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Normality and paracompactness in
finite and countable Cartesian products

. by
Teodor; C. Przymusinski (Pittsburgh * and Warszawa)

Abstract. We prove the following two theorems.

THEOREM 1. For every k and m such that 1< k< m< w there exists a separable and first countable
space X = X(k,m) such that .

(a) X" is paracompact (Lindeldf, subparacompact) if and only if n<k,

(b) X" is normal {collectionwise normal) if and only if n<m,

THEOREM 2. There exists a separable metric space M and a separable and first countable Lindeléf
space Y such that Mx Y is not subparacompact.

§ 1. Introduction. Throughout this paper k,.m and n denote natural numbers
0,1, 2, ... or the first infinite ordinal (cardinal) w. Unless otherwise stated, all spaces
are completely regular. For undefined notions the reader is referred to [5]. The
following results are proved.

THEOREM 1:1. For every k ard m such that | <k <m< o there exists a separable
and first countable space X = X(k, m) such that

(a) X" is paracompact (Lindeldf, subparacompact) if and only if n<k;

(b) X" is normal (collectionwise normal) if and only if n<nr.

COROLLARY 1.2. For natural numbers k and m satisfying k<m there exists a first
countable and separable space X = X (k, m) such that :

(a) X" is paracompact (Lindeldf, subparacompact) if and only if n<k;

(b) X" is normal (collectionmwise normal) if and only if n<m. B

COROLLARY 1.3. There exists a first countable and separable Lindeldf space X such
that X* is (collectionwise) normal but not paracompdct. W

COROLLARY 1.4. There exists a first countable separable space X such that X" is
Lindeldf for all n<c but X is not normal. M

THEOREM 1.5. There exists a separable metric space M and a separable and Sfirst
countable Lindelsf space Y such that Mx Y is not subparacompact.

COROLLARY 1.6. There exists a first countable and separable Lindeldf space X such
that X?* is not subparacompact. :

* This paper was completed while the author was visiting the University of Pittsburgh as
a Mellon Postdoctoral Fellow (1975-76) and a Visiting Assistant Professor (1976-77).
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Remark 1.7. a) In the above theorems subparacompactness can be everywhere
replaced by 0-refinability (see Section 3 and Remark 4.7).

In particular, Theorem 1.5 provides an example of a separable metric space M
and a Lindelsf space Y whose product M x Y is not @-refinable.

b) The space X = X(k, m) from Theorem 1.1 also has the property that X" is
countably paracompact (tesp. w;-compact) if and only if n<m (see Section 4). In
partioular, it follows from Theorem 1.1 that for every m< w there exists a first coun-
table separable space X = X(m, m) such that X is Lindelof for every n<m, but X™is
neither normal, nor countably paracompact, nor ;-compact, nor subparacompact,

¢) Since countable products of paracompact Cech-complete spaces are para-
compact, the space X = X(k,m) cannot be Cech-complete if k>1. However,
X(k, m) is locally compact (and locally countable) if k. =1 (see Remark 4.8).
Therefore, for every m<w the space X(1, m) may serve as an example of a first
countable, separable, locally compact and locally countable space X such that X" is
collectionwise normal, countably paracompact and ®,-compact for every n<m,
but X™ is neither normal, nor countably paracompact nor ®;-compact. M

The results obtained in this paper and also its title were inspired by a beautiful
paper entitled “Paracompactness and the Lindelof property in finite and countable
cartesian products” written in 1971 by E. Michael [12]. Theorem 1.1 answers some
of tHe questions raised in Michael’s paper (see Section 2 for details).

Our paper originated after the author was informed about a recent result
(Theorem 2.13) obtained by K. Alster and P. Zenor under the assumption of the
Continuum Hypothesis. Methods and ideas from their paper [3] are frequently
exploited in the proof of Theorem 1.1. :

Throughout this paper we make an extensive use of the techniques used by
E. van Douwen in his paper [4], where a collectionwise normal non-paracompact
topology, stronger than the usual one, is constructed on the real line. We also exploit
ideas from K. Kunen’s paper [9] (where, under the assumption of the Continuum
Hypothesis, a technique for constructing spaces Z such that Z” is an S-space for
every n<w is described).

An important role in the proof of Theorem 1.1 plays the notion of n-cardinality,
which is introduced and investigated by the author in [I8].

The author is deeply grateful to K. Alster and E. van Douwen for many helpful
discussions.

Our paper is organized as follows. In Section 2 we review some of the known
results involving covering (and separation) properties of product spaces, pointing
out problems solved by our theorems.

Section 3 is devoted to the proof of Theorem 1.5 and in Section 4 Theorem 1.1
is proved. .

Section 5 is devoted to final remarks and a discussion of problems that remain
open.
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§ 2. Review of known results. In this section we discuss some of the known results
involving covering (and separation) properties. of finite and countable cartesian
products. The following diagram describes the relationship between different proper-
ties considered in this section.

' Lindelsf
¥

paracompact

- YN

collectionwise normal  subparacompact

collectionwise Hausdorff normal

Let us recall that a regular space X is subparacompact if every open covering
of X admits a o-discrete closed refinement. A T',-space X is collectionwise Hausdor/f
if every diccrete collection of points of X can be separated by disjoint open sets.
Tt is well-known that a space is paracompact if and only if it is collectionwise normal
and subparacompact. It is also easy to check that a separable paracompact space
is Lindeldf.

