

The equality of dimensions

by

Keiô Nagami (Matsuvama)

Dedicated to Professor A. Komatu
on his 70th birthday

Abstract. Let X be a paracompact σ -space where each closed set has a closure-preserving quasi-neighborhood base and an anti-closure-preserving quasi-neighborhood base. Then $\dim X = \operatorname{Ind} X$.

0. Introduction. In this paper all spaces are assumed to be Hausdorff topological spaces, maps to be continuous onto, and images to be those under maps. The closed image of a metric space is shortly said to be a Lašnev space in this paper (cf. [4], or [5]). The aim of this paper is to introduce a concept of L-spaces and to prove, for each L-space X, the equality $\dim X = \operatorname{Ind} X$, where $\dim X$ denotes the covering dimension of X and $\operatorname{Ind} X$ the large inductive dimension of X. Since the class of L-spaces is, as is shown below, an intermediate class between that of Lašnev spaces and that of M_1 -spaces due to Ceder [2], then the equality generalizes the corresponding equality for Lašnev spaces which was established by Leĭbo [6], Theorem 1. Restricting the class of L-spaces, we get the class of D-spaces where even the decomposition theorem is valid. The concept of D-spaces stems from Dugundji's canonical covers [3] which have been considered in connection only with extendability of maps. The concept happens to be effective to dimension theory quite unexpectedly. As for undefined terminology refer to Nagami [8] and Kodama-Nagami [4].

1. L-spaces.

1.1. DEFINITION. Let X be a space and F a closed set of X. A subset of X is said to be a neighborhood of F if its interior contains F. Let $\mathscr{U} = \{U_{\alpha}: \alpha \in A\}$ be a collection of neighborhoods of F. \mathscr{U} is said to be a quasi-neighborhood base of F if for each neighborhood U of F contains some U_{α} . If moreover each U_{α} is open, then \mathscr{U} is said to be a neighborhood base of F. If $\{X-U_{\alpha}: \alpha \in A\}$ is closure-preserving in X-F, then \mathscr{U} is said to be anti-closure-preserving. If \mathscr{U} is closure-preserving as well as anti-closure-preserving, then \mathscr{U} is said to be closure-preserving in both sides. An open cover of X-F is said to be an anti-cover of F. An anti-cover \mathscr{V} is said to be

approaching (to F in X) if for each neighborhood U of F, $Cl(\mathscr{V}(X-U))$ does not meet F, where $\mathscr{V}(X-U)$ denotes the star of X-U with respect to \mathscr{V} .

- 1.2. DEFINITION. A space X is said to be an L-space if it is a paracompact σ -space satisfying the following two conditions.
 - (1) Each closed set has a closure-preserving quasi-neighborhood base.
 - (2) Each closed set has an anti-closure-preserving quasi-neighborhood base.
- 1.3. Theorem. For a paracompact σ -space X the following three conditions are equivalent.
 - (1) X is an L-space.
- (2) Each closed set F of X has a neighborhood base which is closure-preserving in both sides.
 - (3) Each closed set F of X has an approaching anti-cover.

Proof. (1) \rightarrow (3): Let $\mathscr U$ be a closure-preserving quasi-neighborhood base of F and $\mathscr V$ be an anti-closure-preserving quasi-neighborhood base of F. For each point x of X-F set

$$W(x) = X - \left(\bigcup \left\{ \overline{U} \colon x \notin \overline{U}, \, U \in \mathcal{U} \right\} \right) \cup \left(\bigcup \left\{ \overline{X - V} \colon x \notin \overline{X - V}, \, V \in \mathcal{V} \right\} \right).$$

