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Universal continua *
by

Ray L. Russo (Falls Church, Va.)

Abstract. It is shown that there is a metric continuum which can be mapped onto all T-like
continua if and only if T is the collection {arc}, {circle}, or {arc, circle}.

Introduction. A continuum is a nondegenerate compact connected metric¢ space.”
A map is a continuous function. All polyhedra in this paper are connected, finitely
triangulable spaces. A continuum X is #-like [10], where £ is a collection of poly-
hedra, provided X is homeomorphic to the inverse limit of an inverse sequence whose
factor spaces are elements of £ and whose bonding maps are onto. Let % be a collec-
tion of continua. A space X is a model for € provided X is a continuum, and if
Y e %, then X can be mapped onto Y. A universal continuum for % is a space X such
that X is a model for ¢ and Xe%.

Tt is well known from the Hahn-Mazurkiewicz theorem that an arc is a universal
continuum for locally connected -continua. W. Kuperberg [8] has shown that the
cone over the Cantor set is universal for uniformly pathwise connected continua.
Mioduszewski [11], Lelek [9], and Fearnley [4] have shown that the pseudo-arc is
universal for arc-like continua, in fact for weakly chainable or p-chainable continua.
J. T. Rogers [12] has shown that there is a psendo-solenoid which is universal for
circle-like continua, in fact for #-like continua where # = {arc, circle}, or even
further for g-chainable continua.

Oun the other hand, in 1934 Waraszkiewicz [14] exhibited a collection of plane
continua which has no model. Based on this result, Bellamy [2] has shown that there
is no model for indecomposable continua. In this paper it is shown that:

(i) there is no model for planar tree-like continua;

(ii) there is no model for arc-connected continua;

(iii) there is no model for planar indecomposable tree-Jike continua;

(iv) if & is a collection of polyhedra containing a polyhedron of dimension
greater than 1, then every trec-like continuum is &-like;

* This paper is based on the au(‘lxor"s dissertation, in partial fulfillment of the requirements f or
the degree of Doctor of Philosophy at Tulane University, August, 1975.


Artur


42 R.L. Russo ‘

(v) if 2 is a collection of polyhedra other than {arc}, {circle}, ot {arc, circle},
then theré is no model for #-like. continua.

Hereditarily indecomposable treelike continua which are not arc-like play
a central role in unsolved problems concerning hereditarily equivalent continua [3],
homogeneous plane continua [7], and the fixed point property [1]. Mioduszewski
and Rogers have shown that the universal property can be used to construct heredi-
tarily indecomposable continua. Our results show that this approach cannot be used
to construct hereditarily indecomposable #-like continua except in the cases
2 = {arc}, {circle}, or {arc, circle}.

J. W. Rogers [13] has posed the question: given a collection # of continua, is
there an element of % which can be mapped onto every element of %? Our results
provide a negative answer for many collections.

Section 1. In this section we define a plane continuum M, and an uncountable
collection 7 of subcontinua of M. Every T € 7 will be a tree-like continuum and will
consist of a piecewise linear spiral about a simple triod. ~ has the property that
if His any continuum and fand g are two maps of H into M such thatf (H), g (H)e I
and : ‘

olf,9) = suEd(f(x), 9(x) <1507 »

where dis the usual metric on the plane, then f (H) = g(H). Thus, if His a continuum

which can be mapped onto every element of 7, then there exists an uncountable

collection 7 of maps from H into M such that if f, ge 7, then o(f, 9) =155
There is a theorem due to Borsuk that if H and M are two compact metric spaces,
then C(H, M), the space of all maps from H into M metrized by g, is separable.
However, 7' =C(H, M) and thus C(H, M) is not separable. This contradiction
shows that no such H can exist.

In the plane let ¥ be the simple triod defined in polar coordinates by

Y={(r,0):0<r<1, 0 =0, 3, $n}.

Forn=0,1,2,.. let g(n) be the point in the plane defined by

1
g(n) = <1+ m,O).