Most of the results reviewed below were obtained under additional set-theoretic
assumptions such as CH (Continuum Hypothesis), MA (Martin’s Axiom), E(w,)
or a conjunction of some of them or their negations, e.g. MA + 1CH (Martin’s
Axiom plus the negation of the Continuum Hypothesis). The reader should consult
corresponding references for definitions of these statements.

. A. The following question, attributed by E. Michael to M. Maurice, was often
asked (cf. Michael [12], Tamano [23], Rudin [197).

QUESTION 2.1. Assume that X and Y are paracompact spaces. Can X'x Y be
normal without being paracompact? What if ¥ is metrizable?

The second part of Question 2.1 was answered negatively by the following
result.

Turorem 2.2 (Tamano (1963) [22], Morita (1963) [13], Rudin and Starbird
(1975) [20]). Let X be a paracompact and M a metric space. The product space X x M
is paracompact if and only if it is normal *. ‘ :

CoroLLARY 2.3 (cf. [2]). Let X be a paracompact space and Y a paracompact
p-space (*), The product space: X x Y is paracompact if and only if it is normal.

Our Corollary 1.3 gives a positive answer to the first part of Question 2.1, The
following results — depending upon additional set-theoretic assumptions — were
known before.

(*) An analogous theorem is valid for open subsets of a product Xx M of a bereditarily para-
compact space X and a metric space M (see [17D.

(®) A space Y is a paracompact p-space if there exists a perfect mapping of Y onto a metric
space. Every metric space and every paracompact Cech-complete space is a paracompact p-space.
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THEOREM 2.4 (MA+ 1CH) (Przymusinski (1973) [15]). There exists a first
countable separable paracompact space X such that X* is normal but not collectionwise
Hausdorff (consequently X? is not paracompact).

THEOREM 2.5 {E(w,)+MA+ T1CH) (Przymusifski (1976) [16]). There exists
a first countable paracompact space X such that X* is noimal and collectionwise
Hausdorff but X? is not collectionwise normal.

THEOREM 2.6 (CH) (Alster and Zenor (1977) [3]). There exists a first countable
separable paracompact space X such thar X? is collectionwise normal but not para-
compact. ' '

TrHEOREM 2.7 (E(w,)+CH) (Przymusifiski (1976) [16]). There exists a first
countable paracompact space X such that X* is collectionwise Hausdorff but not
normal.

THEOREM 2.8 (MA + 71 CH) (Alster and Przymusinski (1976) [2]). There exists
a first countable separable paracompact space X such Ihat X° is normal but X? is
not paracompact.

B. Theorems presented below were proved by Michael [12] in 1971 mostly under
the assumption of the Continuum Hypothesis. Michael also raised the question
whether this assumption is necessary.

THEOREM 2.9 (Michael [12]). There exists a first countable space X such that X"
is paracompact for all n<cw bur X° is not normal. )

THEOREM 2.10 (CH) (Michael [12]). There exists a first countable space X such
that X" is Lindeidf for all n<w but X® is not noimal.

THEOREM 2.11 (CH) (Michael [12]). For every k< there exists a first countable
space X = X (k) such that X* is Lindelof but X*** is not normal.

THEOREM 2.12 (CH) (Michael [12]). For every k<w there exists a first countable
space X = X (k) such that X* is Lindeldf and X**' is paracompact but X*** is not
Lindeldf.

Recently, Alster and Zenor obtained

THEOREM 2.13 (CH) (Alster and Zenor (1977) [3]). For every k<w there exists
a first countable separable space x'= X (k) such that X* is Lindelsf and X*** is
(collectionwise) normal, but X*** is-not paracompact (in fact also X® is nor mal).

Corollaries 1.2 and 1.4 show that the assumption of the Continuum Hypothesis

in Theorems 2.10, 2.11 and 2.13 can be omitted (), thus partially answering Michael’s
question.

C. Alster and Engelking [1] showed in 1972 that there exists a subparacompact
space X such that X? is not subparacompact. Th.ir space X is neither Lindelof,
nor first countable. .

(®) Spaces X (and also X%)appearing in Theorems 2. 4,°2.5, 2.6, 2.7, 2.8, 2.11 and 2.13 are

additionally perfect, i.e. all open subsets are F, sets. The space X from our Theorem 1.1 is not
perfect.
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THEOREM 2.14 (Alster and Engelking [1]). There exists a paracompact space X such
that X* is not subparacompact. ,

F. Tall [21] raised the question whether there exists such a Lindelof space. It
was also unknown whether there exists a metric space M and a subparacompact
space Y such that M'x Y is not subparacompact (this question was communicated
to the author by K. Alster) and whether there exists a Lindeldf space X such that X2 is
not @-refinable. Theorem 1.5 and Corollary 1.6 give positive answers to all of these
questions (cf. Remark 1.7).

§ 3. Proof of Theorem 1.5. Let us recall that a Hausdorff space X is (countably)
0-refinable if for every (countable) open covering % of X there exists a sequence
{%,}5=1 of open coverings %, refining % and such that for every point x € X there

" exists an 7 so that only finitely many members of %, contain- x. Countable 0-refin-

ability coincides with countable metacompactness.

It is known [24] that a space is paracompact if and only if it is collect10nw1sc
normal and 0-refinable. The following diagram describes the relationship bétween
(countable) §-refinability and other covering properties (cf. [24])."

paracompact
)

PR TN
subparacompact metacompact o
countably paracompact

N
0-refinable
countably - 0-refinable

The proof of the lemma below is a sllght modification of the constructlon due to
van Douwen [4].

. LemMA 3.1. Let A be such a subset. of t/ze real line R that |F o A|. = ¢ for every
closed uncountable subset of R.

