

230

References

- [1] E. Z. Andalafte and L. M. Blumenthal, Metric characterizations of Banach and Euclidean spaces, Fund. Math. 55 (1964), pp. 23-55.
- [2] L. M. Blumenthal, Theory and applications of distance geometry, Oxford 1953.
- [3] An extension of a theorem of Jordan and von Neumann, Pacific J. Math. 5 (1955), pp. 161-167.
- [4] L. D. Loveland and J. E. Valentine, Metric criteria for Banach and Euclidean spaces, Fund. Math. 100 (1978), pp. 75-81.
- [5] J. E. Valentine and S. G. Wayment, Criteria for Banach spaces, Pacific J. Math. 43 (1972), pp. 251-252.
- [6] W. H. Young, On the analytic basis of noneuclidean geometry, American J. Math. 33 (1911), pp. 249-286.

Accepté par la Rédaction le 17. 8. 1977

On k-regular embeddings of spaces in Euclidean space

by

David Handel (Detroit, Mich.) and Jack Segal (Seattle, Wash.)

Abstract. If $k \le n$ are positive integers, a continuous map $f : X \to \mathbb{R}^n$ is k-regular if whenever x_1, \ldots, x_k are distinct points of X, then $f(x_1), \ldots, f(x_k)$ are linearly independent. Such maps are of relevance in the theory of Čebyšev approximation. In this paper the question of existence of k-regular maps from a given X into \mathbb{R}^n is considered. After discussing some elementary properties of k-regularity, an algebraic-topological method is introduced to obtain negative results. This method yields the fact that there does not exist a 3-regular map of the real projective plane into \mathbb{R}^5 , and this result is best possible. Finally, it is shown how to construct explicit 2- and 3-regular maps on real projective spaces which, in terms of homogeneous coordinates, are given by quadratic functions.

1. Introduction. If $k \le n$ are positive integers, a continuous map f of a space X into Euclidean n-space R^n is k-regular if whenever $x_1, ..., x_k$ are distinct points of X, then $f(x_1), ..., f(x_k)$ are linearly independent. Closely related to this is the concept of an affinely k-regular map $f: X \to R^n$, where it is required that whenever $x_0, ..., x_k$ are distinct points of X, then $f(x_0), ..., f(x_k)$ are affinely independent (i.e. they are the vertices of a non-degenerate k-simplex in R^n). The latter concept has been considered in [2], [1], and [9]. Clearly, a k-regular map is affinely (k-1)-regular, and $f: X \to R^n$ is affinely (k-1)-regular if and only if the map $g: X \to R^{n+1} = R \times R^n$ given by g(x) = (1, f(x)) is k-regular.

k-regular maps are of relevance in the theory of Čebyšev approximation. A set of n real-valued continuous functions on X is called a k-Čebyšev set of length n if these functions are the components of a k-regular map of X into R^n . The reader is referred to [10], pp. 237-242 for the significance of this concept.

The present paper is concerned with existence and non-existence of k-regular maps. The following results are obtained:

THEOREM 2.1. X admits a 2-regular map into \mathbb{R}^n if and only if X admits an affinely 1-regular map into \mathbb{R}^{n-1} . (Thus if X is compact, existence of a 2-regular map of X into \mathbb{R}^n is equivalent to X being topologically embeddable in \mathbb{R}^{n-1}).

THEOREM 2.2. If X admits a k-regular map into \mathbb{R}^n , then each $0 \le i \le k-1$, and S any subset of X with i points, X-S admits a (k-i)-regular map into \mathbb{R}^{n-i} .

233

2.2. is a slight sharpening of a result of Borsuk [2], p. 355 (proved there for the affinely k-regular case).

In Section 3 we note that existence of a k-regular map of X into R^n implies existence of an equivariant map (with respect to permutation of factors) of the kth configuration space of X into $V_k(R^n)$, the Stiefel manifold of k-frames in R^n . Algebraic topology can be used to prove non-existence of such equivariant maps, and hence non-existence of k-regular maps. As an example, we use this technique to prove that the real projective plane P^2 does not admit a 3-regular map into R^5 . (P^2 does admit a 3-regular map into R^5 .) Since P^2 embeds in R^4 and the complement of any point in P^2 embeds in R^3 , this shows that the converse of 2.2 is false when k=3.