Note that the distance from ¢(0) to ¢(1) is $.
Forn=1,2,3, ... define in polar coordinates

s(n) = (1—11 s ;—E) s

12
t(n)=(1+-,—n>,
n 3
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u(n) = (% . 1:) ,

1 4n
U(n)—(l'f‘;'z,—?)‘),

wn) = (;11 , é;) .

If p and ¢ are two points in the plane, let pg be the straight line segment joining ptogq.
Let W be the spiral about Y defined by

3]

W o= Ux g(n—1)s(m) v s () v tmu@) v @l u

n=

‘ U ;(n) w(n) v w(m)g(n) .
Let ¥ be the spiral about Y defined by

V = "gl (gtn—1)wm) v wmvm v v u@) v u@m) U

i v t(mys(n) U;—(I;)?O?—_)) .
We define M = Y u Wu V (see Fig. 1).

v(1)

Fig. 1
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To every x € [1;2), associate a sequence, denoted by seqx, where seqx = 1,
"E(10-x), E(10%-x), ..., E(10":x), ..., and E( ) means the integer part. If x has

two decimal representations, use only the one that does not terminate in an infinite

string of nines. Thus
seql.246 = 1,12, 124, 1246, 12460, ...
Note that if seqx = 1, ny, 15, ..., 1, ..., then
<l =ny 1y~ 1<l —ny, <0<l <l =n+ny <l —ny+ny—n3+m<..;
in fact, m,>1+n,+...+m,_,. Also, define

vk, X) = 1—n;4+ny~...+ (=D,

nik,x) = l4+n,+n,4..+n .
If there is no chance of confusion, we will simply write v(k) for v(k, x) and #(k)
for n(k,x). If ye[l,2) and seqy = 1, my, ma, .., My, ..., then m>n(k—1,x)
and 0<v(k, x)<v(k+2,y) if & is even, and 0>v(k, x)>v(k+2,y) if &k is odd.

'We associate with x a subcontinuum T, of M determined by seqx in the following
marnner: '

T.=Yuv q(0)q(1), WU g(Dg(n(1)), Vv
v g(n(0)g(@), W gn@)qm@), Vo ...,

where rs, D is the arc from r to s in D. Less precisely but more clearly, T, is Y plus
a spiral about Y determined by one “turn” on W starting at ¢(0) followed by ny turns
on ¥V, then by »n, turns on W, etc. Define

= {T.: xe|l,2)},

then 7 is an uncountable collection of subcontinua of M.

THEOREM 1. Let H be a continuum and Tye T . If f: H-T, is a map, then for
any arc ab<f(H)\Y, there exists a subcontinuum H, of H so that f(H,) = ab.
Proof. Without loss of generality, let a lie between ¢(0) and b in 7°,. Now,
f~1(ab) is closed. Further, some component H, of f~(ab) intersects both f~*(a)
and f~(5). (Suppose not. Then f~'(ab) = P u Q, where P and Q are closed,

PN Q=@ and f~Ya)<P and f~1b)< Q. But this means we can disconnect H'
since

H=(Pos gOa) v (Quf(Tag©b).

This is a contradiction since H is connected.) In fact, H, is a subcontinuum of H.
Also, f(H,) is a subcontinuum of ab containing @ and b, and @5 is irreducible
between @ and b. Therefore, f(H,) = ab. H

The next theorem and its proof are essentially translations of the orlgmals
given by Waraszkiewicz in [14].
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THEOREM 2. 1}et H be a continuum, and let f: H-TNY and g: H-T,\Y be
maps so that
o fH) = Zzb_,—i where a precedes b (considering T,\Y ordered linearly from
q(0) outward) and g(H) = ce, T, where c precedes e;.

(ii) |Q(0)a Tl<150:

(iii) for every reg(f™'(@), 1a()r,
of the arc.