There exists a first countable, separable and locally compact topalagy on A whzch

. is stronger than the usual topology on A and is neither countably 0-refinable nor normal.

Proof. Let 4, be a countable dense subset of A. For every x e A we choose
a sequence {a,(x)}i% of points from A, sich that |x— a,(x)| <1/k. Let us enumerate
by {P,}.<. all countable subsets of A such that the closure P, of P, in R is un-
countable. It follows from our assumption that |P¢ N Aj = ¢, for every a<c, there-
fore by transfinite induction we can find for every a<candm=0,1,2, .. a point

_ xa',,,eF,, A AN(dq U {xp0 f<aor f= oc‘ and i<m}) .
We put ) - ’ - b R
S = {¥x,01 €<}
Sm = {‘xmm: 0(<C and 'Pug_SO}’ -fOl'_l?’l?l ’ -
N .
8 = AU S

m=1
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Clearly 4, U So<=S and S, N S,y = G if m # m'.

For every point x = X,, € A\S we choose a sequence {p,(x)};2, of points
from P, such that |p(x)—x|<1/s. Let us note that points p,(x) belong to S,<=S.

Topology 7 on A is generated by the system {#(x)};. of bases Z(x) of
neighbourhoods of points x € 4, where

B(x) = {B(O}Zy,
and
{x}, if xed,,
{x} v {ahzs, if x e S\4o,
{x} v {ps(x)}:';l v {ak(Ps(x))}:;l,:;s’ if xe A\S.

It is easy to check that the topology & is well-defined and stronger than the
usual topology on A. Sets B,(x) are compact subsets of (4, 7) and therefore J is
locally compact. Clearly J is first countable, locally countable and separable. Since
the sets S;,, m = 1,2, ... are closed, discrete and of cardinality continuum, the space
(4, 7)is not normal by J ones’ Lemma [7]. It remains to show that J” is not countably
6-refinable. '

Let% = {U,}m=, be a countable open covering of (4, J7), where U, = Su S,,,

- By(x) =

Let {%,}ne1 be a sequence of open covering refining %. For everyn = 1, 2, ... and
m=1,2,.
) W = U{Ue,: UnS, # B}.

We have S, W,, and S, A Wom = G, if m’ # m. We will show first that for
arbitrary » and m

ISO\VVnm] <w.

Indeed, otherwise there would exist a countable dense subset PcS)\W,,, and an
a<c such that P = P,c=§,. Therefore we would have x,,eS,n W,, and
Py, W,, = @, which by (1) contradicts the openess of W,,.

~Let '

m = SO\ U (SD\an)
n=1

m=1

K=58n ﬂ

e}
Since x5 € ) Wiy»
m=1
by (2) there exist sets U,e%,, m=1,2,..., such that x,e U,, U0 S, # 9
and U, N S, = @, if m % m". Therefore, for every n ='1, 2, ... there exist infinitely
many different members of %, containing x,, which shows that & is not countably
@-refinable. M

‘We proceed to the proof of Theorem 1.5. Let 4 be a subset of the real line such

that [4 N F|] = ¢ = |F\A|, for every closed uncountable subset F of R (see [10],
Ch. III, § 40, I, Theorem 1).

Since |Sy| = ¢ it follows that K # &. Let x, e Kandn = 1, 2, ..,
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By Lemma 3.1 there exists a first countable, locally compact, separable top- '
ology 7 on A which is stronger than the usual topology on .4 and is not countably
6-refinable. Denote by 4 the family of all euclidean-open subsets of R and let @ be
a new topology on R generated by the family I~ U 4. One easily checks that the
space ¥ = (R, 9) is regular first countable and separable. We shall show that ¥ is
Lindeldf.

Let % be an open covering of Y. There exists a countable refinement ¥~ of %
covering R\4 and consisting of euclidean-open sets. The set F = R\ |J ¥ is a eucli-
dean-closed subset of R contained in 4. Therefore Fis countable and can be covered

by countably many elements of %.

Let M be the set 4 with the usual topology. The closed subspace
4={x,x)eMxY: xed}

of M'x Y is homeomorphic to the space (4, 77), what implies that the space M x ¥
is not countably 0-refinable and, hence, M x Y is not subparacompact. The proof
of Theorem 1.5 is completed. M
Corollary 1.6 is an easy consequence of Theorem 1.5: Let X = M@ Y be the
topological sum of spaces M and Y. Clearly X2 is not countably §-refinable.
Corollary 1.6 follows also from Corollary 1.3 but the latter is more diffcult
to prove than Theorem 1.5.

§ 4. Proof of Theorem 1.1. In [18] the author introduces and investigates the
notion of n-cardinality, which turned out to be very useful in constructions involving
product spaces. We will use this notion in the proof of Theorem 1.1.

DEerINITION 4.1 [18]. Let A be a subset of X", where X is an arbitrary set and
n<o, The n-cardinality |A], of A (with respect to X™) is defined by

|4l, = max{|B|: Bc4 and p; # gq,, for every i = 1, ..., n and any two distinct

points p = (py, ..., p,) and g = (ql, s q) from B} .

It is shown in [18] that 4|, is well-defined, i.e. that the maximum always exists.
We say that a subset 4 of X, is n-countable (n-uncountable) if |A|,<w(|4],> w).

For a point p = (py, ..., p,) € X" by p we will denote the set {p,, ..., p,} of
coordinates of p. The following lemma is proved in [18].