Then W(x) is an open neighborhood of x with $W(x) \cap F = \emptyset$. Set

$$\mathscr{W} = \{W(x) \colon x \in X - F\} .$$

To prove that \mathscr{W} is approaching to F let $\overline{\mathscr{W}}$ be an arbitrary neighborhood of F. Let V be an element of \mathscr{V} with $W\supset X-X-V$. Let U be an element of \mathscr{U} with $X-X-V\supset \overline{U}$. If $x\in X-(X-V\cup F)$, then $W(x)\subset X-X-V$ and $W(x)\cap (X-W)=\emptyset$. Thus the inequality $W(y)\cap (X-W)\neq\emptyset$, $y\in X-F$, implies $y\in X-V$ and hence $W(y)\cap \overline{U}=\emptyset$. Therefore $\mathscr{W}(X-W)\cap \overline{U}=\emptyset$, which implies that $\mathscr{W}(X-W)\cap \operatorname{Int} \overline{U}=\emptyset$. Since $\operatorname{Int} \overline{U}\supset F$ and $\operatorname{Cl}(\mathscr{W}(X-W))\cap \operatorname{Int} \overline{U}=\emptyset$, then $\operatorname{Cl}(\mathscr{W}(X-W))\cap F=\emptyset$.

(3) \rightarrow (2): Let $\mathscr W$ be an approaching anti-cover of F. Since X is hereditarily paracompact, $\mathscr W$ is refined by an open cover $\mathscr U=\{U_\alpha\colon \alpha\in A\}$ of X-F which is locally finite in X-F. $\mathscr U$ is again approaching to F. Let A be the collection of all subsets B of A such that $V_B=(\bigcup\{U_\alpha\colon \alpha\in B\})\cup F$ are open neighborhoods of F. Then $\{V_B\colon B\in A\}$ is a neighborhood base of F which is closure-preserving in both sides.

The implication (2) \rightarrow (1) is evident and the proof is finished.

1.4. THEOREM. The closed image of an L-space is an L-space.

Proof. Let $f: X \to Y$ be a closed map, X and L-space, and F a closed set of Y. Let $\{U_{\alpha}: \alpha \in A\}$ be a closure-preserving quasi-neighborhood base of $f^{-1}(F)$. Then $\{f(\overline{U}_{\alpha}): \alpha \in A\}$ is a closure-preserving quasi-neighborhood base of F. Let $\{V_{\lambda}: \lambda \in A\}$ be an anti-closure-preserving quasi-neighborhood base of $f^{-1}(F)$. Then $\{Y - f(X - V_{\lambda}): \lambda \in A\}$ is an anti-closure-preserving neighborhood base of F.

Y is a paracompact σ -space as the closed image of a paracompact σ -space. That completes the proof.

The following is essentially proved in Leĭbo [6]. We present a proof for the reader's convenience.

1.5. LEMMA. A metric space (X, d) is an L-space.

Proof. By the preceding theorem it suffices to prove that each closed set F of X has an approaching anti-cover. For each point $x \in X - F$ set r(x) = d(x, F). Let W(x) be the spherical region of radius $\frac{1}{3}r(x)$ with the center x. Set $W = \{W(x): x \in X - F\}$. To see that W is approaching to F let U be an open neighborhood of F. Assume that $W(x) \cap (X - U) \neq \emptyset$. Then for each $y \in W(x)$, we have $d(y, X - U) < \frac{2}{3}r(x)$ and $d(y, F) \geqslant d(x, F) - d(x, y) > r(x) - \frac{1}{3}r(x) = \frac{2}{3}r(x)$. Hence d(y, X - U) < d(y, F). Set $V = \{z \in X: d(z, X - U) > d(z, F)\}$. Then V is an open neighborhood of F and the last inequality assures that $W(X - U) \cap V = \emptyset$. That completes the proof.

By this lemma we get at once the following.

1.6. THEOREM. A Lasnev space is an L-space.

By Borges-Lutzer [1], Remark 2.7, a paracompact σ -space in which each closed set has a σ -closure-preserving neighborhood base in an M_1 -space. Thus the following is a direct consequence of Theorem 1.3.

- 1.7. THEOREM. An L-space is an M_1 -space.
- 1.8. Theorem. A closed subset F and an open subset U of an L-space X are L-spaces.

Proof. Let H be a relatively closed subset of F. Since H is closed in X, there exists an anti-cover $\mathscr U$ of H which is approaching to H in X. Then $\mathscr U|F$ is clearly approaching to H in F.

