The compactness number of
a compact topological space I

by

. Murray G. Bell (Edmonton, Alba.) and Jan van Mill (Amsterdam)

Abstract. We generalize the notion supercompactness as defined by J. de Groot [6].

1. Introduction. Alexander’s well known subbase lemma states that a topological
space is compact if and only if it possesses an open subbase % such that each cover-
ing of X by elements of % contains a subcovering of finitely many elements of %.
This lemma suggests the following definition: for a compact Hausdorfl space we
define the compactness number cmpn(X) of X in the following manner

compn(X)<k (k € w) if X hasan open subbase % such that each covering of
X by elements of % has a subcovering of at most & members,

cmpn (X) = k(k € ») if cmpn(X)<k and cmpn(X) <k,
empn(X) = oo if cmpn(X) is not finite.

This definition of compactness number enables us to distinguish between compact.
Hausdorff spaces in compactness type. Clearly cmpn(X) =1 iff [X] =1 and
cmpn (X) = 2 iff X is supercompact (in the sense of de Groot [6]) and contains more
than one point. In van Douwen & van Mill [4] it was shown that the one point com-
pactification of the Cantor tree £2 U “2 (cf. Rudin [9]) has compactness number 3
(this fact was also proved independently by the first author of the present paper).
In this paper we answer some obvious questions. We show that for each k>1 there
is a compact Hausdorff space X, which has compactness number k; moreover fiN,
the Cech-Stone compactification of the natural numbers, has compactness
number 0.

The last years much time has been spent to prove that certain compact Hausdorff
spaces are supercompact (cf. Strok & Szymartiski [10]; cf. also van Douwen [3])
and also that certain compact Hausdorff spaces are not supercompact (cf. Bell [1], [2],
van Douwen & van Mill [4], van Mill [7]). The first examples of nonsupercompact
compact Hausdorff spaces were given by Bell [1]. The results in this paper generalize
some of the results in [1] and [4].
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This paper is organized as follows: in Section 2 we prove a combinatorial resuit,

which then is used in Section 3 to construct the examples and to prove that
cmpn(fX) = oo if X is not pseudocompact.
In Section 4 we collect some questions we cannot answer at the moment,

2. Combinatorics. Let N denote the set of natural numbers; 2 (N) is the powerset
of N. If 4 is a set and x is any cardinal, define

[l = (B4} |B] = x},
(41 = {B 4| |B|<x},
[A]5% = {B= 4| |B]<x}.
A collection of sets % is called an independent family if for each pair of disjoint finite

subsets & and J# of & the set N & —J 4# isinfinite. The existence of an independent

family of cardinality ¢ of subsets of N was first proved by G. Fichtenholz and.
L. Kantorovitch [5].

2.1. DEFINITIONS. Let n>1. Let of = {4,) yer} and 2 = (B, yeTl} be
two collections of sets such that 4,=B, for each yeI'. We call o independent
over % if for each pair of disjoint finite subsets ¥ and G of I" the set N 4,-U B,is

infinite. In addition 7 is called an n-transversal on /B if e e
@ Tey «;
(®).IT 0 N #| =1 for each & e []";
© ITn N #| =G for each Fel[R]"*1.
2.2. LemMA. Let n>1. Let {A,)| a<w),, I<i<n} and {B,| a<w,} be two collec-

n
tions of subsets of N such that Jor each a<w, we have that UA,<=B, anu
. i=1

n
{U 4ol a<w,} is independent over {B.} w<w,}. Then there exists an uncountable
i=1

subset M of w, and for each o A an n, with 1<n,<n such that {Aen) we M} is
independent over {B,| we.#}.

