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On total paracompactness and total
metacompactness

by

Ken-ichi Tamano (Tokyo) and Yukinobu Yajima (Ibaraki)

Abstract. We first generalize the countable sum theorem concerning totally paracompact spaces
by two order locally finite covers. Secondly, we show that there exists a separable metric space with
a base containing no weakly uniform base. -

0. Introduction. The present paper is. composed of two main results. One is
concerned with total paracompactness. Many results on a space X which has two order
locally finite covers {F,: £<a} and {U,: <o} such that F,is closed and has a top-
ological property 8 and U,is an open nbd of F; for each £<a have been studied by
Y. Katuta [8] and R. Telgarsky [10], [12]. We show that X is totally paracompact
if X has the above two covers {F,: £<a} and {U;: &<a} and the above property P is
total paracompactness relative to X. This is a generalization of the countable sum
theorem concerning total paracompactness by D. W. Curtis [3].

The other result is concerned with total metacompactness. It is well-known that
the space NV of all irrational numbers with a usual topology is not totally meta-
compact [2], [4]. R. W. Heath and W. F. Lindgren raised the question of whether
or not every base of a space with a weakly uniform base contains a weakly uniform
base ([6] Question 4). We give a negative answer to this question. We shall show that
the space NV of irrational numbers is a desired counterexample for it.

‘When 91 is a collection of subsets of a space X, let ¥ = () {4: 4 e A}. Unless
otherwise stated, no separation axioms are assumed. However, compact, paracompact
and totally paracompact spaces are always Hausdorff. N denotes the set of all natural
numbers. Natural numbers are denoted by m, n, i, J, ... and ordinal numbers are
denoted by o, £, 7, v, &1, 8,0

1. Total paracompactness. A Hausdorff space X is said to be totally para-
compact [5]if every open base of X contains a locally finite cover of X A closed set F
of X'is said to be fotally paracompact relative to X [10] if every open base of X contains
a locally finite (in X)) cover of F, Then F is clearly totally paracompact. Recall that
a collection {A4,: A€ A} of subsets of a space X is said to be order locally finite 8]
if we can introduce a well-ordering < in the index set A such that for each 1e A
the collection {A,: u<Aa} is locally finite at each point of 4. Since every well-ordered
set is order-isomorphic to an initial segment of ordinal numbers, we use the notation
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{dy: &<o} instead of {4,: A e A}. Every countable collection of subsets of X is clearly
order locally finite.
Our main theorem is as follows.

THEOREM 1. If a regulur Ti-space X has two order locally finite covers
{Fe: é<a} and {Uy: <o} such that F is closed and totally paracompact relutive
to X and Uy is an open nbd of Fy for each £<a, then X is totally paracompact.

We need the following two lemmas to prove Theorem 1.

Lemma 2 (Y. Katuta [8]). Let {4,: Ae A} be an order locally finite collection
of subsets of a space X, and let {By: £ € E,} be a collection of subsets of 4, which is
locally finite in X for each L € A. Then the collection {By: & & B} is order locally finite,
where Z is the disjoint union of =,.

Lemma 3 (Y. Katuta [8]). A regular Ty-space X is paracompact if and only
if any open cover of X has an order locally finite open refinement.

Proof of Theorem 1. Let B be an open base of X. We can choose a sub-
collection SB; of B such that B; is locally finite in X and F;c%é#c U, for each
£ <o Then it follows from Lemma 2 that the collection (J B is an order locally

<y
finite open cover of X. So any open base of X contains an order locally finite cover
of X. By Lemma 3, X is paracompact. We first construct transfinite sequences
{B,: ¢<a} of subcollections of B and {V,: é<a} of open sets in X satisfying the
following conditions: For each &<,

(1) B, is locally finite in X.