Let $\{U_{\alpha}\colon \alpha\in A\}$ be a locally finite (in U) open cover of U such that $\overline{U}_{\alpha}\subset U$ for each $\alpha\in A$. Let H be a relatively closed subset of U. Since each \overline{U}_{α} is an L-space by the above argument, there exists a neighborhood base $\mathscr{U}_{\alpha}=\{U_{\alpha\lambda}\colon \lambda\in \Lambda_{\alpha}\}$ of $\overline{U}_{\alpha}\cap H$ in the relative space \overline{U}_{α} which is closure-preserving in both sides. Set

$$V_{\xi} = \bigcup \{U_{\alpha\lambda_{\alpha}} : \alpha \in A\}, \quad \xi = (\lambda_{\alpha}) \in \prod \{\Lambda_{\alpha} : \alpha \in A\},$$

$$\mathcal{U} = \{V_{\xi} : \xi \in \prod \Lambda_{\alpha}\}.$$

Then $\mathscr U$ is, as can easily be seen, a quasi-neighborhood base of H in U which is closure-preserving in both sides. That completes the proof.

The author does not know whether each subset of an L-space is an L-space.

2. Examples.

2.1. Example (Michael [7]). An L-space which is not a Lasnev space.

Let βN be the Stone-Čech compactification of the natural numbers N. Let p be an arbitrary point of $\beta N-N$. Set $X=N\cup\{p\}$. Then X is clearly an L-space.

Since p is not the limit point of any subsequence of N with any order, X is not a Fréchet space and hence not a Lašnev space by Lašnev [5], Theorem 1.

2.2. Example (San-ou [10], Example 4.1). An M_1 -space which is not an L-space.

Let X be the box product of countably infinite number of the rationals. Let p be the point of X whose coordinates are 0 and \mathcal{Z}_p the subspace of X consisting of points all but a finite number of whose coordinates are 0. Then \mathcal{Z}_p is an M_1 -space by San-ou [10], Theorem 3.1. The argument in [10], Example 4.1, shows that $\{p\}$ cannot have an approaching anti-cover.

2.3. Example (Okuyama-Yasui [9]). The product of L-spaces which is not an L-space.

Let $N \cup \{p\}$ be the space in Example 2.1 and I the unit interval. By [9], Theorem 3, if each point of $(N \cup \{p\} \times I \text{ would have an approaching anti-cover,}$ then $N \cup \{p\}$ should be first-countable. Thus $(N \cup \{p\}) \times I$ cannot be an L-space.

2.4. Remark (T. Nogura). Let X and Y be non-discrete spaces. Let X' and Y' be their respective derived sets. Set $t(x, X) = \min\{|M|: x \in \overline{M} - M, M \subset X\}$. Let $\chi(x, X)$ be the character of x in X. If each point of $X \times Y$ has an approaching anticover, then

$$\inf\{t(x, X) \colon x \in X'\} = \sup\{t(x, X) \colon x \in X'\}$$

$$= \inf\{\chi(x, X) \colon x \in X'\} = \sup\{\chi(x, X) \colon x \in X'\}$$

$$= \inf\{t(y, Y) \colon y \in Y'\} = \sup\{t(y, Y) \colon y \in Y'\}$$

$$= \inf\{\chi(y, Y) \colon y \in Y'\} = \sup\{\chi(y, Y) \colon y \in Y'\}.$$

Pick points $p \in X'$ and $q \in Y$. Let M be a set of X with $p \in \overline{M} - M$. To show that $\chi(q, Y) \leq |M|$, let V be an arbitrary open neighborhood of q. Let $\mathscr U$ be an approaching anti-cover of (p, q). Since $W = X \times Y - \operatorname{Cl}(\mathscr U(X \times (Y - V)))$ is a neighborhood of (p, q) and $(p, q) \in \overline{M} \times \{q\}$, then there exists a point $x \in M$ with $(x, q) \in W$. Let U_x be an element of $\mathscr U$ with $(x, q) \in U_x$. Then $U_x \subset X \times V$. Let V_x be the image of U_x under the projection of $X \times Y$ to Y. Then $V_x \subset V$, which shows that $\{V_x \colon x \in M\}$ forms a neighborhood base of q. This argument proves the essential part of the assertion.

