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On k-regular embeddings of spaces in Euclidean space
by

David Handel (Detroit, Mich.) and Jack Segal (Seattle, Wash.)

Absiract. If k< n are positive integers, a continuous map f: X - R"is k-regular if whenever
X1, -, Xk are distinct points of X, then f(xy),...,f(xx) are linearly independent. Such maps are
of relevance in the theory of CebySev approximation. In this paper the question of existence of
k-regular maps from a gijven X into R" is considered. After discussing some elementary properties
of k-regularity, an algebraic-topological method is introduced to obtain negative results. This
method yields the fact that there does not exist a 3-regular map of the real projective plane into R®,
and this result is best possible, Finally, it is shown how to construct explicit 2- and 3-regular maps
on real projective spaces which, in terms of homogeneous coordinates, are given by quadratic
functions.

1. Introduction. If k< n are positive integers, a continuous map f of a space X
into Euclidean n-space R" is k-regular if whenever Xy, ..., x; are distinct points
of X, then f(x), ..., f(x;) are linearly independent. Closely related to this is the
concept of an affinely k-regular map f: X — R", where it is required that whenever
Xg, -, Xy, are distinct points of X, then f(x), ..., f (x,) are affinely independent
(i.e. they are the vertices of a non-degenerate k-simplex in R"). The latter concept
has been considered in [2], [1], and [9]. Clearly, a k-regular map is affinely
(k—1)-regular, and f: X — R" is affinely (k—1)-regular if and only if the map
g: X— R"*! = Rx R" given by g(x) = (1, f(x)) is k-regular.

k-regular maps are of relevance in the theory of Cebysev approximation. A set

. of n real-valued continuous functions on X is called a k- Cebysev set of length n if

these functions are the components of a k-regular map of X into R". The reader is.
referred to [10], pp. 237-242 for the significance of this concept.

The present paper is concerned with existence and non-existence of k-regular
maps. The following results are obtained:

THEOREM 2.1. X admits a 2-regular map into R" if and only if X admits an affinely
1 -regular map into R"™*. (Thus if X is compact, existence of a 2-regular map of X
into R" is equivalent to X being topologically embeddable in R 1Y),

THEOREM 2.2. If X admits a k-regular map into R", then each 0<i<k—1, and S
any subset of X with i points, X—S admits a (f—i)-regular map into R,
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2.2. is a slight sharpening of a result of Borsuk [2], p. 355 (proved there for the
affinely k-regular case). :

In Section 3 we note that existence of a k-regular map of X into R" implies
existence of an equivariant map (with respect to permutation of factors) of the kth
configuration space of X into ¥,(R"), the Stiefel manifold of k-frames in R". Algebraic
topology can be used to prove non-existence of such equivariant maps, and hence
non-existence of k-regular maps. As an example, we use this technique to prove
that the real projective plane P? does not admit a 3-regular map into R, (P? does
admit a 3-regnlar map into R®). Since P? embeds in R* and the complement of any
point in P* embeds in R?, this shows that the converse of 2.2 is false when & = 3.

In Section 4, linear algebra is used to produce quadratic 2 and 3-regular maps
on real projective spaces. /

2. Seme properties of k-regularity.

THEOREM 2.1. X admits a 2-regular map into R" if and only If X admits an affinely
1-regular map into R"™*.

Proof. If f: X— R""' is affinely 1-regular, then ¢: X — R" given by
g(x) = (1, f(x)) is 2-regular, as noted in Section 1.

Conversely, suppose g: X— R" is 2-regular. Define /f: X-— St by
h(x) = g()/llg (I|. hisinjective, and the image of # does not contain an antipodal
pair since no two distinct points of X are mapped by ¢ into the same line through the
origin." In particular 2 maps X injectively into a proper subset of §"~', and
hence X can be mapped injectively, i.e. affinely 1-regularly, into R

THEOREM 2.2. If X admits a k-regular map into R", then for cach 0<i<k~1
and S any subset of X with i points, X—S admits a (k—10)-regular map into R