() Fi— U BFcBfcu,.

n<é

@) FeeVyeClV,= | BiF 0 U,
n<§
@ CcU V) nBF=0.
n<g

We can choose a subcollection B, of B and an open set ¥, such that B, is
locally finite in X and FycV,cClV,cBFcU,. Assume that {8B,: n<&} and
AV, n<&} have already been constructed. We show that

C(U v,)= U B,
n<g ¢

n<

Let xe X— Uc%,j;‘:. We take some <o such that xeF,. By (3),
n< N *
" UFcUCly,e| BiF.
n<¢ n<g n<g
So we have {=¢. By order locally finiteness of {Up: £<a}, we can choose an open
nbd G,’,‘ of x such that for some %, ..., n,,<¢, GL N Uy=9if 5% ny,..,1,. Let
Gy =G~ U{ClV,: i=1,..,m, <& Then G, is an open nbd of x such that
G, nﬂ(é): Vy = ©. Hence we have x e X—CI(| Vi Fi— U 23?,* is clearly totally
n<g n

- - <;
paracompact relative to X. It is easy to show that there exists a subcollection B,
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of B such that B, is locally finite in X, Fy— J BF <BF< U, and BF ~ CI(U ;)
n<g n<g&
= (. Then Fyc |) ,‘B?,": N Up. Since X is normal, we can take an open set Vein X
nsé

such that FycV,cClV,= | .‘B?,*n U,. Thus we have constructed the desired

n<s ~
transfinite sequences {B,: { <o} and {V,: E<a}. Put B = (J B,. By (3), B is a sub-
E<a
cover of B. Let x € X. We take some &<« such that x € Fe,.By(4), Vg 0 %?: =0
for any £>¢,. We can choose an open nbd Hy, of x such that for some &, ..., &, <&,

n
HonU;=@if any & # &(,...,&,. By (1), B, U (_&)158&) is locally finite in X.

Hence we can also choose an open nbd A, of x which intersects at most finite members

of {J B,. Then H, n ¥, is an open nbd of x which intersects at most finite members
E<do

of B. We have shown that $ is a locally finite subcover of B. The proof is
complete.

The following two corollaries are immediate consequences of Theorem 1.

CorOLLARY 4 (D. W. Curtis [3]). Every paracompact space X which is the count-
able union of closed subspaces totally paracompact relative to X is totally paracompact.

CoroLLARY 5 (R. Telgarsky [12]). If @ regular T -space X has two order locally
Sinite covers {Cy: E<a} and {Uy: E<a} such that Cy is compact and Uy is an open
nbd of Cy for each &<a, then X is totally paracompact.

R. Telgirsky showed in [12] that the space X described in Corollary 5 has
a closure-preserving cover by compact sets. So the following theorem is another
generalization of Corollary 5.

THEOREM 6 (Y. Yajima {14]). If a paracompact space X has a o- closure-preserving
cover by compact sets, then X is totally paracompact. i

A regular T, -space X is said to be a Hurewicz space [T] if for every sequence

0

u,, U, ... of open covers of X there exists a cover B of X such that B = iU B,,
: )

where B, is a finite subcollection of U; for each ie N.

Let H be the class of all Hurewicz spaces. H-like space is defined as in [13]
(p. 195). :

TueoreM 7 (). The following are equivalent for a space X.

(&) X is a Hurewicz space.

(b) X is H-like.

Proof. (a)—(b): Tt is obvious.

(b)—(a): Let s be a winning strategy of player Iin G(H, X) and let {,: n>1}
be a sequence of open covers of X. We set E;, = X and E; = s(E,). Since E, € H,

() Theorem 7 and its proof have been pointed out to the authors by the referee. This theorem
has a better form than the original one. The authors would like to thank the referee for several
helpful comments.
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there exists a sequence {11,,1: nz1} such that i, is a finite subcollection of 1, for

each n>1, and Elc U u,,1 We set By = X— U W and E; = 5(E,, Ey, E,).
n=1
Since E5 € H, there ex1sts a sequence {1(,,: 72} such that 1, is a finite subcollection
® ‘

of M, for each nx2, and E,c |J 13, We set
n=2

E, = E,—|J ujt and

n=

Es = s(Eq, Eq, Ey, Ey, Ey).

Contmumg in that matter, we get a play (Eo, E;, EZ,. ) of G(H, X). Since s is

a winning strategy, we have ﬂ E,, = @. Therefore {U UWH: k>1} is an open cover

of X. So, we set 8, = U U,,,, for each n> 1. Then B, is a finite subcollection of 1,
m=1

for each n=1 and {J B, is an open cover of X. The proof is completé.
n=1

Remark 8. Theorem 7 is a generalization of 5.5 in [13]. Moreover, since each

o-compact space is a Hurewicz space, it is easy to see from Theorem 7 and 10.2

,of [13] that each Lindel6f regular T)-space with o-closure-preserving cover by
compact sets is a Hurewicz space.