3 Auxiliary lemmas.

- 3.1. Lemma (Nagami [8], Theorem 11.12). Let X be a hereditarily paracompact space. Let H and K be disjoint closed sets of X. If the binary cover $\{X-H, X-K\}$ is refined by a σ -locally finite open cover $\mathcal U$ such that $\mathcal U < \{X-H, X-K\}$ and $\mathrm{Ind}(\overline{U}-U) \leqslant n$ for each element U of $\mathcal U$, then H and K can be separated by a closed set P with $\mathrm{Ind}P \leqslant n$ and $P \subset \bigcup \{\overline{U}-U\colon U \in \mathcal U\}$.
- 3.2. Lemma. Let X be a paracompact σ -space with a σ -locally finite closed network \mathscr{F} . If for each element F of \mathscr{F} and each open neighborhood U of F there

exists an open neighborhood V of F with $F \subset V \subset U$ such that $\operatorname{Ind}(\overline{V} - V) \leq n-1$, then $\operatorname{Ind} X \leq n$.

Proof. Let H and K be disjoint closed sets of X. Set $\mathscr{U} = \{X-H, X-K\}$ and $\mathscr{F}_1 = \{F \in \mathscr{F} : F < \mathscr{U}\}$. For each $F \in \mathscr{F}_1$ there exists an open neighborhood U(F) of F such that $\{U(F) : F \in \mathscr{F}_1\}$ is σ -locally finite and refines \mathscr{U} . For each $F \in \mathscr{F}_1$ let V(F) be an open neighborhood of F such that $F \subset V(F) \subset V(F) \subset U(F)$ and $\operatorname{Ind}(V(F) - V(F)) \le n-1$. Since \mathscr{F}_1 covers X, $\{V(F) : F \in \mathscr{F}_1\}$ covers X. Since $\{U(F) : F \in \mathscr{F}_1\}$ is σ -locally finite, $\{V(F) : F \in \mathscr{F}_1\}$ is also σ -locally finite. Thus the criterion of the preceding lemma is satisfied and H and K is separated by a closed set P with $\operatorname{Ind} P \le n-1$. That completes the proof.

3.3. Lemma. Let X be a paracompact σ -space and $\mathscr{F} = \bigcup_{i=1}^{\infty} \mathscr{F}_i$ a closed network with each \mathscr{F}_i discrete. Set $P_i = \bigcup \{F: F \in \mathscr{F}_i\}$. Let $\mathscr{U}_i = \{U_{i\alpha}: \alpha \in A_i\}$ be an approaching anti-cover of P_i which is locally finite in $X - P_i$. Let $H_{ij\alpha}$, j = 1, 2, ..., be closed sets of X with $U_{i\alpha} = \bigcup_{j=1}^{\infty} H_{ij\alpha}$. If each pair $H_{ij\alpha} \subset U_{i\alpha}$, $\alpha \in A_i$, i, j = 1, 2, ..., admits an open set $V_{ij\alpha}$ such that $H_{ij\alpha} \subset V_{ij\alpha} \subset \overline{V}_{ij\alpha} \subset U_{i\alpha}$ and $\operatorname{Ind}(\overline{V}_{ij\alpha} - V_{ij\alpha}) \leqslant n-1$, then $\operatorname{Ind} X \leqslant n$.

Proof. To apply the preceding lemma let F be an element of $\mathscr F$ and U an open neighborhood of F. Assume $F \in \mathscr F_i$. Let $\mathscr F_i = \{F_\lambda \colon \lambda \in \Lambda\}$ and $F = F_\mu$. Let $\{G_\lambda \colon \lambda \in \Lambda\}$ be a discrete open collection such that $F_\lambda \subset G_\lambda$ for each $\lambda \in \Lambda$ and $G_\mu \subset U$. Set $G = \bigcup \{G_\lambda \colon \lambda \in \Lambda\}$. Set $\mathscr V_j = \{V_{ij\alpha} \colon \alpha \in A_i\}$ and $\mathscr V = \bigcup_{j=1}^\infty \mathscr V_j$. Then $\mathscr V$ is an open cover of $X - P_i$. Since each $\mathscr V_j$ is locally finite in $X - P_i$, $\mathscr V$ is σ -locally finite in $X - P_i$. In the subspace $X - P_i$ consider the relatively open cover