LeMMA 4.2. For a subset A of X" we have:

' |4y, = max{|B|: B<d and p n 4= @, for every two distinct points p and g from B}

=min{|¥|: YeX and A< J (X"~ x YxX""H},
i=1

provided that |A|, is infinite. W

The following theorem has been (implicitly) proved by van Douwen [4] (see [18];
Theorem 1).

THEOREM 4.3. A closed subset F of the n-dzmenszonal euclidean space R" is either
n-countable or has n-cardinality conrinuum. B
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We now proceed to the proof of Theorem 1.1.-

Theorem 1.1 becomes trivial if m = k = 1, therefore we w111 assume that
m=2. By R we denote the real line and by O the set of rationals, Let < be an arbi-
trary well-ordering of R of type ¢ such that for each ge Q and p e R\Q we -have
g=<p. For x € R by R(x) we denote the set {yeR y<x}.

For n< w let 8, be the collection of all pairs (4, B) of countable subsets of R" such
that the subset F = 4 n B (*) of R" is n-uncountable (cf. [4]). Let {(4s> Bu)}axc bE

such an enumeration of all pairs belonging to # = |J %, that each pair from & is
n<w

listed continuum many times. For each a<c there exists an n = n(a) such that the
pair (4,, B,) belongs to #, and since 4, and B, are countable there’ exists an
irrational number x,e€ R such that

M A, U B,<R(x)".

- By transfinite induction, for every a<c and i= 1,2, ..., k-+m (%) we will
choose a point p(«,i) € F, = 4, n B, so that the followmg cond1t1ons are satlsﬁed

@ ‘ ple, ) 0 pla, i) = i (@0 # (@) ;
(©) P, D) N R(xy) =9

Assume that a<c and that for all f<aandi= 1,2, ..
chosen points p(f,7). The set

Y=R(x) v U{p(B,i: <o, i=1,2,..,

has cardinality less than ¢ and thereforé by Theorem 4.3 the set

, k+ni-wé have alfeady

k+m}

F¥ = FAU (RI-'x Y+ R,

n=mn(,
V=1 PERY.

where
has 7-cardinality continuum. By Lemma 4.2 we can find. points P(x, i),
i=1,2,.., k+m from FJ such that p(a, i) N p(x, i) =@, provided i # i', which
cornpletes the inductive construction.

" One easily verifies that the collection {p(e, N}o<r i=1,2,...
conditions (2) and (3).

“The sets D; = | {p(a, £): a<c}, where i=1,2,.

properties '

@ DinD;=9, if

kb of pomts satisfies

k-l;m, have t,hé following

Z ?éj b

(5) foreveryi=1,2,..,k+m n<w and any pair (4, B) of countable subsets
of R* such that the set A n B is n-uncountable there exists a subset L of ¢ of

cardinality continuum such that 4 = 4,, B = B,, n(a, I)EA n B and
‘ p(o; z)c:D,, for every xe L.

(4 In the sequel A always denotes the euclidean closure of A.
. (5) The. synibol %+ m denotés the ordmal number belng the sum of tWO ordmal riumbcrs k
and m, e.g. I4+w # o+l : R W A
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The property (4) is obvious and (5) follows from the definition of D, and our
assumption that every pair (4, B) appears continuum many times in the transfinite
sequence {(4,, B,)},<.. Clearly we can additionally assume that

k+m

(© UDi=R\Q,

and (4) and (5) remain valid.

Let us fix wu<c, m=n(x) and i = 1,2, ..., k-+m. Since p(x,HeF, =4, N
n B,=R", there exist two sequences {v(x, z)}s=1 and {w'(a, 1)}, of points from 4,
and B,, respectively, converging to p(a,7); i.e.

V(a,ed,, w,i)eB,,

limo*(e, {) = p(x, i) = Umw'(x, i) . .

S0

= (py(@, 1), ..., e, D), v, £) = (W}(et, D), ...
, Wi, 1)). We have

M

Let us put p(e, i)
W, 1) = (WD),

, (e, D)) and

(8) limvj(e, 1) = pyla, ) = hmwj(cc i) for all j<n,
and by (1) and (3)
9 vy, )<pyle, ) and  wie,D<pfe,i) for s=1,2,..

For each x e R\Q let {q‘(x)}s._1 be a sequence of rationals converging to x.
Qur next goal is to define for every. x € R\Q a certain sequence T'(x) = {r’(x)}s=, of
real numbers converging to x satisfying j

10) () <x

Let x € R\Q. If there is no a<c and i = 1, 2, ..., k-+m such that x € p(x, i),
then we put £(x) = g°(x). Clearly (10) is satisfied. Otherwise, by (2), there is exactly
one a<c and i = 1, 2, ..., k+m so that x € p(«, ). In that case we put » = n(c),
J={j=1,..,n: x = p;(,i)} and the sequence T(x) is the “union” of sequences
{qs(x)}s,,l, {vj(ot 2, and {wie, i)}, for jeld More precisely, we put

for every s = 1,2, ...

=|J|, J = {j(1), ..., j(»)} and we define
7). if § =1Qr+1),
a1y £(x) = <Whpla, 1), if 5 = IQr+1)+u, x

Wi, D), if 5 = 1Qr+1)+2u,
where u = 1,2, ..,r '

Tt follows from (8) and (9) that the sequence T(x) = {£(x)}s=; converges to x
and that (10) is satisfied.

LemMa 4.4. Let us fix ani= 1,2, ..., k-+wm and let {T }}}-, be a family of top-
ologies on R such that for every j = 1,2, ...,n and x & D, every neighbourhood U
of x in (R, 7}) contains a “tail” of the sequence T(x) (i.e. there exists an So such
that £*(x) e U, for s=so). .