Proof. The proof is by induction. The case n = 1is obvious. Assume the lemma

nt+ 1

s true for n and let 4, = p 4y The A, s are now constructed inductively. Assume
we have chosen .4, andl—";/f « for a<f<cw,; such that

D A, v W cw,, My W, =& and W, is co-countable in Wy

(2) y<a implies that A, is properly contained in 4, and W’ =W y;

(3) for all disjoint finite subsets F and G of .#, and all disjoint finite subsets

and K of %, ( Apmer 0 N A)— N B, is infinite.
veF yeH reGUK
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If 4, and #°; can now be constructed such that (1), (2) and (3) hold then
{Auns1] we U ;) will be independent over {BJ ae ) g} To this end, observe
B<wy

<o

that [} #7, is again co-countable. For each ye ) %", define C, = 'ULAN'
a<f a<p i= L
If there exists an uncountable subset # of ) %", such that {C,| ye #} is in-

a<p ) B
dependent over {B,| y € 2} then by our inductive hypothesis for » we shall obtain
what we want inside of 2. Therefore assume that for each uncountable subset 2 of
() #, there exist disjoint finite subsets Fp and G, of £ such that
a<f .

I NC—UBjl<o.

veFg 7E Gg,

Striving for a contradiction, assume that for each & e {’]ﬂ ¥, and each co-
23

countable subset # of () #", there exist disjoint finite subsets F5 and G5 of | .#,

a<f a<p

and disjoint finite subsets H; and K; of £ with
I(A6n+1 n ﬂ A-,Jn+1 [l ﬂ Ay)_ U ‘B'y|<w .

vyeFg yeHg yeGsuKs
Choose an uncountable subset Z of ) #7, and for each e # a F,, G;, H; and K;

' m<ﬂ ey . .
as above with {H;| 6 e &} u {K;| 6 € #} being a mutually disjoint collection and
such that

2e(UHuU Ky)=0.
deR deR

The set # can be constructed inductively using the preceding assumption. Since

there are only countably many pairs of disjoint finite subsets of agﬁ.//u it follows

that there must be two disjoint finite subsets F and G of | ., and an uncountable

a<p

subset & of # such that for each 6 € 2 we have that

' Adpn NA)- U Bl<o.
I(Ar‘n-)-InyQ? yn+1 ‘)'EQL‘ Y" yeGuKa Y

For this £ there exist disjoint finite subsets Fp and Gz of 2 with LEQgCy ——TEU%BYI <a)
Since
n A'yc n C;' o U A6n+1

veFgp veFgp deFgp
it follows that

I(VQ:AVIH-I n N {A}'I Y€ Fp k{;gngé})— U{B)l yeGu G, U(’ELFLKa}l<W .

This contradicts (3) since F and G are disjoint finite subsets of some .#,, for 0, <f

and Fp U ) Hs and Gg U {J K; are disjoint finite subsets of Dﬁ’)‘/f =W o
deFgy deFyp ?
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Consequently choose 6 & (| #7, and a co-countable subset #7; of (| #", such
a<p a<p
that for disjoint finite subsets F and G of {) .#, and disjoint finite subsets H and K
a<p

of ¥4 we have that
I(A5n+1 n ﬂ Ayn+1 N ﬁ A/)_' U Byl = .
veF UK

yeH ye G
Since € ()} #°, it is also true that

a<p

K ﬂ Ayn+1 N ﬂ A/)_(Bﬁ v U By)l =0.
yeF yeH ye GUK

Hence defining 4, := |) J#, U {6} we see that ., and ¥, satisfy (1), (2) and (3).
a<p
This completes the proof. B
We need another lemma.

2.3. LemmMa. Let n>1. Let {A,| a<w,} and {B,| a<w,} be two collections of
subsets of N such that for each a<wy we. have that A,= B, and {A,| a<w,} is inde-
pendent over {B,| a<w,}. Then there exist {a;] i<w}cw, and a T<N with T an
n-transversal on {A,] i<w}/{B,| i<w}.

Proof. If m =1 then proceed as follows; if for all ye 4, we have that
{B<w| y¢ B}l <o then |{f<w,| Aod By} <w,. Thus there exist infinitely many
B>0 with A,<=B,, which is a contradiction. Choose 1, & 4, and Mycw; with

[#ol = 0, and 1,¢ | B,. Let ap:=0. If n>1 then proceed as follows; let
ae.uflo

My 1= w;—{0} and o := 0.
Assume that we have chosen {dg, ..., &}, {Aq, ..., #,,} and’
{tul He[{0, ..., m}]"}
such that
(1) O<i<m implies that o, € ;| ~M; (M_, = ©,),
@) Ay My e.cllycH | and | M,| = o,
(3) tye DHA““(U {Bul Oi<m, i¢ HY U U {By| Be M n))
Ie