$$\mathcal{W} = \{G - P_i, \mathcal{U}_i(X - G)\}.$$

Then W is refined by \mathscr{U}_i and hence so by $\overline{\mathscr{V}}$. Therefore Lemma 3.1 assures the existence of an open set W of $X-P_i$ such that $X-G\subset W\subset \overline{W}-P_i\subset \mathscr{U}_i(X-G)$ and $\operatorname{Ind}((\overline{W}-P_i)-W)\leqslant n-1$. Since \mathscr{U}_i is approaching to P_i , $\operatorname{Cl}(\mathscr{U}_i(X-G))\subset X-P_i$. Since $\overline{W}\subset\operatorname{Cl}(\mathscr{U}_i(X-G))$, $\overline{W}-P_i=\overline{W}$. Thus $\operatorname{Ind}(\overline{W}-W)\leqslant n-1$. Set $K=(\overline{W}-W)\cap G_\mu$. Then K is a closed set of X with $\operatorname{Ind}K\leqslant n-1$ separating F_μ and $X-G_\mu$ and hence separating F and X-U. Thus $\operatorname{Ind}X\leqslant n$ by Lemma 3.2. That completes the proof.

- 3.4. DEFINITION (Leĭbo [6]). A collection $\mathcal{T} = \{(H_{\alpha}, K_{\alpha}): \alpha \in A\}$ of disjoint pairs of closed sets of a space X is said to *determine* Ind X, if there exists a pair (H_{α}, K_{α}) in \mathcal{T} such that for each closed set P separating H_{α} and K_{α} , Ind $P \geqslant \text{Ind } X 1$. Let M be a subset of X. Then \mathcal{T} is said to *determine* IndM, if $\mathcal{T} \mid M$ determines IndM.
- 3.5. Lemma. Let X be an L-space. Then there exists a countable collection of disjoint pairs of closed sets of X which determines Ind of all closed subsets of X.

Proof. Let $\mathscr{F}=\bigcup\limits_{i=1}^{\infty}\mathscr{F}_{i}$ be a closed network of X with each \mathscr{F}_{i} discrete. Set $P_{i}=\bigcup$ $\{F\colon F\in\mathscr{F}_{1}\}$. Let \mathscr{U}_{i} be an approaching anti-cover of P_{i} which is locally finite and σ -discrete in $X-P_{i}$. Let $\mathscr{U}_{ij}=\{U_{ij\alpha}\colon \alpha\in A_{ij}\}$ be an open collection which is discrete in $X-P_{i}$ such that $\mathscr{U}_{i}=\bigcup\limits_{j=1}^{\infty}\mathscr{U}_{ij}$. Set $U_{ij}=\bigcup$ $\{U_{ij\alpha}\colon \alpha\in A_{ij}\}$. Let H_{ijk} be

closed sets of X such that $U_{ij} = \bigcup\limits_{k=1}^{\infty} H_{ijk}$. Set $\mathcal{T} = \{(H_{ijk}, X - U_{lj}) \colon i,j,k=1,2,\ldots\}$.

Let us see that $\mathscr T$ determines $\operatorname{Ind} X$. Set $U_{ij\alpha} \cap H_{ijk} = H_{ijk\alpha}$, $\alpha \in A_{ij}$. Since $\mathscr U_{ij}$ is discrete in $X - P_i$ and H_{ijk} is closed in X, then $H_{ijk\alpha}$ is closed in X. Set $\mathscr T' = \{(H_{ijk\alpha}, X - U_{ij\alpha}): \alpha \in A_{ij}, k = 1, 2, ...\}$. Since $U_{ij\alpha} = \bigcup_{ij\alpha}^{\infty} H_{ijk\alpha}$, $\mathscr T'$ determines G.

mines $\operatorname{Ind} X$ by Lemma 3.3. Thus there exists a pair $(H_{abc\beta}, X - U_{ab\beta})$ such that for each set P separating $H_{abc\beta}$ and $X - U_{ab\beta}$, $\operatorname{Ind} P \geqslant \operatorname{Ind} X - 1$. Let Q be an arbitrary set separating H_{abc} and $X - U_{ab}$. Then $Q \cap U_{ab\beta}$ separates $H_{abc\beta}$ and $X - U_{ab\beta}$ and hence $\operatorname{Ind} Q \geqslant \operatorname{Ind} (Q \cap U_{ab\beta}) \geqslant \operatorname{Ind} X - 1$. The inequality $\operatorname{Ind} Q \geqslant \operatorname{Ind} X - 1$ shows that $\mathscr T$ determines $\operatorname{Ind} X$.

