, as can easily be seen, a quasi-neighborhood base of H in U which is

closure-preserving in both sides. That completes the proof.
The author does not know whether each subset of an L-space is an  L-space.

2. Examples. e
2.1, ExaMPLE (Michael {7]). An L-space which is not a Lagnev space.

Let BN be the Stone-Cech compactification of the natural numbers N. Let p be
an arbitrary point of BN—N. Set X = N u {p}. Then X is clearly an L-space.
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Since p is not the limit point of any subsequence of N with any order, X is not
a Fréchet space and hence not a La¥nev space by Lasnev [5], Theorem 1.

2.2. ExamrLE (San-ou [10], Example 4.1). An M,-space which is not an
L-space.

Let X be the box product of countably infinite number of the rationals. Let p be
the point of X whose coordinates are 0 and 5, the subspace of XX consisting of points
all but a finite number of whose coordinates are 0. Then Z, is an M,-space by
San-ou [10], Theorem 3.1. The argument in [10], Example 4.1, shows that {r}
cannot have an approaching anti-cover.

2.3. ExaMPLE (Okuyama-Yasui [9]). The product of L-spaces which is not
an L-space.

Let N'u {p} be the space in Example 2.1 and I the unit interval. By [9],
Theorem 3, if each point of (N U {p}xI would have an approaching anti-cover,
then N U {p} should be first-countable. Thus (N U {p})x I cannot be an L-space.

2.4. Remark (T. Nogura). Let X and ¥ be non-discrete spaces. Let X' and Y be
their respective derived sets. Set #(x, X) = min{|M|: xe M- M, Me X}, Let
%(x, X) be the character of x in X. If each point of X x ¥ has an approachin g anti-
cover, then

inf{t(x, X): xe X'} = sup{i(x, X): xe X'}
= inf{y(x, X): xe X'} = sup{y(x. X): xe X"}
=inf{t(y, ¥): ye ¥’} = sup{t(», ¥): ye Y
= inf{x(y, ¥): ye ¥’} = sup{x(y, ¥): ye ¥’}

Pick points pe X’ and g € ¥. Let M be a set of X with p e M~ M. To show that
x(g, Y)<|M], let ¥V be an arbitrary open neighborhood of ¢, Let % be an approaching
anti-cover of (p, ). Since W = Xx Y—Cl(#(Xx(Y—~V))) is a neighborhood
of (p.q) and (p, g)e Mx{q}, then there exists a point xe M with x, Qe w.
Let U, be an element of % with (x, ¢) € U,. Then Uye X% V. Let V, be the ‘image
of U, under the projection of Xx Yto ¥. Then ¥, V, which shows that (Ve xeM}
forms a neighborhood base of ¢. This argument proves the essential part of the
assertion.

3 Auxiliary lemmas.

3.1. Lemma (Nagami [8], Theorem 11.12). Let X be a hereditarily paracompact
space. Let H and K be disjoint closed sets of X. If the binary cover 1X—H, X~K}
is reﬁned by a a-locally finite open cover U such that U<{X—H, X~K)} and
Ind(U—U)<n for each element U of U, then H and K can be separated by a closed
set P with IndP<n and P={) {U~U: Ue}. ‘

3.2 gI:EMMA. Let X be a paracompact ¢-space with a o-locally finite closed
network . If for each element F of & and cach open neighborhood U of F there

The equality of dimensions 243

exists an open neighborhood V of F with F= Ve U such that Ind(V—V)<n—1, then
Ind X<n.

Proof. Let H and K be disjoint closed sets of X. Set % = {X~H, X—K}
and &, = {Fe F: F<q}. For each Fe & there exists an open neighborhood
U(F) of F such that {U(F): Fe &,} is g-locally finite and refines %. For each
Fe &, let V(F) be an open neighborhood of F such that Fe V(F)< V(F)< U(F)
and Ind(V(F)~V(F))<n—1. Since #, covers X, {V(F): Fe &} covers X. Since
{U(F): Fe &} is o-locally finite, {V(F): Fe &} is also o-locally finite. Thus
the criterion of the preceding lemma is satisfied and H and X is separated by a closed
set P with IndP<n~—1. That completes the proof,

o0
3.3. LeMMA. Let X be a paracompact o-space.and F = \) & ; a closed network

i=1
with each &, discrete. Set Py = \) {F: Fe F}. Let U; = {U,: acAd;} be an
approaching anti-cover of P; which is locally finite in X—P;. Let Hy,,j=1,2, ..,

be closed sets of X with Uy, = \) Hyj. If each pair Hyjy = U, 0 € 4y, 1,7 = 1,2, ...,
j=1

admits an open set 'V, such that Hy<Vic Vg Uy, and Ind (V= Vijd<n—1,
then Ind X<n.
Proof. To apply the preceding lemma let F be an element of & and U an open

neighborhood of F. Assume Fe #,. Let &, = {F;: AeA} and F=F,. Let
{Ga: A& A} be a discrete open collection such that F,< G, for each le A and G, U.