‘2 — Fundamenta Mathematicae CV/2
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L]

. ]
For any two subsets A and B of the space Y = [[ (R, T) with A B (see
. i=1 :

footnote (*)) n-uncountable, the set Cly A n Cly.B is also n-uncountable. In particular,
if A is a subset of Y such that A is n-uncountable, then Cly4 is also n-uncountable.

Proof. Let us find countable sets 4* and B* such that 4A*=A<A* and
B*—BcB*. Since the set F= A* n B¥ = A n B is n-uncountable there exists
by (5) an uncountable subset L of ¢ such that 4* = 4,, B* = B, and p(n, )= D,
for every o € L. It follows easily from (11) and our assumptions that for each a e L
the point p(«, i) € Cly4* N Cly B*=Clyd n ClyB. Since by (2) p(x, i) n (B, )= O
if o # B, it follows from Lemma 4.2 that the set Cly4 N Cly.B is n-uncountable. W

LeMMA 4.5. Let us fix ani = 1,2, ..., k+m and let {7 }}}., be a family of reg-
ular and first countable fopologies on R which are stronger than the usual topology
on R and such that for every j = 1,2, ..., n and x € D, every neighbourhood U of x in
(R, T ;) contains a “tail” of the sequence T(x) (i.e. there exists an s, such that t*(x) ev,
for szsy\.

. n
Then the space ¥ = [[ (R, T;) is collectionwise normal, countably paracompact
j=1

and o,-compact (°).
Proof. The proof is by induction on n. Assume that [ = 1,2, ...
lemma has been proved for n<l. We will prove it for n = 1.

(2) Y is w,-compact. Let A be a closed discrete subset of ¥. Choose a countable
subset A of A such that A< A*. Clearly A* is closed in Y. It easily follows from our
inductive assumption that if 4 is n-countable, then 4 is countable, therefore we will
assume that 4 is m-uncountable.

Since the set A* is n-uncountable, by Lemma 4.4 the set ClyA* = 4* is
n-uncountable, which contradicts the countability of A4*. ‘

and that our

(b) Y is collectionwise normal. Since Y is w4-compact it suffices to prove that Y
is normal (%). Let 4 and B be two disjoint closed subsets of Y. To show that A4
and B can be separated by open sets it suffices to find a countable open covering %
of Y such that for every Ue:

(12) either ClyUﬁ'A =@ or ClyUn B =@ (see [5], Lemma 1.5.14). Since

A4 B = ¢ it follows from Lemma 4.4 that the set F = 4 n B is n-countable.
Every _point p € Y\Fhas a euclidean-open neighbourhood U, such that either
U,n A4 =@ or U,n B= @.Since the topology of ¥ is stronger than the euclidean
topology on R" the sets U, are also open in ¥. Let %, be a countable subfamily
of {U,}penr covering ¥\F.

Let E be a countable subset of R such that Fc U (RI™1 x Ex R* ). Tt suffices
to find a countable open in ¥ covermg U, of F such that for every Ue %, con-
() A Hausdorff space is w,-compact if its every closed discrete subset is countable. One easily

sees that a normal w,-compact space is collectionwise normal.

%
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dition (12) is fulfilled. To this end it suffices to find for each xe Eand j =1, ..., n
a countable open in ¥ covering#,; of R’~* x {x} x R~ such that for every U € %,
the condition (12) if fulfilled. Without loss of generality we can assume that j = ».

n—1
LetZ = HI(R, TN, T =(R,7,)andlet {G,}:2 , be a countable base of x in 7.
L ; :

For every s =1,2, ... let
Vd) = U {V: ¥ is open in Z and (VxClyG)n 4 = &},
V{B) = U {V: Vis open in Z and (¥xClyG)n B = @} .

Clearly the family {V(A)}, v {V{(B)}2, is a countable open covering of Z.
Since Z is, by our inductive assumption, normal and countably paracompact, there
exist open in Z sets W(4) and W(B) such that

CIZ Ws(A) < VS(A):

CLW(B)CV.(B) and U W)U U WyB) =
s=1 s=1

It suffices to put
%, xn = LW(A)XG}S—l Y {W(B)XG}S 1-

(c) Y is countably paracompact. Let {F.};Z; be a decreasing sequence of closed
subsets of ¥ with empty intersection. We have to show that there exists a sequence

(U2, of open subsets of ¥'such that FyeUyand () U= @ (see [5], Corollary 5.2.2).
s=1

We shall first prove that the euclidean-closed set F = [} F, is n-countable

s=1
Let 4 = {a}32, be a dense subset of F. Without loss of generality we can assume
that a, ¢ F,. For every s = 1, 2, ... choose a sequence S; of points of F, converging
to g 111 R". Clearly S, considered as a set is a closed subset of F,in Y and therefore,

since ﬁ F, = @, the countable set §' = U S, is closed in Y. Lemma 4.4 implies that
=1

s=1
the set S is n-countable and therefore F = AcS is n-countable.