To see that $\mathscr T$ determines Ind of all closed sets of X let M be an arbitrary closed set of X. As was noticed in Theorem 1.8 $\mathscr U_i|M$ is approaching to $P_i\cap M$. Consider the restrictions of $\mathscr F$, $\mathscr F_i$, $\mathscr U_i$, $\mathscr U_{ij}$ and H_{ijkz} to M. Then we can know that $\mathscr F|M$ determines IndM by an argument quite analogous to the case when M=X. That completes the proof.

- 3.6. Lemma (Letbo [6]). Let X be a paracompact σ -space and \mathcal{H} a countable collection of closed sets of X. Then there exist a metric space Y and a contraction, i.e. a one-one map, $f \colon X \to Y$ such that $\dim X \geqslant \dim Y$ and f(H) is closed for each element H of \mathcal{H} .
- 3.7. Lemma (Leĭbo [6]). Let X be a space and $\mathcal{T} = \{(H_{\alpha}, K_{\alpha}): \alpha \in A\}$ a collection of disjoint pairs of closed sets determining Ind of all closed sets of X. Let $f: X \to Y$ be a contraction to another space Y such that $f(H_{\alpha})$ and $f(K_{\alpha})$ are closed for each $\alpha \in A$. Then Ind $X \le \text{Ind } Y$.

Proof (by induction). It suffices to consider the case when Ind Y is finite. Set Ind Y = n. When n = 0, $f(H_{\alpha})$ and $f(K_{\alpha})$ can be separated by the empty set for each α . Hence H_{α} and K_{α} can also be separated by the empty set for each α , which implies that Ind $X \le 0$. Thus the theorem is true for n = 0.

Put the induction hypothesis that the theorem is true for $n \leqslant m-1$. Assume that n=m. Let P_{α} be a closed set of Y with $\operatorname{Ind} P_{\alpha} \leqslant m-1$ separating $f(H_{\alpha})$ and $f(K_{\alpha})$. Then $f^{-1}(P_{\alpha})$ is a closed set of X separating H_{α} and K_{α} . Set $\mathcal{F}'=\mathcal{F}|f^{-1}(P_{\alpha})$. Since $f^{-1}(P_{\alpha})$ is closed, \mathcal{F}' determines Ind of all closed sets of $f^{-1}(P_{\alpha})$. Thus $\operatorname{Ind} f^{-1}(P_{\alpha}) \leqslant \operatorname{Ind} P_{\alpha} \leqslant m-1$ by induction hypothesis. Since \mathcal{F} determines $\operatorname{Ind} X$, $\operatorname{Ind} X \leqslant m$. The induction is thus completed and the proof is finished.

4.1. THEOREM. Let X be an L-space. Then $\dim X = \operatorname{Ind} X$.

Proof. By Lemma 3.5 there exists a countable collection

$$\mathcal{T} = \{(H_i, K_i): i = 1, 2, ...\}$$

of disjoint pairs of closed sets of X determining Ind of all closed sets of X. By Lemma 3.6 there exist a metric space Y with $\dim X \geqslant \dim Y$ and a contraction $f\colon X \to Y$ such that $f(H_i)$ and $f(K_i)$ are closed sets of Y for i=1,2,... Then by Lemma 3.7 Ind $X \leqslant \operatorname{Ind} Y$. Since $\dim Y = \operatorname{Ind} Y$ (cf. [8], Theorem 12.6), $\dim X \geqslant \dim Y = \operatorname{Ind} Y \geqslant \operatorname{Ind} X$. Since $\dim X \leqslant \operatorname{Ind} X$ (cf. [8], Theorem 10.1), we have $\dim X = \operatorname{Ind} X$. That completes the proof.