Proof. Let f: X — R" be k-regular. Let x be any point of X, V' the orthogonal
complement of £(x) in R”, and mn: R"— V orthogonal projection. If x,,
are distinct points of X'—{x}, then £ (x), £ (%), ..., f (¥, ) are lincarly independent,
and hence 7f (x,), ..., ©f (x,-,) are linearly independent in ¥, Thus nf, followed by
a linear isomorphism of ¥ onto R"™!, yields a (k—1)-regular map of X'—{x} into
R"™1, The general result follows by iteration.

very Xy

THEOREM 2.3. If X embeds in the n-sphere S", then there exists a 3-regular
embedding of X in R"2,

Proof. The standard embedding of S" in R"*! is affincly 2~regular (no line
in R**! meets S" is more than 2 points), and hence by Section |, S* embeds in R"*2
in a 3-regular fashion.

3. Equivariant maps. Let F,(X) denote the kth configuration space of X, i.c. the
subspace of the k-fold cartesian product of X consisting of k-tuples of distinct
points of X. Let V,(R") denote the space of linearly independent k-frames in R".
The symmetric group on k letters, &, acts freely on both F(X) and V,(R") by
\permutation of factors. (It is more convenient for us to use V(R rather than the
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Stiefel manifold of orthonormal k-frames in R". The two are &,-equivariantly
homotopy equivalent.)

THeoREM 3.1. If X admits a k-regular map into R", then there exists an
S -equivariant map g: F(X) — Vi(R").

Proof. If f: X — R" is k-regular, define g: F(X)— Vi(R") by g(xq, .., X
= (/@) o f(0)- '

Let &7, denote the alternating group on k letters. If X is Hausdorff, we have
a double covering Fi (X)), — F(X)/S, where F(X)/oy, F(X)/¥) denote the
orbit spaces of F(X) with respect to the actions of &, ¥, respectively. Similarly
we have a double covering Vi (R"/sf,— V(R")/¥,. An &,-equivariant map
g: F(X)— V(R" induces a map of double coverings of the former to the latter.
Thus, combining with 3.1 we obtain:

THEOREM 3.2. If X admits a k-regular map into R", then there exists a map of
double coverings

Fk()l( Mty ——> ViR,

4 .
FUX)|Sy, ”’f’“’ VAR")

If &, (resp. o) acts on Y, for each point y & ¥ write yo (resp. y) for the point
in Y/, (resp. Y/o,) determined by y. Let T: V(R")sf,— V(R")/o) be the
involution which interchanges the two points of each fibre in the double covering
Vi(RY) oy — V(RS T is given by T(vy, ..., 0)a = (02, V15 s Vs Lot A
denote the real line bundle over V,(R")/, associated with the above double covering.
For each positive integer m, the total space of mJ, the Whitney sum of m copies
of 4, is E(mi) = Vy(R")sf,x ,R™ = quotient space of V,(R")/,x R™ obtained by
identifying (v, X)~(Tvy, —x) for all ve Vi(R") and xe R". Write (V> X)o for
the point in E(mA) determined by (v, x) € Vi(R")/o/; x R™.

LEMMA 3.3. Let k=3 be odd, and . the line bundle over V(R")|¥ as above.
Then n is isomorphic to A@a@®y, where « is a (k —1) - plane bundle with A @« orientable.

Proof. Let § denote the k-plane subbundle of ni given as follows:
E(B) = {((t+ .., v)y» ¥)a| xis alinear combination of vy, ..., v} I v = (g, -, )
& V(R"), the ordered basis (vy, v1)s, - (Vs Ui)2 Of the fibre over vy in f gives
a well-defined orientation of this fibre since an even permutation does not change
the orientation, and the above orientation coincides with that given by V> —V2)2>
(Wary =01)2r Warr —V3)2s eves (Ugs — 1), SinCE K is 0dd. Hence f is orientable.

For v as above, write Y0 = vy+...+2, and let A’ denote the line subbundle
of f whose fibre over vy is spanned by (v, Y. t),. We have an isomorphism of line
bundles A - A’ given by (v, 1)2+> (0, 1 Y, U),. Thus f =2 2'@o where o is a comp-
lementary subbundle to A’ in f: Take y to be any complement to B in ni.