In Section 4, linear algebra is used to produce quadratic 2 and 3-regular maps on real projective spaces.

2. Some properties of k-regularity.

THEOREM 2.1. X admits a 2-regular map into \mathbb{R}^n if and only if X admits an affinely 1-regular map into \mathbb{R}^{n-1} .

Proof. If $f: X \to \mathbb{R}^{n-1}$ is affinely 1-regular, then $g: X \to \mathbb{R}^n$ given by g(x) = (1, f(x)) is 2-regular, as noted in Section 1.

Conversely, suppose $g: X \to \mathbb{R}^n$ is 2-regular. Define $h: X \to S^{n-1}$ by h(x) = g(x)/||g(x)||. h is injective, and the image of h does not contain an antipodal pair since no two distinct points of X are mapped by g into the same line through the origin. In particular h maps X injectively into a proper subset of S^{n-1} , and hence X can be mapped injectively, i.e. affinely 1-regularly, into \mathbb{R}^{n-1} .

THEOREM 2.2. If X admits a k-regular map into \mathbb{R}^n , then for each $0 \le i \le k-1$ and S any subset of X with i points, X-S admits a (k-i)-regular map into \mathbb{R}^{n-i} .

Proof. Let $f: X \to \mathbb{R}^n$ be k-regular. Let x be any point of X, V the orthogonal complement of f(x) in \mathbb{R}^n , and $\pi: \mathbb{R}^n \to V$ orthogonal projection. If x_1, \ldots, x_{k-1} are distinct points of $X - \{x\}$, then $f(x), f(x_1), \ldots, f(x_{k-1})$ are linearly independent, and hence $\pi f(x_1), \ldots, \pi f(x_{k-1})$ are linearly independent in V. Thus πf , followed by a linear isomorphism of V onto \mathbb{R}^{n-1} , yields a (k-1)-regular map of $X - \{x\}$ into \mathbb{R}^{n-1} . The general result follows by iteration.

THEOREM 2.3. If X embeds in the n-sphere S^n , then there exists a 3-regular embedding of X in \mathbb{R}^{n+2} .

Proof. The standard embedding of S^n in R^{n+1} is affinely 2-regular (no line in R^{n+1} meets S^n is more than 2 points), and hence by Section 1, S^n embeds in R^{n+2} in a 3-regular fashion.

3. Equivariant maps. Let $F_k(X)$ denote the kth configuration space of X, i.e. the subspace of the k-fold cartesian product of X consisting of k-tuples of distinct points of X. Let $V_k(\mathbf{R}^n)$ denote the space of linearly independent k-frames in \mathbf{R}^n . The symmetric group on k letters, \mathcal{S}_k , acts freely on both $F_k(X)$ and $V_k(\mathbf{R}^n)$ by permutation of factors. (It is more convenient for us to use $V_k(\mathbf{R}^n)$ rather than the

Stiefel manifold of orthonormal k-frames in \mathbb{R}^n . The two are \mathscr{S}_k -equivariantly homotopy equivalent.)

THEOREM 3.1. If X admits a k-regular map into \mathbb{R}^n , then there exists an \mathscr{S}_{k} -equivariant map $g: F_k(X) \to V_k(\mathbb{R}^n)$.

Proof. If $f: X \to \mathbb{R}^n$ is k-regular, define $g: F_k(X) \to V_k(\mathbb{R}^n)$ by $g(x_1, ..., x_k) = (f(x_1), ..., f(x_k))$.

Let \mathscr{A}_k denote the alternating group on k letters. If X is Hausdorff, we have a double covering $F_k(X)/\mathscr{A}_k \to F_k(X)/\mathscr{S}_k$, where $F_k(X)/\mathscr{A}_k$, $F_k(X)/\mathscr{S}_k$ denote the orbit spaces of $F_k(X)$ with respect to the actions of \mathscr{A}_k , \mathscr{S}_k , respectively. Similarly we have a double covering $V_k(\mathbf{R}^n)/\mathscr{A}_k \to V_k(\mathbf{R}^n)/\mathscr{S}_k$. An \mathscr{S}_k -equivariant map $g\colon F_k(X)\to V_k(\mathbf{R}^n)$ induces a map of double coverings of the former to the latter. Thus, combining with 3.1 we obtain:

THEOREM 3.2. If X admits a k-regular map into \mathbb{R}^n , then there exists a map of double coverings

$$F_{k}(X)/\mathscr{A}_{k} \longrightarrow V_{k}(\mathbf{R}^{n})/\mathscr{A}_{k}$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_{k}(X)/\mathscr{S}_{k} \longrightarrow V_{k}(\mathbf{R}^{n})/\mathscr{S}_{k}$$

If \mathscr{G}_k (resp. \mathscr{A}_k) acts on Y, for each point $y \in Y$ write $y_{\mathscr{G}}$ (resp. $y_{\mathscr{A}}$) for the point in Y/\mathscr{G}_k (resp. Y/\mathscr{A}_k) determined by y. Let $T \colon V_k(R^n)/\mathscr{A}_k \to V_k(R^n)/\mathscr{A}_k$ be the involution which interchanges the two points of each fibre in the double covering $V_k(R^n)/\mathscr{A}_k \to V_k(R^n)/\mathscr{G}_k$. T is given by $T(v_1, ..., v_k)_{\mathscr{A}} = (v_2, v_1, ..., v_k)_{\mathscr{A}}$. Let λ denote the real line bundle over $V_k(R^n)/\mathscr{G}_k$ associated with the above double covering. For each positive integer m, the total space of $m\lambda$, the Whitney sum of m copies of λ , is $E(m\lambda) = V_k(R^n)/\mathscr{A}_k \times 2R^m =$ quotient space of $V_k(R^n)/\mathscr{A}_k \times R^m$ obtained by identifying $(v_{\mathscr{A}}, x) \sim (Tv_{\mathscr{A}}, -x)$ for all $v \in V_k(R^n)$ and $x \in R^m$. Write $(v_{\mathscr{A}}, x)_2$ for the point in $E(m\lambda)$ determined by $(v_{\mathscr{A}}, x) \in V_k(R^n)/\mathscr{A}_k \times R^m$.

LEMMA 3.3. Let $k \geqslant 3$ be odd, and λ the line bundle over $V_k(\mathbb{R}^n)/\mathcal{G}_k$ as above. Then $n\lambda$ is isomorphic to $\lambda \oplus \alpha \oplus \gamma$, where α is a (k-1)-plane bundle with $\lambda \oplus \alpha$ orientable.

Proof. Let β denote the k-plane subbundle of $n\lambda$ given as follows: $E(\beta) = \{((v_1, \dots, v_k)_{\mathscr{A}}, x)_2 | x \text{ is a linear combination of } v_1, \dots, v_k\}$. If $v = (v_1, \dots, v_k) \in \mathcal{V}_k(\mathbb{R}^n)$, the ordered basis $(v_{\mathscr{A}}, v_1)_2, \dots, (v_{\mathscr{A}}, v_k)_2$ of the fibre over $v_{\mathscr{P}}$ in β gives a well-defined orientation of this fibre since an even permutation does not change the orientation, and the above orientation coincides with that given by $(v_{\mathscr{A}}, -v_2)_2$, $(v_{\mathscr{A}}, -v_1)_2, (v_{\mathscr{A}}, -v_3)_2, \dots, (v_{\mathscr{A}}, -v_k)_2$ since k is odd. Hence β is orientable.

For v as above, write $\sum v = v_1 + ... + v_k$, and let λ' denote the line subbundle of β whose fibre over $v_{\mathscr{S}}$ is spanned by $(v_{\mathscr{S}}, \sum v)_2$. We have an isomorphism of line bundles $\lambda \to \lambda'$ given by $(v_{\mathscr{S}}, t)_2 \mapsto (v_{\mathscr{S}}, t \sum v)_2$. Thus $\beta \cong \lambda' \oplus \alpha$ where α is a complementary subbundle to λ' in β . Take γ to be any complement to β in $n\lambda$.

LEMMA 3.4. Let u denote the first Stiefel-Whitney class of the double covering $V_3(\mathbf{R}^5)/\mathcal{A}_3 \to V_3(\mathbf{R}^5)/\mathcal{S}_3$. Then $u^3 = 0$.