Since a paracompact σ -space with a countable network has the star-finite property, the following is clear from the equality ind $X = \operatorname{Ind} X$ for such a space X (cf. [8], Corollary 11.13).

- 4.2. COROLLARY. Let X be an L-space with a countable network. Then $\dim X = \operatorname{Ind} X = \operatorname{ind} X$.
- 4.3. REMARK. As can be seen from the argument presented we do not need the condition that all closed sets of X have approaching anti-covers. If X is merely a paracompact σ -space having a σ -discrete closed network $\mathscr F$ such that each element F of $\mathscr F$ has an approaching anti-cover, yet $\dim X = \operatorname{Ind} X$.
- 4.4. DEFINITION. Let X be a space and F a closed set of X. An anti-cover $\mathscr U$ of F is said to be *uniformly approaching* (to F in X) if for each open set V of X, $\mathrm{Cl}(\mathscr U(X-V))\cap V\cap F=\emptyset$. X is said to be a D-space if it is a paracompact σ -space and each closed set has a uniformly approaching anti-cover.
- 4.5. REMARK. The following propositions are easily verified. (1) Each *D*-space is an *L*-space. (2) (Dugundji [3], Lemma 2.1) Each metric space is a *D*-space. Actually \mathscr{W} given in Lemma 1.5 is uniformly approaching. (3) The closed image of a *D*-space is a *D*-space. Thus each Lašnev space is a *D*-space. (4) Example 2.1 is a *D*-space which is not a Lašnev space. (5) Each subset of a *D*-space is a *D*-space.
- 4.6. LEMMA. Let X be a D-space. Then there exists a countable collection of disjoint pairs of closed sets of X which determines Ind of all subsets of X.

Proof. Let us continue to use the notions $\mathscr{F}=\bigcup\mathscr{F}_l$, P_i , $\mathscr{U}_i=\bigcup_{j=1}^{\mathfrak{U}_{ij}}\mathscr{U}_{ij}$, $\mathscr{U}_{ij}=\{U_{ija}: \alpha\in A_{ij}\}$, U_{ij} , H_{ijk} , \mathscr{T} , H_{ijka} $(\alpha\in A_{ij})$, which are the same as in the proof of Lemma 3.5, except that each \mathscr{U}_i is uniformly approaching to P_i in X in the present case. Let S be an arbitrary subset of X. Then $\mathscr{F}|S$ is a σ -discrete relatively closed network of S and $\mathscr{U}_i|S$ is (uniformly) approaching to $P_i\cap S$ in S. Thus $\mathscr{F}|S$ determines Ind S. That completes the proof.

4.7. THEOREM. For a D-space X the following three conditions are equivalent. (1) dim $X \le n$. (2) Ind $X \le n$. (3) X is the sum of sets X_i , i = 0, 1, ..., n, with dim $X_i \le 0$ for each i.

246

K. Nagami

Proof (by induction). As is well known (3) implies (2) (cf. [8], p. 76). The implication (2) \rightarrow (3), say (P_n) , is proved by induction. (P_0) is clearly true. Let n>0. Put the induction hypothesis that (P_i) is true for i< n. By the preceding lemma there exists a collection $\mathcal{F} = \{(H_i, K_i): i=1, 2, ...\}$ of disjoint pairs of closed sets which determines Ind of all subsets of X. Let Q_i be a closed set, with $\operatorname{Ind} Q_i \leqslant n-1$, separating H_i and K_i . Set $Q = \bigcup Q_i$. Then $\operatorname{Ind} Q \leqslant n-1$. Hence Q is the sum of sets X_i , i=1, ..., n, with $\dim X_i \leqslant 0$. Set $X_0 = X - Q$. Then $Q_i \cap X_0$ separates $H_i \cap X_0$ and $K_i \cap X_0$. Since $Q_i \cap X_0 = \emptyset$ and $\mathcal F$ determines $\operatorname{Ind} X_0$, then $\operatorname{Ind} X_0 \leqslant 0$ and hence $\dim X_0 \leqslant 0$. That completes the proof.