Upon completion of the inductive step T = {f,| H e [0]"} will be an n-trans-
versal on {4,| i<w}/{B,] i<w}. This is true since for all H e [w]" we have that
Tﬁ'-QIA“‘ = {ty} and for all He [w]"*"! that TN [} B, = @. Clearly T {J Ay

ieH i<w

Choose a4 € .4#,. Enumerate {H| He [{0,..,m+1}]" and m+1e H} as
{H;] 1<j<r}. For each j such that 1<j<r choose an uncountable subset P, of M,
and a ty e ({4,| ie H}~() {B,l 0<i<m, i¢ Hj} v U {Byl Be#;})such that
if 1<j<k<r, then P, ;. For if this could not be achieved then there would exist
a j with 1< j<r and infinitely many B ¢ {o,| i€ H,} such that
igi AU (B, 0<ism,i¢ H} v By

which would contradict independence.
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Let Mpsy = Pr. Then {ag, s tpi1}> { Moy ees Mmiq} and

' {tal He[{0, ..., m+1}1%}
satisfy (1), (2) and (3). ®
We now can prove the main result in this section. We remaind the reader of
the following theorem of F. P. Ramsey [8]: If land I are two positive integers and

the collection {W;: 1<j<1} satisfies [N]" = ) W;, then there exists an infinite
i=1
AN and an s with 1<s</ such that [4] = W,.

2.4, THEOREM. Let n>2. Let T =P (N) and let g: P(N)— [T1°° such that
for all Ae P(N) we have that A = ) g(A). Then there is a collection H# € [P (N)]"
and for each He ' there is a Gye g(H) such that

M N# =69

(ii) for all Be[{Gyl He#}]""* we have that (\ B # O.

Proof. For n = 2 choose two disjoint non-empty subsets H and K of N.
Choose Gyue g(H)—{@} and Gye g(K)—{@}. Let o := {H, K}.

So assume that n>2. Let {4,] a<w,} be an uncountable independent family
of subsets of N. Pick an uncountable subset .#-of @, and an m<w such that for
each ae 4, |g(A4,) = m. For each c e # let g(4,) = {4, .., Aum}-

Lemma 2.2 followed by Lemma 2.3 yields {o;| i<w} < .#, for each i<w an m,
with 1<m;<m and a T< N with T an n—2 transversal on {dy,| i<o}/{4,| i<o}.
Moreover {A,,,| i<w} has finite intersections infinite.

Let g(T) = {Gy, ..., G} and W; 1= {Fe[N]""* T~ ‘ﬂFAm,‘,e G} A<j<g)).

L
Thus [N]""? = U W;. F. P. Ramsey’s theorem [8] supplies an infinite A< N and
i=1

an s with 1<s</ such that [4]""*< W,. Choose n—1 distinct elements from A4;
without loss of generality let them be 1,..,n—1. Define # := {TY v
U {4, 1<i<n—1} and let Gy = Gg and GAM:= Ayym;- Since T is an n—2 trans-
versal, (o = @. Since () {G,,| 1<i<n—1} # @ and {1, ..,n—=1}1""%c Wi
all n—1 fold intersections of the Gy’s for He # are non-empty. B

3. Spaces with finite and infinite compactness number. In the introduction we
defined the compactness number cmpn (X) of X in terms of an open subbase. This
can of course also be defined in 2 dual form; cmpn(X) <k (k € w) if X admits a closed
subbase & such that for all # <& with () .# = @ there is an ¥ € [#7 such
that () % = @ and cmpn(X) = oo if for each closed subbase & for X and for
each k & N there is an W & with () A = @ while N #" # S for all # e [#]
We prefer to work with closed subbases.

We start with some auxiliary results. The easy proofs are left to the reader.

3.1. PROPOSITION. Let X, (€ %) be a collection of compact Hausdorff spaces.
Then. cmpn( [T X,) < sup {cmpn(X,)| aex} W

aex
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3.2. LemMA. Let X be a compact Hausdorff space for which k = cmpn(X) is
finite. Then there is a closed subbase & for X which is closed under arbitrary inter-
sections and which in addition realizes k, i.e. for all M =S with [\ M = D there
is an W e MY such that W =O&. &

We now can prove a simple but useful fact.