LEMMA 3.4. Let u denote the first Stiefel-Whitney class <of the double covering
V3(R%)o 3 — V3 (R)SF5. Then = 0.

§ — Fundamenta Mathematicae CVI
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Proof. We have 54 = i@a@®y where « and y are 2-plane bundles over
V4(R%)/ as in 33. We have w(4) = 1-+u. By the Whitney product formula [8],
p. 37,

(1) (A+u)* = w(@w(y).

Since 1@« is orientable, w,(A@a) = O [8], p. 146 and so it follows from the Whitney
product formula that wy(e) = u. Thus (1) yields

o)) Lu* = (L+u+wa@) (1w () +wa() .

Hence the 1, 2 and 3-dimensional components of the right hand side of (2) are 0,
which yields

u=w®,
G- , uw (1) + wa(@)+wy(y) = 0,
wi(P) Wy (o) +uwy(y) = 0.
Multiplying the second equation in (3) by u, together with the first and third equations

yields #® = 0.

THEOREM 3.5, There does not exist a 3-regular map of P* into R

Proof. Regard P? as the space of lines through the origin in R, If x and y are
distinct points of P2, let p(x, y) denote the unique line through 0 in R® which is
perpendicular to the plane of x and y. We have a map of double converings

(P LRy (Pt

Fy(PY)F ) — F3(P2)/.9”3

where f(x,y) = (%, 7, p(x, 1)) Let v denote the first Stiefel~Whitney class of
the double coveting F,(P%) — F,(P?)/%,. Since #,(P?) % 0, it follows from [11],
p- 380 (also [5], Theorem 3.7) that v* # 0. Thus by 3.4, there does not exist & map of
double coverings ’

Fy(P)]st 3 n Vo R¥) .ot

Fy(PH)&y o V(RIS

and so we are done by 3.2,

Note that since P embeds in S*, there does exist a 3-regular embedding of P
into R® by 2.3. In fact, in the next section we will show that a quadratic (defined
below) 3-regular embedding of P? into R® exists.

4. Quadratic 2 and 3-regular embedtlings of projective spaces. Regard real
projective m-space P as the quotient space obtained from $™ by identifying antip-
odal points. Write [x] for the point in P" determined by xeS",
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DerNiTION 4.1. A quadratic map f: P™— R" is one of the form FIx] = g(x®x)
where g: R"!'@R™*! — R" is a linear map.

Equivalently, f'is quadratic if the coordinates of f [x] are homogeneous quadratic
polynomials in the coordinates of x.

Ifue R"®R", u # 0, the rank of u is the smallest integer r such that u is exXpress-
ible in the form u = x, @y +...+x,8y,.If e, ..., e, is a basis of R” and we identify
R"®R" with M, (R), the space of real nxn matrices, under the identification
2, aye;®e; + (), then the above notion of rank coincides with the usual matrix
rank.

THEOREM 4.2. Let k = 2 or 3. If f: P"— R" is the quadratic map given by
fix] = g(x®x) where g: R™**@R""! — R", then f is k-regular if the kernel of g
contains no non-zero symmetric elements of rank <k.

Proof. We give the proof for k = 3. (The case k = 2 is simpler.)

If [x], [¥], [2] are distinct points of P™ such that f[x], f[y], f[z] are linearly
dependent, then there exist real numbers a, b, ¢, not all 0, such that

0 = af [x]+bf [y]+¢f [2] = g(ax@x+byQy+c2®z) .
Hence, by the hypothesis on the Kernel of g,
(@) ax®x+by®y+cz®2 =0,

Since [x], [y], [z] are distinct, no two of x, y, z are linearly dependent, and hence
no two of x®x, y®y, zQz are linearly dependent. Hence by (1), a, b, ¢ must all
be non-zero.

x, ¥, z cannot be linearly independent, for otherwise x®x, y®y, z®z would be,
contradicting (1). Say z = sx+1y, 5, 1€ R. Then both s and ¢ are non-zero, for
otherwise [z] would not be distinct from [x] and [y]. Substituting into (1) yields

2 (a+csHx@x+(b+ct?)y@y+cst (x®y+y®x) = 0.