6 - Fundamenta Mathematicae CVI

Proof. We have $5\lambda \cong \lambda \oplus \alpha \oplus \gamma$ where α and γ are 2-plane bundles over $V_3(\mathbb{R}^5)/\mathscr{S}_3$ as in 3.3. We have $w(\lambda) = 1 + u$. By the Whitney product formula [8], p. 37,

$$(1+u)^4 = w(\alpha)w(\gamma).$$

Since $\lambda \oplus \alpha$ is orientable, $w_1(\lambda \oplus \alpha) = 0$ [8], p. 146 and so it follows from the Whitney product formula that $w_1(\alpha) = u$. Thus (1) yields

(2)
$$1 + u^4 = (1 + u + w_2(\alpha))(1 + w_1(\gamma) + w_2(\gamma)).$$

Hence the 1, 2 and 3-dimensional components of the right hand side of (2) are 0, which yields

(3)
$$u = w_1(\gamma),$$
$$uw_1(\gamma) + w_2(\alpha) + w_2(\gamma) = 0,$$
$$w_1(\gamma) + w_2(\alpha) + uw_2(\gamma) = 0.$$

Multiplying the second equation in (3) by u, together with the first and third equations yields $u^3 = 0$.

THEOREM 3.5. There does not exist a 3-regular map of P^2 into R^5 .

Proof. Regard P^2 as the space of lines through the origin in \mathbb{R}^3 . If x and y are distinct points of P^2 , let p(x, y) denote the unique line through 0 in \mathbb{R}^3 which is perpendicular to the plane of x and y. We have a map of double convergings

$$F_{2}(P^{2}) \xrightarrow{f} F_{3}(P^{2})/\mathscr{A}_{3}$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_{2}(P^{2})/\mathscr{S}_{2} \longrightarrow F_{3}(P^{2})/\mathscr{S}_{3}$$

where $f(x, y) = (x, y, p(x, y))_{\mathscr{A}}$. Let v denote the first Stiefel-Whitney class of the double covering $F_2(P^2) \to F_2(P^2)/\mathscr{S}_2$. Since $\overline{w}_1(P^2) \neq 0$, it follows from [11], p. 380 (also [5], Theorem 3.7) that $v^3 \neq 0$. Thus by 3.4, there does not exist a map of double coverings

$$F_{3}(P^{2})/\mathscr{A}_{3} \longrightarrow V_{3}(R^{5})/\mathscr{A}_{3}$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_{3}(P^{2})/\mathscr{S}_{3} \longrightarrow V_{3}(R^{5})/\mathscr{S}_{3}$$

and so we are done by 3.2.

Note that since P^2 embeds in S^4 , there does exist a 3-regular embedding of P^2 into R^6 by 2.3. In fact, in the next section we will show that a quadratic (defined below) 3-regular embedding of P^2 into R^6 exists.

4. Quadratic 2 and 3-regular embeddings of projective spaces. Regard real projective m-space P^m as the quotient space obtained from S^m by identifying antipodal points. Write [x] for the point in P^m determined by $x \in S^m$.

DEFINITION 4.1. A quadratic map $f: P^m \to R^n$ is one of the form $f[x] = g(x \otimes x)$ where $g: R^{m+1} \otimes R^{m+1} \to R^n$ is a linear map.

Equivalently, f is quadratic if the coordinates of f[x] are homogeneous quadratic polynomials in the coordinates of x.

If $u \in \mathbb{R}^n \otimes \mathbb{R}^n$, $u \neq 0$, the rank of u is the smallest integer r such that u is expressible in the form $u = x_1 \otimes y_1 + \ldots + x_r \otimes y_r$. If e_1, \ldots, e_n is a basis of \mathbb{R}^n and we identify $\mathbb{R}^n \otimes \mathbb{R}^n$ with $M_n(\mathbb{R})$, the space of real $n \times n$ matrices, under the identification $\sum a_{ij} e_i \otimes e_j \mapsto (a_{ij})$, then the above notion of rank coincides with the usual matrix rank.