4.8. Problem. Is each L-space a D-space?

References

- C. R. Borges and D. J. Lutzer, Characterizations and mappings of M_i-spaces, Topology Conference (Virginia Polytech. Inst. and State Univ., 1973), pp. 34-40.
- [2] J. G. Ceder, Some generalizations of a metric space, Pacific J. Math. 11 (1961), pp. 105-126.
- [3] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), pp. 353-367.
- [4] Y. Kodama and K. Nagami, Theory of topological spaces, Iwanami, Tokyo 1974.
- [5] N. Lašnev, Closed images of metric spaces, Dokl. Akad. Nauk SSSR 170 (1966), pp. 505-507;Soviet Math. Dokl. 7 (1966), pp. 1219-1221.
- [6] I. M. Leĭbo, On the equality of dimensions for closed images of metric spaces, Dokl. Akad. Nauk SSSR 216 (1974), pp. 498-501; Soviet Math. Dokl. 15 (1974), pp. 835-839.
- [7] E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), pp. 822-828.
- [8] K. Nagami, Dimension theory, Academic Press, New York 1970.
- [9] A. Okuyama and Y. Yasui, On the semi-canonical property in the product space X×1, forthcoming in Proc. Amer. Math. Soc.
- [10] S. San-ou, A note on *E-product*, J. Math. Soc. Japan. 29 (1979), pp. 281-285.

Accepté par la Rédaction le 25. 8. 1977

LIVRES PUBLIÉS PAR L'INSTITUT MATHÉMATIQUE DE L'ACADÉMIE POLONAISE DES SCIENCES

- S. Banach, Oeuvres, Vol. III, 1979, p. 470.
- S. Mazurkiewicz, Travaux de topologie et ses applications, 1969, p. 380.
- W. Sierpiński, Oeuvres choisies, Vol. I, 1974, p. 300; Vol. II, 1975, p. 780; Vol. III, 1976, p. 688.
- J. P. Schauder, Oeuvres, 1978, p. 487.
- H. Steinhaus, Selected papers (sous presse).

Proceedings of the Symposium to honour Jerzy Neyman, 1977, p. 349. Proceedings of the International Conference on Geometric Topology (sous presse).

MONOGRAFIE MATEMATYCZNE

- 27. K. Kuratowski i A. Mostowski, Teoria mnogości, 5-ème éd., 1978, p. 470.
- 43. J. Szarski, Differential inequalities, 2-ème éd., 1967, p. 256.
- 44. K. Borsuk, Theory of retracts, 1967, p. 251.
- 47. D. Przeworska-Rolewicz and S. Rolewicz, Equations in linear spaces, 1968, p. 380.
- 50. K. Borsuk, Multidimensional analytic geometry, 1969, p. 443.
- 51. R. Sikorski, Advanced calculus. Functions of several variables, 1969, p. 460.
- 58. C. Bessaga and A. Pełczyński, Selected in infinite-dimensional topology, 1975, p. 353.
- 59. K. Borsuk, Theory of shape, 1975, p. 379.
- 60. R. Engelking, General topology, 1977, p. 626.
- 61. J. Dugundji and A. Granas, Fixed point theory, Vol. I (sous presse).

DISSERTATIONES MATHEMATICAE

- CLXV. J. Komorowski, Nets on a Riemannian manifold and finite-dimensional approximations of the Laplacian, 1979, p. 83.
- CLXVI. J. Ławrynowicz, On a class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings, 1980, p. 48.
- CLXVII. C. Rauszer, An algebraic and Kripke-style approach to certain extensions of intuitionistic logic, 1980, p. 78.

BANACH CENTER PUBLICATIONS

- Vol. 1. Mathematical control theory, 1976, p. 166.
- Vol. 4. Approximation theory, 1979, p. 312.
- Vol. 5. Probability theory, 1979, p. 289.
- Vol. 6. Mathematical statistics (sous presse).
- Vol. 7. Discrete mathematics (sous presse).
- Vol. 8. Spectral theory (sous presse).
- Vol. 9. Universal algebra and applications (sous presse).

Sprzedaż numerów bieżących i archiwalnych w księgarniach Ośrodka Rozpowszechniania Wydawnictw Naukowych PAN, ORPAN, Pałac Kultury i Nauki, 00-901 Warszawa.