But x®x, y®y, x®y+y®x are linearly independent, and so est=0,a contradiction.
Note that if k=4 and m>1, a quadratic map on P™ cannot be k-regular, for

. . x+ X—y
if x, y are orthogonal points on S", then the lines [x], [y], [ y:I, |: :]are

NN
distinct, but x®ux, y®y, (%)@(i\—/%z) (fjaz)@(%;) are linearly de-

pendent.
DEerFINITION 4.3. A linear subspace of M,(R) is k;regular if it contains no
non-zero symmetric matrices of rank <k.

COROLLARY 4.4. Let k = 2 or 3. If M, (R) contains a k-regular subspace of
dimension (m+-1)*—n, then P™ admits a quadratic k-regular map into R".
gx
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Proof. Such a subspace corresponds to a subspace K of R™1@R"*! with
no non-zero symmetric elements of rank <k, and so the composition

Rm+1®Rm+1—*(Rm+l®Rm+l)/Kg— R

yields the desired quadratic k-regular map by 4.2.

ExAMPLE 4.5. Let § be the subspace of M, (R) consisting of all matrices

A4 = (a;) satisfying 3 a,;=0 for 2<g<2m+2. The dimension of § is
it+j=q

(m+1)*—@2m+1). S is 2-regular, for if (a;;) is a non-zero symmetric matrix in §
and g, is the smallest integer for which the a;;, i+j = ¢, are not all 0, then at least 3 of
these a,; are non-zero and so rank (a;;) 3. Hence, by 4.4, there is a quadratic 2-regular
embedding of P™ in R**1 for all m.

This result is best possible when m is a power of 2, for then P does not embed
in R*"=1 ([4], p. 34 or [11]) and hence, by 2.1, does not 2-regularly embed in R?™.

EXAMPLE 4.6. Let S be the space of all skew-symmetric matrices in M;(R).
§ is k-regular for all k, S is 3-dimensional, and so by 4.4 there exists a quadratic
3-regular embedding of P2 in R®. By 3.5, this result is best possible.

EXAMPLE 4.7. Let S, consist of all matrices in M4(R) of the form

a b ¢ 0
b—a 0 ¢
¢ 0 —a~b
0 ¢—-b a

and let .S be the direct sum of S, with the space of all skew-symmetric matrices in
My(R). Since every non-zero matrix in S, has rank 4, S is 3-regular. S is 9-dimen-
sional, and so by 4.4 there exists a quadratic 3-regular embedding of P*® in R’.

We conjecture that P* does not 3-regularly embed in RS. (This would follow
from 2.2 if we knew that the complement of a point in P* does not topologically
embed in R*. It is known [3], Corollary 1 that it does not differentiably embed
in R%.

A linear map R"®R™ — R" is non-singular if its kernel contains no elements
of rank 1. Extensive results on the existence of such maps have been obtained in [7]
and [6].

THEOREM 4.8. Suppose there exists a quadratic 3-regular embédding of P™ in R”,
and a non-singular map R"* @R — R, Then there exists « quadratic 3-regular
embedding of P+l j, RInta

Proof. M, . ,(R) contains a 3-regular subspace S, of dimension (m-+1)*—n.
The kernel of the non-singular map yields a (n+1)2—¢-dimensional subspace T'
of M,..1(R) which contains no elements of rank 1. Let

g

AeS,,BeT,CeM,,,H(R),DeS\L

.IJ'
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Then S is a 3-regular subspace of M,,.,(R) of dimension (2m+2)>—(@2n+q),
so we are done by 4.4.
4.8 is crude, and can undoubtedly be improved.

ExaMPLE 4.9. Quaternionic multiplication yields a non-singular map
R*®R* — R* Thus 4.7 and 4.8 yield a quadratic 3-regular embedding of P7in R'®.
Cayley multiplication yields a non-singular map R®*® R® — R®, and hence there is
a quadratic 3-regular embedding of P!® in R*4.
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