THEOREM 4.2. Let k=2 or 3. If $f\colon P^m\to \mathbb{R}^n$ is the quadratic map given by $f[x]=g(x\otimes x)$ where $g\colon \mathbb{R}^{m+1}\otimes \mathbb{R}^{m+1}\to \mathbb{R}^n$, then f is k-regular if the kernel of g contains no non-zero symmetric elements of rank $\leqslant k$.

Proof. We give the proof for k = 3. (The case k = 2 is simpler.)

If [x], [y], [z] are distinct points of P^m such that f[x], f[y], f[z] are linearly dependent, then there exist real numbers a, b, c, not all 0, such that

$$0 = af[x] + bf[y] + cf[z] = g(ax \otimes x + by \otimes y + cz \otimes z).$$

Hence, by the hypothesis on the kernel of g,

$$(1) ax \otimes x + by \otimes y + cz \otimes z = 0.$$

Since [x], [y], [z] are distinct, no two of x, y, z are linearly dependent, and hence no two of $x \otimes x$, $y \otimes y$, $z \otimes z$ are linearly dependent. Hence by (1), a, b, c must all be non-zero.

x, y, z cannot be linearly independent, for otherwise $x \otimes x, y \otimes y, z \otimes z$ would be, contradicting (1). Say z = sx + ty, $s, t \in \mathbb{R}$. Then both s and t are non-zero, for otherwise [z] would not be distinct from [x] and [y]. Substituting into (1) yields

(2)
$$(a+cs^2)x \otimes x + (b+ct^2)y \otimes y + cst(x \otimes y + y \otimes x) = 0.$$

But $x \otimes x$, $y \otimes y$, $x \otimes y + y \otimes x$ are linearly independent, and so cst = 0, a contradiction. Note that if $k \geqslant 4$ and $m \geqslant 1$, a quadratic map on P^m cannot be k-regular, for if x, y are orthogonal points on S^m , then the lines [x], [y], $\left[\frac{x+y}{\sqrt{2}}\right]$, $\left[\frac{x-y}{\sqrt{2}}\right]$ are distinct, but $x \otimes x$, $y \otimes y$, $\left(\frac{x+y}{\sqrt{2}}\right) \otimes \left(\frac{x-y}{\sqrt{2}}\right)$, $\left(\frac{x-y}{\sqrt{2}}\right) \otimes \left(\frac{x-y}{\sqrt{2}}\right)$ are linearly dependent.

Definition 4.3. A linear subspace of $M_n(\mathbf{R})$ is k-regular if it contains no non-zero symmetric matrices of rank $\leq k$.

COROLLARY 4.4. Let k = 2 or 3. If $M_{m+1}(\mathbf{R})$ contains a k-regular subspace of dimension $(m+1)^2 - n$, then \mathbf{R}^m admits a quadratic k-regular map into \mathbf{R}^n .

Proof. Such a subspace corresponds to a subspace K of $\mathbb{R}^{m+1} \otimes \mathbb{R}^{m+1}$ with no non-zero symmetric elements of rank $\leq k$, and so the composition

$$R^{m+1} \otimes R^{m+1} \longrightarrow (R^{m+1} \otimes R^{m+1})/K \cong R^n$$

yields the desired quadratic k-regular map by 4.2.

EXAMPLE 4.5. Let S be the subspace of $M_{m+1}(R)$ consisting of all matrices $A=(a_{ij})$ satisfying $\sum\limits_{i+j=q}a_{ij}=0$ for $2\leqslant q\leqslant 2m+2$. The dimension of S is $(m+1)^2-(2m+1)$. S is 2-regular, for if (a_{ij}) is a non-zero symmetric matrix in S and q_0 is the smallest integer for which the a_{ij} , $i+j=q_0$, are not all 0, then at least 3 of these a_{ij} are non-zero and so rank $(a_{ij})\geqslant 3$. Hence, by 4.4, there is a quadratic 2-regular embedding of P^m in R^{2m+1} for all m.

This result is best possible when m is a power of 2, for then P^m does not embed in \mathbb{R}^{2m-1} ([4], p. 34 or [11]) and hence, by 2.1, does not 2-regularly embed in \mathbb{R}^{2m} .