Sets F.\F form a decreasing sequence of closed subsets of the open subspace
R™NF of R" and have empty intersection. Therefore, there exist euclidean-open

o0

sets ¥, such that FNF=FN\FcV, and () V, = @. To show that Y is countably
s=1

paracompact it sufﬁces to show that there exist open subsets W, of Y such that

F,n FeW,and ﬂ W, = @. The proof of the latter fact is analogous to the second
§= 1""”“"—“"’“—‘

part of the proof of normality of Y, and is left to the reader. B
Lemma 4.6, Let us fix ani = 1,2, ..., k+mandlet {7 ;}j-, be a family ofregular
topologies on R such that for any j = 1,2,. ., 7 every point x € D; has a base of
neighbourhoods in I, consisting of euclidean-open sets.
Then the space ¥ = [] (R, 7)) is Lindeldf.
i=1

L
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Proof. The proof is by induction on 7. Assume that [ =1,2, ... and that the
above lemma has been proved for n<l. We will prove it for n = L

Let % be an open covering of ¥. By our assumptions there exists a countable
open refinement ¥~ of % covering D% and consisting of euclidean-open sets. It follows
from the inductive assumption that n-countable closed subspaces of ¥ are Lindelsf.
Therefore it suffices to show that the euclidean-closed set F = YN\U ¥ is
n-countable.

Let A be a countable subset of F such that F = '71. If F were n-uncountable,
then by (5) there would exist ap w<c such that 4 = 4, = B,, p(x, )€ A=F
and p(x, )= D;. Therefore we would have p(a,7) € D] n F, which is a contradic-
tion. ®

For every xe R\Q and s = 1,2, ...
eter <1/s such that

(13) ' f(x)el(x,s) and x¢lI(x,s),
(14) I, ) nI(x,s) =@, if £ #F5E).
For every v =1,2,..,k and u=k+1,..,k+m we shall define (cf. [3])

a regular separable and first countable topology 77, on R which is stronger than
the usual topology on R and satisfies

let us fix open intervals I(x, s) of diam-

. k
(15) every point x e |J DA\D, admits a base of neighbourhoods consisting of
i=1

guclidean-open sets; '

k+m

(16)  every neighbourhood U of xe |J DD, in
=kt 1

sequence T'(x); i.e. there exists an / such that :*(x) e U for s=1;

T, contains a “tail” of the

(17)  every point xe Q U D, U D, has a neighbourhood contained in Q U {x}.

Topology 77, , will be generated by a collection # = {#(x)},r of bases #(x) of
neighbourhoods of points x € R, where for each xe X

B(x) = {Bz(x)};';1 .

We shall define sets Bl(x) by induction on the well-ordering of R. Assume
that x € R and that for all y<x and [ = 1, 2, ... the sets By(y) have been defined so
that the following conditions are satisfied:

(18), By () =B(y) and B(y) are euclidean-closed;

(19), for every euclidean-open U containing y there exists an [ such that B(y)=U.
We shall construct sets By(x), for [ =1,2,..

(202) If xe Q, then By(x) = {x}, for I = 1,2, ...

(20b) If xe D, u D,, then By(x) = {x} U {°()};.

., satisfying (18), and (19),.

1
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[
(20¢) If xe U DD, then By(x) is an arbitrary closed interval of length <1//
=1

with rational end-points, containing x and contained in B, ,(x), if I>1.

Y okdm

20d) Ixe (U DND,,thenforeachs =1,2, ..
i=kt1

Byo(t°(x)) of the point #'(x)<x contained in I(x, s) and we put

we first choose a neighbourhood

.B](x) = {X} ) ,ngl(s)(ts(x)) .

It follows easily from the definition of I(x, s), (18), and (20) that conditions (18},
and (19), are satisfied, which completes the inductive construction. ‘

One easily checks that bases #(x) of neighbourhoods are well-defined and
generate a first countable topology 7, which is stronger than the usual topology
on R, and satisfies conditions (15), (16) and (17). Moreover, .the space
X,, = (R, 7,,) is regular, because the sets By(x) are euclidean-closed and therefore
open-and-closed in X,,. The set Q of rationals is dense in KXo

Let X be the topological sum of spaces X,,; i.e.

k k+m
X=0 @ X,.
v=1 p=k+1
Clearly, the space X is regular, first countable and separable.
(A) X" is collectionwise normal, countably paracompact and ,-compact, for
n<m. ‘ '
n
Since the space X™ is the topological sum of spaces ¥ = [] X, u¢p» Where
j=1

1<v(H<k and k+1<pu()<k+m, for j = 1,2, ..., n, it suffices to show that each
such a space Y is collectionwise normal, countably paracompact and ,-compact.

Since n<m there exists an i such that k+1<i<k-+m and i # u(j), for every
j=1,2,..,n By (16) for every j = 1,2, ..., n every neighbourhood U of xe D;
in 7 YD) contains a “tail” of the sequence 7'(x). By Lemma 4.5 the space

Y= H (Rs T yup) has the required properties.
i=1
(B) X" is Lindeldf, for all n<k. :
Again it suffices to show that any space Y as described above is Lindeldf. Since

n<lk there exists an i such that 1<i<k and i # v(j), for all j = 1, 2, ..., n. By (15)
, n every point x € D, has a base of neighbourhoods in J v(y,ucjs

n o
consisting of euclidean-opeén sets. By Lemma 4.6 the space ¥ = TT R, Tywpuw) 1s
j=1

Lindeldf.
(C) X™ is neither normal, nor countably paracompact nor w,-compact.
k m

The space Z = [[ Xj+;X I] Xies;is a closed subspace of X™ therefore
i=1 J=kt1
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it suffices to show that Z is neither normal, nor countably paracompact, nor
,~-compact. -

" Tt is known (see [6] and [7]) that a separable space containing a discrete closed
subspace of cardinality continuum is neither normal nor countably paracompact.
Therefore it suffices to show that Z contains such a subspace. The set

F={(x, x, ..., x) € R": x& R\Q}

is a closed subset of Z. We shall show that F is discrete. Let us choose a point
x e R\Q and an i such that x € D;. There exists a j such that 1<j<m and either
i = j<k or i = k+j. Assume for example that the first case takes place. By (17)
every point x € D; = D, has a neighbourhood U in 7, ; contained in Q u {x}.
- Therefore the set

' V =R"1xUxR"I

is open in Z and Fn V = {(x, x, ..., x)}, which shows that the point (x, x, ..., X)
is isolated in F. We argue similarly if the second case takes place.