o
Set G = | {G,: AeA}). Set ¥ = {Vij: a4} and ¥ =jL—Jl’Vj. Then ¥ is an

open cover of X—P;. Since each ¥, is locally finite in X—2;, ¥ is o-locally finite
in X—P,. In the subspace X—P; consider the relatively open cover

W = {G—P, U(X~GC)} .

Then % is refined by %, and hence so by #". Therefore Lemma 3.1 assures the exis-
tence of an open set W of X—P; such that X—GeWeW—P,cU(X—G) and
Ind((W—P;) = W)<n—1. Since %, is approaching to P;, Cl(% (X— G))c_:X’—f,. Since
WeCl(# (X ~G)), W—P; = W. Thus Ind(W—W)<n—1. Set K= (W-W)n G,.
Then K is a closed set of X with Ind K<n~1 separating F, and X— G, and hence
separating F and X— U. Thus Ind X<n by Lemma 3.2. That completes the proof.

3.4. Desmamion (Leibo [6]). A collection 7 = {(H,, K,): ae A} of disjoint
pairs of closed sets of a space X is said to defermine Ind X, if there exists a pair
(H,, K,) in & such that for each closed set P separating H,and K, Ind PzInd X—1.
Let M be a subsct of X. Then  is said to determine IndM, if 7| M determines
Ind M. : ‘

3.5. LevMaA. Let X be an L-space. Then there exists a countable collection of
disjoint pairs of closed sets of X which determines Ind of all closed subsets of X.
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]
Proof Let & = {J #,; be a closed network of X with each &, discrete, Set

i=1
P, =\ {F: Fe#,}. Let %; be an approaching anti-cover of P; which is locally
finite and o-discrete in X—P;. Let%,; = {U;;,: o€ 4;;} be an open collection which

4]

Is discrete in X—P, such that %; = (J ;. Set Uy; = U {Uy: @€ Ay} Let Hy, be

i=1

closed sets of X such that U;; = U Hip. Set T = {(Hyyr X=U):i i, j k= 1,2,..}
. k=1

Let us see that 7 determines Ind X. Set Uy, n Hyy = Hyp,, @€ Ay Since U,; is
discrete in X—P; and H,j is closed in X, then H,,, is closed in X. Set

T = {(Hipo» X=Upp): we 4,k =1,2,..}. Since Uy = U Hijr T doter-
k=1

mines Ind X" by Lemma 3.3. Thus there exists a pair (Hapepr X~ Upp) such that for
each set P separating Hy.y and X—Up,, IndP>IndX—1. Let Q be an arbitrary
set separating H,, and X'—U,,. Then Q n U, separates H,,, and X — Uqpp and
hence IndQ=Ind(Q N U,p)=IndX—1. The inequality IndQ>IndX—1 shows
that J determines Ind X.

To see that 7~ determines Ind of all closed sets of X let M be an arbitrary closed

set of X. As was noticed in Theorem 1.8 %;|M is approaching to P, n M. Consider -

the restrictions of &, &, %;, U,; and H,y, to M. Then we can know that T\ M de-
termines IndM by an argument quite analogous to the casz when M = X. That
completes the proof.

3.6. Lemma (Letbo [6]). Let X be a paracompact o-space and # a countable
collection of closed sets of X. Then there exist a metric space Y and a contraction,
Le. a one-one map, f: X — Y such that dim X=dim ¥ and f(H) is closed for each
element H of o,

3.7. Lemma (Lelbo [6]). Let X be a space and T = {(H,, K,): a e A }a collection
of disjoint pairs of closed sets determining Ind of all closed sets of X. Let f1 X~ Y
be a contraction to another space Y such that f(H)) and F (K are closed for euch
o€ A. Then Ind X<Ind Y.

Proof (by induction). It suffices to consider the case when Ind ¥ is [inite. St
Ind ¥ = n. When n =0, f(H,) and f(K,) can be separated by the empty set for
each «. Hence H, and X, can also be separated by the empty set for cach o, which
implies that Ind X<0. Thus the theorem is true for n = 0.