3.3. THEOREM. Let X be a compact Hausdorff space and let A be an open and
closed subspace of X. Then cmpn(4)<cmpn(X).

Proof. If cmpn(X) = co, then this is a trivialily; therefore assume that

cmpn(X) is finite. Let & be a closed subbase for X, closed under arbitrary inter-
sections, which realizes cmpn (X). Define o := {Se &| Sc=A}. We claim that & is
a closed subbase for 4. If this is the case, then clearly cmpn (4)<<cmpn(X).

Indeed, let ae 4 and let C<A4 be a closed subset not containing a. Then
(X—4) U {a} and C are disjoint closed subsets of X. By the compactness-of X and
by the fact that & is closed under arbitrary intersections, there is a finite F# <&
suchthat Ce{) & and J & n ((X—4) U {a}) = @. Hence F < 7 which implies
that </ is a closed subbase for 4. M

3.4, CoROLLARY. Let X, (ke N) be a sequence of compact Hausdorff spaces
for which cmpn(X;) = k (ke N). Let Y be the disjoint topological sum of the X,'s.
Then every compactification of Y has infinite compactness number. R

The following theorem gives a wide class of compact Hausdorff spaces with
infinite compactness number. Recall that two subsets 4 and B of X are called com-
Ppletely separated provided that there is a continuous function f; X—I such that
fl4] = 0 and f[B] = 1. The following fact is easily verified. If U and V are two
completely separated subsets of the Tychonoff space X then there is a zero-set Z
of X with Ucintsyclyy(Z) and Z n V = @.

3.5. THEOREM. If X is a non-pseudocompact space and if Y is a compact Hausdorff
space which can be mapped continuously onto BX, then cmpn (Y) = co.

Proof. Let X be a non-pseudocompact space and let ¥ be a compact Hausdorff
space which admits a continuous surjection g: ¥ — B.X. Assume that cmpn(Y) = m
and let & be a closed subbase for ¥, closed under finite intersections, which realizes
this fact. Let C' = {¢, | ne N} be a subset of X for which there exists a continuous
map f from X to R with f(c,) = n. Define

Cyi={xeX| n—%< fx)<n+1}.

Then € := {C,| ne N}is a disjoint collection of cozero-sets of X with ¢, e C, and
such that for each AN the sét {¢, | ne 4} and X— C, are completely separated.

ne A

For each 4= N choose a zero-set Z,< X such that

clpx({bn! ne AP cintyyclpy(Z,) and  Z,= | C,.
ned

Moreover for each A= N choose a finite 4<% such that

g™ elgx({c,] ne 4Dy & a=g™ intgyclye(Z,)] .
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For each ne N let d,e g™ *[{c,}]; let D := {d| ne N}. Let
T :={fg[Sn D] Se&#, and AcN}
and define §: #(N)— [71°° by
gld) = {fg[Sn D] SeL,}.
Then clearly 4 = |J §(4). Now, by Theorem 2.4, there is an # e [#(N)]"*! and
for each He s there is a Gy e §(H) such that
O NH =20,
(i) for all & e [{Gy| He s#}" we have that (| & # @.
For each H e # choose Sy e %y such that Gy = fg[Sy n D] The contradic-
tion: {Sy| He #)} contradicts cmpn(Y) = m, since
@ N Sy= N g7 elp(Z)] = g7 N lpx(Z)] = g7 [clpx( N Z)]
Hex = Hes# He# Hex
Cg—l[CIIJX( ﬂ ( U Cn)] = G’
Hed ned .
() let #'e[#]" and ne () Gy = () fg[Sy 0 D).
Hex’ Hed’
Then d,e ) Sy.

Hex’
Arriving at this contradiction, we conclude that cmpn(Y) = 0. M

Remark. With the same technique it can be shown that if X is a non-pseudo-
compact space then X is not a continuous image of a closed neighborhood retract
of a space Y with cmpn(Y)<co.

We shall now construct the examples X, (k>1) which were announced in the
introduction; first we give some definitions.