2. Total metacompactness. A space X is said to be rotally metacompact [12]
if every open base of X contains a point-finite cover of X.

THEOREM 9. If a metacompact Ty-space X has a o-closure-preserving closed
cover by compact sets, then X is totally metacompact.

The proof is quite similar to that of our Theorem 6. So the detail of it is
left to the reader.

A base B of a space X is said to be a wniform base [1], if for each x € X, any
infinite subcollection of B, each member of which contains x, is a local base at x.
A base B of a space X is said to be a weakly uniform base [6] if for each xe€ X,
the intersection of any infinite subcollection of 8B, each member of which contains X,
is {x}. A collection 9 of subsets of X is said to be weakly uniform [6} if no two points
of X belong to infinitely many members of ¥. Clearly, a uniform base of T -space
is a weakly uniform base and a weakly uniform base is a base being weakly uniform.

R.'W. Heath and W. F. Lindgren [6] raised the question of whether or not every
base of a space with a weakly uniform base contains such a base, First, we consider
the following generalized form instead of the above.

Let P be a property of bases of a space X,

“Suppose that a space X has a base having property 8. Does every base of X
contain a base having property $?” ‘

In this section, we study the two cases that §§ is the property being a uniform

base and being a weakly uniform base. They secem to be closely related to total
metacompactness.
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THEOREM 10. The following are equivalent for a space X with a uniform base.
(a) X is totally metacompact.

(b) Every base of X contains a uniform base.

Proof. (a)—(b): Let B be any base of X. It is well-known that a space with

a uniform base is developable. So we can easily construct a development {8}y
such that BoB, B, >... and each B, is a base of X. By (a), B, contains a point-
oo

finite subcover ; of X for each ie N. Put B = |J ¥,. Every infinite subcollection
i=1

n

of &, each member of which contains a point x of X; can not be contained in {J 2,
i=1

for each ne N. Since {20,},2, is a development of X, B is a uniform base of X.
(b)—(a): Let B be any base of X. By (b), B contains a uniform base B’ of X.
It is sufficient to show that B’ contains a point-finite subcover of X. Put

9 = {Be®B': B'is not properly contained in any set B, B'e B'}.

It is known in [1] that U is a point-finite subcover of B’. The proof is complete.

Let NV be the space of all irrational numbers with the usual topology. It is
known that NV is not totally metacompact ([2], [4]). By Theorem 10, we can see
that N¥ has a base containing no uniform base. Moreover, we obtain the following
result which is a negative answer for the question of R W. Heath and W. F.: Lind-
gren ([6], Question 4).

ExAMPLE 11. The space NV of all irtational numbers has a base containing
no weakly uniform base. ]

It is well-known that NV is considered as the ploduct space of {N;};Z,, where

each N; is a copy of N. Let B(k) = {1, ..., k} x HN and let B(xy, .-, Xy—1; K)
= {x}%... o kX H N; for each x; eN and k € N. Moreover, let

x -1} x {1,
i=n+1
By = {B(K): ke N} and let ,‘B = {B(Xg, s Xyog3 K): X;€ N i =1,

keN}fornz2. Then B = U B, is an open base of NN (This base B was considered

n=1
in [4] in order to prove non-total metacompactness of N'V). We show that the base B

contains no weakly uniform base of NV, Let 2 be any weakly uniform subcollection
of B, Let 9, = A~ B,. For each Be A, (1,1,1,..)eBand (1,2,1,1,..)eB.
By the assumptioh of 9, U, is a finite collection. Then we can take some y; € N

.,n—1 and

such that {y}x HNi A A = @. By the same argument,
{B(x;;k) e Ayt x; =y, ke N}

is a finite subcollection of 2,. Then we can take some y, € N such that

G x0nx [TV (U (B Det: 3 =30, keN) =
=3 -
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Since {y;}x {p,} x [[N;n B(xy;k) = @ if x, # y,, we have
i=3

Dl [[NinAF =9,
i=3
By induction, we can choose a sequence {y,, y,,..} N such that

{pyx.x{p}x [ Nin2%¥F =g for cachneN.

i=pt1

o0
Then (y;, ¥z, ¥, ) ¢ U 9F = 9%, Hence we have shown that 2T is not a cover
n=1

of NV. Thus the base B of NV contains no weakly uniform cover.
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