Put the induction hypothesis that the theorem is true for n<m—1. Assume that
n=m. Let P, be a closed set of ¥ with IndP, <m~ 1 separating f(H,) and f(K,),
Then f~*(P,) is a closed set of X separating H, and K. Set 77 = 7| f~(P,). Since
f7Y(P) is closed, I determines Ind of all closed sets of f~4(P,). Thus
Indf~Y(P)<IndP,<ni—1 by induction hypothesis. Since J~ determines Ind.,
Ind X<m. The induction is thus completed and the proof is finished.
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4. Main theorems.
4.1, THEOREM. Let X be an L-space. Then dim X = Ind X.
Proof. By Lemma 3.5 there exists a countable collection

T = {(H,,K,): i=1,2, }

of disjoint pairs of closed sets of X determining Ind of all closed sets of X. By
Lemma 3.6 thete exist a metric space Y with dimX>dimY and a contraction
fir X—Y suph that f'(H)) and f(K)) are c]osedksets of ¥Yfori=1,2,.. Then by
Lemma 3.7 IndX<IndY. Since dimY =1IndY (cf. [8], Theorem 12.6),
dimXzdimY = Ind Y2Ind X. Since dimX<IndX (cf. [8], Theorem 10.1), we
have dim X == Ind X. That completes the proof. :

Since a paracompact ¢-space with a countable network has the star-finite prop-
erty, the following is clear from the equality ind X = IndX for such a space X
(cf. 8], Corollary 11.13).

4.2, COROLLARY. Let X be an L-space with a countable nmetwork. Then
dimX = Ind X = ind X. ’

4.3, REMARK. As can be seen from the argument presented we 'do not need the
condition that all closed sets of X have approaching anti-covers. If X is merely
a paracompact o-space having a o-discrete closed network & such that each
element F of & has an approaching anti-cover, yet dim X = Ind X.

4.4. DerINITION. Let X be a space and F a closed set of X. An anti-cover %
of F is said to be uniformly approaching (to F in X) if for each open set V of X,
CUX~F) VA F=@. Xis said to be a D-space if it is a paracompact
a-space and each closed set has a uniformly approaching anti-cover.

4.5. ReMARK. The following propositions are easily verified. (1) Each D-space
is an L-space. (2) (Dugundji [3], Lemma 2.1) Each metric space is a D-gpacc.
Actually #" given in Lemma 1.5 is uniformly approaching. (3) The closed image
of a D-space is a D-space. Thus each La¥nev space is a D-space. (4) Example 2.1
isa D-space which is not a La¥nev space. (5) Each subset of a D-space is a D-space.

4.6, LumMaA. Let X be a D-space. Then there exists a countable collection of
disjoint pairs of closed sets of X which determines Ind of all subsets of X.

{ea]
Proof. Let vus continue to use the notions & = F,, P, %;:jyl%u,

Uy = U e Ayl Uy, Hip 7 Hypg (@€ Ay), which are the same as m the
proof of Lemma 3.5, except that each %, is uniformly approaching to P; in X' 11:1 the
préscnt case. Let § be an arbitrary subset of X. Then & |S is a o-discrete relatively
closed network of $ and 4| S is (uniformly) approaching to P; n § in S. Thus J7}.S
determines IndS. That completes the proof.

4.7. THEOREM. For a D-space X the following three conditions are equivalent.
(1) dim X <n. (2) Ind X<n. (3) X is the sum of sets X;, i = 0,1, ..., n, with dim X;<0
JSor each i.
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Proof (by induction). As is well known (3) implies (2) (cf. [8], p. 76). The impli-
cation (2)~(3), say (P,), is proved by induction. (P,) is clearly true. Let n>0. Put
the induction hypothesis that (P,) is true for i<n. By the preceding lemma there
exists a collection " = {(H;, K;): i = 1,2, ...} of disjoint pairs of closed sets which
determines Ind of all subsets of X. Let Q; be a closed set, with Ind Q,<n—1, se-
parating H; and K;. Set Q = {) Q;. Then Ind Q<n—1. Hence @ is the sum of sets
X, i=1,...,n, with dim X;<0. Set X, = X— Q. Then Q; n X, separates H; n X,
and K; N X,. Since Q; " X, = @ and 7 determines Ind X, then Ind X, <0 and
hence dim X,<0. That completes the proof.

4.8. PrOBLEM. Is each L-space a D-space?
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