It remains to show that X* is not subparacompact. If k = w then k = m = o
and therefore X* is not paracompact by (C). Subparacompactness of X* in this
case will be discussed in Remark 4.7. We will first prove

(D) X* is not subpa)acompact if k<ow.

The space Z = HX k+1 i a closed separable subspace of X¥, therefore it
s jei

suffices to show that Z is not subparacompact. Since a collectionwise normal sub-
paracompact space is paracompact and a separable paracompact space is Lindelsf,
(D) will be proved if we show that Z is collectionwise normal but not Lindelsf.

Since m =2, collectionwise normality of Z follows from the fact that for every
Jj=1,.., k every neighbourhood U of x € Dy, in ;. contains a “tail” of the
sequence 7'(x) (Lemma 4.5).

We shall show that Z is not Lindelsf. The set 4 = {(x, x, ..., x) € R*: xe R}
is a closed subspace of Z, therefore it suffices to prove that for every x € R there exists
an open subset B(x) of Z such that

@n B(x) nd=d4(x) = {(»,,..,») € R": yxx},

because then the family {4(x)},.x forms an open covering of 4 with no countable
subcovering.

Let us denote by BY(x) the Lth basic neighbourhood of the point x € R in the
topology Z 41, Where j=1,2,...,k. We will show by induction on the well-
ordering of R that for every x e R we have

2), BPE) % ... xBP@) N dcd(®),
which clearly implies (21).

Assume that xe R and that (22), has been proved for all y<x. We shall
prove (22),.
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(2) If x € Q, then by (202) B(x) = {x}, for all j and (22), is clearly satisfied.

k
(b) If xe U D;, then there exists a j such that xe D; and then B{(x)
= {x} v {q‘(x)} %; by (20b) and (22), follows.

ktm ©
(¢ If xe U D;, then by (20b,d) BP(x) = {x} usLJle{’s,,,(ts(x)), where
£(x)<x and Bl(j(?,,j)( X)) =I(x, ).
Tt follows easily from (13), (14) and (18) that

BI(x) % .. x BR(x) A A= {(x, x, s )} U G ( ﬁB,‘”(t’(x)) n4).
Cs=1 4=l L

By the inductive assumption, however, we have

0 k @

U; ( _HIB{D(t‘(x)) n 4)= sul A(F(x)) = A(x)
s=l j= =

which implies (22), and completes the proof of (D).

Remark 4.7. Since a space is paracompact if’ and enly if it is collectionwise
normal and @-refinable (see Section 3), therefore the same proof as in (D) shows that
X* is not O-refinable if k<.

The author does not know whether the space X' is subparacompact if k.= w,
i.e.if X = X(w, ), however the construction of X in this case can be easily modified
so that all other properties of X are preserved but X is not even countably
0-refinable. .

To this end we will change ne1ghbourhoods {By(x)}iz4 of points xe U D

i=k+1
in all topologies ,,. By Lemma 3.1 there exists a first countable, separable and
k+m
locally compact topology 7~ on A = U D, which is stronger than the usual top-
i=k+1

ology on A and is neither normal nor countably #-refinable, Let us replace neigh-
bourhoods of points x &€ 4 in 7, by neighbourhoods of these points in 7, for
every v=1,..,k and g =k+1, .., k+m.

One easily sees that X is again separable, regular and first countable and by
Lemma 4.6 X" is Lindelsf for every n<w. However, X* contains the space

k :
¥ =[] X, as a closed subspace and the closed subspace

v=1l

K={(x % ..,x)e¥: xed}

of ¥ is homeomorphic to (4,77, which implies that X is neither normal nor
countably 0-refinable. M . )
Remark 4.8, If & = 1 then every topology 7 ,, is locally compact and locally

countable and therefore also the space X is locally compact and locally countable.
Tndeed, since v = 1 condition (15) becomes empty and while constructing T g WE
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skip the step (20c). One easily proves by induction on < that for every xe R and
1=1,2, ... the set B(x) is a countable compact subspace of X,,. M

§ 5. Final remarks. The most general question concerning the relationship
between normality and paracompactness (resp. the Lindelsf property) in product
spaces is probably the following:

5.1. Let %, A, u denote “cardinal numbers, where 1<A<pu. Does there exist
a space X = X(4, u) such that

(a) X* is paracompact (resp. Lindelsf) if and only if x<4;

(b) X is normal if and only if sx<p?

Tt is known that if X is paracompact and X“! is normal, then X, and all its
powers, are compact (see [S], Problem 2.7.16). Therefore we may assume that
1<igpu<o;.

Theorem. 1.1 gives a posmve answer to Question 5.1 in case of u<w. Below we
discuss the remaining three cases.

Case 1. (1 = u = ,) The positive answer to Question 5.1 in this case follows
from the fact that if NV is the space of natural numbers then N* is Lindelof and N®*
is not normal (cf. [5], Problem 2.7.16).