Example 4.6. Let S be the space of all skew-symmetric matrices in $M_3(R)$. S is k-regular for all k, S is 3-dimensional, and so by 4.4 there exists a quadratic 3-regular embedding of P^2 in R^6 . By 3.5, this result is best possible.

Example 4.7. Let S_0 consist of all matrices in $M_4(R)$ of the form

$$\begin{bmatrix} a & b & c & 0 \\ b - a & 0 & c \\ c & 0 - a - b \\ 0 & c - b & a \end{bmatrix}$$

and let S be the direct sum of S_0 with the space of all skew-symmetric matrices in $M_4(R)$. Since every non-zero matrix in S_0 has rank 4, S is 3-regular. S is 9-dimensional, and so by 4.4 there exists a quadratic 3-regular embedding of P^3 in R^7 .

We conjecture that P^3 does not 3-regularly embed in \mathbb{R}^6 . (This would follow from 2.2 if we knew that the complement of a point in P^3 does not topologically embed in \mathbb{R}^4 . It is known [3], Corollary 1 that it does not differentiably embed in \mathbb{R}^4).

A linear map $R^m \otimes R^m \to R^n$ is non-singular if its kernel contains no elements of rank 1. Extensive results on the existence of such maps have been obtained in [7] and [6].

THEOREM 4.8. Suppose there exists a quadratic 3-regular embedding of P^m in \mathbb{R}^n , and a non-singular map $\mathbb{R}^{m+1} \otimes \mathbb{R}^{m+1} \to \mathbb{R}^q$. Then there exists a quadratic 3-regular embedding of P^{2m+1} in \mathbb{R}^{2n+q} .

Proof. $M_{m+1}(R)$ contains a 3-regular subspace S_1 of dimension $(m+1)^2-n$. The kernel of the non-singular map yields a $(m+1)^2-q$ -dimensional subspace T of $M_{m+1}(R)$ which contains no elements of rank 1. Let

$$S = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \middle| A \in S_1, B \in T, C \in M_{m+1}(R), D \in S_1 \right\}.$$

so we are done by 4.4.

4.8 is crude, and can undoubtedly be improved.

EXAMPLE 4.9. Quaternionic multiplication yields a non-singular map $R^4 \otimes R^4 \to R^4$. Thus 4.7 and 4.8 yield a quadratic 3-regular embedding of P^7 in R^{18} . Cayley multiplication yields a non-singular map $R^8 \otimes R^8 \to R^8$, and hence there is a quadratic 3-regular embedding of P^{15} in R^{44} .

References

- [1] V. G. Boltjanskiĭ, S. S. Ryškov, and Ju. A. Šaškin, On k-regular imbeddings and their application to the theory of approximation of functions, Uspehi Mat. Nauk 15 (1960), no. 6 (96), pp. 125-132 (Russian); Amer. Math. Soc. Transl. 28 (2) (1963), pp. 211-219.
- [2] K. Borsuk, On the k-independent subsets of the Euclidean space and of the Hilbert space, Bull. Acad. Polon. Sci. 5 (1957), pp. 351-356.
- [3] D. B. A. Epstein, Embedding punctured manifolds, Proc. Amer. Math. Soc. 16 (1965), pp. 175-176.
- [4] and N. E. Steenrod, Cohomology Operations, Ann. of Math. Studies No. 50, Princeton Univ. Press 1962.
- [5] D. Handel, An embedding theorem for real projective spaces, Topology 7 (1968), pp. 125–130.
- [6] K. Y. Lam, Construction of some nonsingular bilinear maps, Bol. Soc. Mat. Mexicana 13 (1968), pp. 88-94.
- [7] R. J. Milgram, Immersing projective spaces, Ann. of Math. 85 (1967), pp. 473-482.
- [8] J. W. Milnor and J. D. Stasheff, Characteristic Classes, Ann. of Math. Studies No. 76, Princeton Univ. Press 1974.
- [9] Ju. A. Šaškin, Topological properties of sets connected with approximation theory, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), pp. 1085-1094 (Russian).
- [10] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag 1970.
- [11] W-T. Wu, On the realization of complexes in Euclidean space II, Scientia Sinica 7 (1958), pp. 365-387.

WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON

Accepté par la Rédaction le 22. 8. 1977