Let X be a set; a subset & <2 (X) is called a linked system if any two of its
members meet. A maximal linked system ¥ = P (X), or briefly mls, is a linked system
not properly contained in any other linked system ¥'<2(X).

Define

AN = {L<PN)| & is an mls}

(recall that N is the set of natural numbers). For all A= N define 4 <iN by
At = {#elN| Ae M} .

" The collection {A*] A=N} is taken as a closed subbase for a topology on AN.

It is known, cf. de Groot [6], Verbeek [11], that AN is a supercompact totally dis-
connected separable Hausdorff space; the subbase {A*] AcN} realifes 2. The
space AN is called the superextension of N. For convenience we will recall some
properties of AN and of the subbase {4¥| A<N}. The proof of the following lemma
can be found in Verbeek [11].

3.6. LemMA. Let My, M (€ AN. Then

@) My = My iff AM e M, (i6{0,1}): My M, =@,

2 — Frundamentha Mathematicae CVI .
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(b) if A=N then Ae .y or N—d e M,

() AnB=@G=>A"nB" =9,

(d) if L<P(N) is linked then there is an M € IN: LM,

(€) the mapping i1 N— AN defined by i(n) := {A=N| ne A} is an embedding,

(f) the closure in AN of i[N] is equivalent to BN. B

We will always indentify N and i[N]. Then notice that B* n N = B for all
Bc N, If Ac/N then define I(4)<AN by

I(4) == () {M*] McN and AcM*}.

We need a simple lemma.
3.7. LemMaA. If A € I(A) then for all M € .4 there is an sf € A such that M e of .

Proof. Suppose, to the contrary, that there is an .# € I(4) and an Me .#
such that M ¢ o for all & € A. Then, by Lemma 3.6(b), N\M e & for all & ¢ 4.
Hence Ac={N\M)* and consequently

A<l c(N\M)*,

this is a contradiction, since .# € I(4). B

We now can construct the examples.

3.8. EXaMPLE. A sequence of compact Hausdorff spaces X, (k=2) with the
following properties:

(2) cmpn(Xy) = k (k=2),

(b) if ¥ is a compact Hausdorff space which can be mapped continuously
onto X, then cmpn(¥)=k (k=2).

Indeed, define
X, = {MeiN| VBeld: (NB =0 =>ABcH: 1eB)}.

Notice that Nc X, (k=2).

CLamM 1. X; is closed in AN, so that X, is compact, Hausdorff and totally discon-
nected. Therefore, as Nc X, also fN< X,.

Indeed, take .# € AN~X,. Let #e[#] such that & = & and for all

Be#: 1¢B. Then U= () B* is a neighborhood of .# which misses X; (notice
BedB

that # is finite and also that each set of the form M * is open and closed in AN,
cf. Lemma 3.6(c)(b)). ®

CLAaM 2._cmpn(Xp<k.

Define 7 := {M* n X,] McN}. Then ciearly 7, is a closed subbase for X.
Let £ 7, be a subsystem such that for all #Z e [#]: | ## @. We will prove
that & has the finite intersection property and consequently, by Claim I, | & # @.
This suffices to prove the claim. The proof is by induction.

The compactiess number of a compact topological space 1 171

Assume that any n—1 members of & meet. If ne {1, 2, ..., k} then clearly any n
members of & meet. Therefore assume that n>k Let L n X, e L (ie {1, 2, .., n})
and take for each ie {1, 2, ..,k+1} a point

Jlie NI nXy.
5

Define # := [{.#,] i<k+1}]" and o := [{#}] i<k+1}]>. Morcover, let
Z:=NIBn NI4du{1}).
Be® Acst

We claim that this set is nonvoid. Indeed, the system
# = {McN| 3BeB: BcM*} G {McN| Jdeof: AU {l}cM*}

clearly is linked, and consequently, by Lemma 3.6(d), there is a point # € AN such
that Z<#". Then obviously # € Z. i

Next, observe that Zc () I(B)c (VL] and hence if Zn X, = & we have

Be® isn
proved Claim 2.