Case 2. (A = o, p = w,) In this case Question 5.1 has a negative answer belng
a consequence of the following result.

THEOREM 5.2 (Nagami (1968) [14], Zenor [1971] [25]). Let X be normal If X" is
paracompact (resp. Lindeldf) for all n<w, then X® is paracompact (resp. Lindeldf).

Case 3. (A = k<w, p = w,) Continuum Hypothesis implies a positive answer
to Question 5.1 in this case as follows from the result of Alster and Zenor
(Theorem 2.13). However, we do not know whether the assumption of the Continuum
Hypothesis is essential (we certainly conjecture that it.is not).

It follows from our discussion that to obtain a complete answer to Question 5.1
it suffices to solve the following problem:

‘PrOBLEM 5.3. Does there exist (without any set theoretic assumptions
beyond ZFC) for every k<w a space X = X(k) such that X* is paracompact (resp.
Lindelsf) and X is normal, but X*** is not paracompact (resp. Lindelsf)?

.

*

It is not known whether the assumption of the Continuum Hypothesis in
Theorem 2.12 is essential. This leads to the following more general problem:

ProBLEM 5.4. Let 1<k<m<w. Does there exist (without any set-theoretic
assumptions beyond ZFC) a space Z = Z(k, m) such that:

(a) Z" is Lindeldf if and only if n<k,
(b) Z" is paracompaect if and only if n<m?
*

In connection with Corollary 1.3 let us note the following result.
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“THEOREM 5.5. The existetice of a separable paracompact space X such that X* is
normal but not collectionwise normal i. is consistent with and independent of the ZFC
axioms of set theory.

Proof. Theorem 2.4 shows that Martin’s Axiom plus the negation of the
Continuum Hypothesis imply the existence of such a space.

On the other hand, the assumption of 2°<2°* implies that every separable
normial space is collectionwise normal (Jones’ Lemma [7]).

*

The metric space M from Theorem 1.5 is not complete. In fact, the answer to
the following problem is not known.

ProBLEM 5.6. Do there exist (without any set-theoretic assumptions beyond
ZFC) a complete metric space M and a Lindelof space Y such that M x Y is not
Lindeldf or — equivalently — normal?

Such spaces exist if the Continuum Hypothesis is assumed ([11], footnote 4;
see [12], Example 3.2(c), (d) for a proof). The proposition below shows that such
spaces cannot be constructed using the “standard” technique which does not
require CH.

PROPOSITION 5.7. Let A be a subset of the real line such that A n F # & for
every uncountable closed subset of R and let T be a regular topology on R which
coincides with the usual topology at points of A.

For every complete separable metric space M the product space M x Y, where

= (R, 7, is Lindelsf. .

Outline of the proof. Let % be an open covering of M'x Y. Choose a count-
able refinement ¥~ of % covering M % A and consisting of setsiopen in M x R. The
set F = MxR\{J7 must be 2-countable because otherwise it would contain
a graph of a homeomorphic embedding y: C—R of the Cantor set C<M into R

'([18], Theorem 1 and Remark 1). Consequently, we would have ¥ (C) n 4 = @,

which is impossible. H
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Almost every tree function is independent
by

Leonard Gallagher * (Washington, D. C.)

Abstract. Points of the Cantor set C may be represented as branches of an infinite dyadic tree.
Nodes of the tree may be randomly labeled with 0's and 1’s. A tree function is a mapping from C
to [0, 1] determined by assigning to each branch the real number having binary representation as
the labeling of the branch. A tree function f is independent over a relation R C [0, 1]" if for every
SEqUENCe Xi, ..., Xy Of distinct elements of C we have ( F(x), oS (x,,)) ¢ R. We define a Borel
probability measure on the set of tree functions and show that if R is null with respect to a special
Hausdorff measure on [0, 1]" then almost every tree function is independent over R.

1. Introduction. 'A. geneéralized notion of independence was introduced by
Marczewski in [2] and extended by Mycielski to relational structures in [4]. Follow-
ing [5] and [6] we consider relational structures of the form {M, R>;<, wWhere M is
a non-empty, complete metric space, R, =M'® and 1<r(k)<w for all k<w. For
any set X a function fi X—M is independent over the Ry’s if for every k and every
SEQUENCE Xy, ..., X, Of distinct elements of X” we have (f (%)s cennf (%)) & Ry

The Cantor set is denoted by the symbol C and is understood to be the discon-
tinuum {0, 1}* under the usual totally disconnected metrization. M € is the space
of all continuous functions f: C—M with the usual uniform convergence topology.

The main result of this paper is a theorem analogous to the main theorems
of [5] and [6]. In [6] Mycielski proves that if each R, is meagre in M then the set
of functions f'e M® independent over all R/’s is comeager in the space M. In [5] he
lets M be Buclidean n-space and shows that if the R;’s are of Lebesgue 7 (k)-dimen-
sional measure zero then there exist independent functions fe M’ € Welet M = [0, 1]
and prove that if each R, is ho-null (see below) in [0, 1] then almost every tree
function (see below) is also independent over the R’s (see Remark 1, Section 5).

In Section 2 we define randomly labeled trees and tree functions. We also con-~’
struct a probability measure over the set of all tree functions and estimate the measure
of certain useful subsets. In Section 3 we prove that two interesting properties are
true for almost all tree functions. In Section 4 we define A-null sets and compare

* This paper constitutes part of the author’s Ph. D. thesis at the University of Colorado under
the direction of Jan Mycielski and S. M. Ulam. This work was supported in part by an NDEA
Title TV Graduate Fellowship.
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