We prove even more; the set Z is contained in X;. To this end, let ¥" € Z and

let Ve ¥"(i<k) such that (\ V; = @ and 1 ¢ V; for all i<k. We will derive a con-
i<k
tradiction, showing that ¥ e X.

Fix i<k and define D, := {j<k+1| V;e.#;}. Let us prove that |D;|>k.
Indeed, suppose that |D,|<k. Choose distinct jp, j; € {1, 2, ..., k+1}—D;. Then,
since ¥" € Z<I({M,, )}, 1}), by Lemma 3.7 it follows that V, & 4, or Ve 4,
or 1eV,;, which is impossible.

Now, as | D2k for all i<k there is an index i, € () D;. Then V; e .4, for all

i<k
i<k. But as .#,; € X, this is a contradiction. B

Cramv 3. If Y is a compact Hausdorff space which can be mapped continuously
onto Xy, then coapn(Y)=k. In particular cmpn(X}) = k (k>=2).

Let Y be a compact Hausdorff space and let f: Y—X, be a continuous sur-
jection. Suppose that & is any closed subbase of ¥ which is closed under arbitrary
intersections. For each BoN—{1} choose a finite # (B)<¥ such that () # (B)
=f7![B* n X,]. Notice that B* is clopen in AN so that f"[B* n X,] is clopen
in ¥ too. For each n e N—{1} pick d, e/~ *[{n}]. Define a function g: #(N—{1})
— [Z(N={ID]"* by

g(B) = {{ie N—{1}| die F}| Fe #(B)].
Notice that g(B) e [#(N—{1})]"® and that B = {Jg(B). By Theorem 2.4 there is
a collection o e [P(N —{1})]* and for each H € 3# there is a Gy € g (H) such that
@ N# =9, \
(b) for all & e [{Gy| He #}*~* we have that () % # .
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For each He # take S(H)e such that {ie N—{1}| d;e S(H)} = Gy.
Notice that for all Z e [{S(H)| He Y]t we have that () & # @ and also that

N SH)e N fHE 0 X =710 H 0 X)].
Hewx Hew#

HexX

We claim that ) (H* n X;) = &, which suffices to prove that cmpn(Y)>k.
HedX

Indeed, assume that there is an 4 € () (H* n X;). Then, as H e[ and as
Hext

N # = @ there is an H, € # such that 1 e H,, since 4 € X,. Since A/ = Z(N—{1})
this is a contradiction. M

- Remark. With the same technique it can be shown that if X} is a continuous
image of a closed neighborhood retract of a compact Hausdorff space Y, then
cmpn(Y)=k.

In view of Corollary 3.4 we have also constructed the following example.

3.9. ExamPLE. A noncompact locally compact and o-compact space X all
compactifications of which have infinite compactness number. M

4. Discussion and questions. The results derived in the present paper suggest
many questions. For example, the spaces constructed in Example 3.8 are not first
countable and have cardinality 2°; this suggests the question whether there exist
first countable spaces with the same properties.

4.1. QuesTION. Is there a sequence of first countable separable compact
Hausdorff spaces X; for which cmpn(X;) = k (k=2)?

If the answer to this question is affirmative, then the Alexandroff one point
compactification of the disjoint topological sum of the X;’s would yield a separable
first countable space with infinite compactness number.

The problem whether Hausdorff continuous images of supercompact Hausdorff
spaces are supercompact, cf. van Douwen and van Mill [4], is still unsolved. The
examples (Example 3.8) constructed in this paper suggest a more general question.

4.2. QUESTION. Let X and Y be compact Hausdorfl spaces and let f: X — ¥
be a continuous surjection. Is cmpn(¥)<cmpn(X)?

If this is not true, then we still have the following question:

4.3. QUESTION. Let X and ¥ be compact Hausdorff spaces and let f2 X — Y
be a continuous surjection. Is cmpn(Y)<oo if cmpn(X)<co?

There is a countable space no compactification of which is supercompact
(cf. van Mill [7]). In view of Example 3.9 this suggests the following:

4.4. QUESTION. Is there a countable space with only one non-isolated point
all compactifications of which have infinite compactness number?
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Added in proof. C. F. Mill and J. van Mill have recently constructed a non-supercom-
pact Hausdorff continuous image of a supercompact Hausdorff space.
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