If o(f, 9)<tty, then there are two maps ¢: I-T, and : I-T,, where
I = [0, 1], such that )

@ o, V)<,

(b) @(0) = y(0) = ¢(0) and ¢(1) = b,

© o) = q(0)b, T, and Y1) = g(0)e; T;.

Proof. If XeT\Y or T\, then X, x or X,y will denote the smallest arc
containing X in T\\Y or T,\Y, respectwcly Let he H, then there exist pomts
u,veT\Y and w,ze T,\Y such that f(h) eIntuu T, and g(h) eInth, T, and

luv T|<1so and |wz, Tl<150 Now, L = Intuv, T, and N—Inth T, are
open. Let U(h) = f L) ng~'(N), then U(k) is an open nelghborhood of h;

y| <~“1§o where |arc| means the length

lf(U(h)) xl<tiz; and [g(UM), yl <+i5.

The collection of all such U(h) as h ranges over H is an open cover of H. But His
compact, so some finite collection % of such sets covers H. Since H is connected
we can choose a sequence Uy, ..., U, of elements of # satisfying the conditions:

P Fri@nlU, # @ #f0) U,

2 U,V 2D for k=1,2,..,n=1,

3% every element of % occurs at least once in the sequence.

We will denote the endpoin_t_s 9:? f (Uy), x by a(k) and b(k) where a(k) precedes
b(k), and the endpomts of g(Uy),y by c(k) and e(k) where c(k) precedes e(k).
Thus f (U, ¥ = a(/»)b(k), T, and g(Uy,» = c(k)e(k), T,. Further, we have

(@) a(k), T, <|g@b(k), T for all k. Now,

ab,T.= | a(k)b(l), T, and ce,T,= kUlc(k)e(k), Ty.
k=t =

Clearly, ¢ = a(l) and b = b(n) and ¢ = ¢(l) for some I<7. Now, 2° implies that

a(l)b(k), Te 0 alk+1)b(k+1), T, # (4]
and ’

e, T, et Dele+ D), Ty # 0
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for k = 1,2,..,n—1. Let b(O) = a(l), e(0) = ¢(1), a(0y = q(1), and e(©) = e(l),
Then for’ every k =1,2,

|b(k—1)b(k), T| <mex{jale—Db(k—1), Ty , la(k)b(k), T} <tv .,
le(e—De(k), Tylsmax{jc(k—De(k—1), T,|, [c(k)e(k), Tl‘ 157 -
Note that .

) . dbK), et))<d(b(k), S @Y+d(f(w), g(w))+d(g (u), e(k))< = &
where ue'U;. Also,
©)] lg@bQ), Tl = [9(0)b(0), Tl +16(0)5(1), Tyl <135

since 5(0) = a(l) = « and by (ii) and (1). Moreover,

@ lg©)e(1), Tyl = 19(0)e(0), T +le(0)e(1), T, l'<fgﬁ
since ¢(0) = ¢(1) and by (1) since there is a u € U, so that f (&) = a by 1° and thus
by (iii) 1(0)g (), Ty <135, but

9@ eg(Uy),y = ce(D), T,
and thus jg(0)c(1), 7,1</4(0)g (9, ;). Now,

4O, T, = 4020, 72 o () 5E= 159, 7

and

q0)e, T, = g(0)e(1), Ty0 (U e(k—De(k), T,).
- k=2
.. . . 1 12 n—1
Divide I into n equal intervals |0, [, [ =, = |, ..., [———, 1]. Define ¢: [>T
,n]'|n’n n ¥
1 T —
for ze[O :] by ¢(z )eq(O)b(l) T, such that
1 e
- =z 4P @), Tol = (z—0)|p@b(1), T3;
k—1 k —
and for ze - for k=2,3,...,n by e(2)eb(k—1)bk), T, such. that
k —_— =1\
e [ok—1)o (), Ty| = -———)I(P(Z)b(k),Txl-

- Define y: I-T, similarly by replacing b with e and T, with T}, Clearly, ¢ and v are
continuous and

1 1 —_—
tp(l:O ;:D = q(O)b(l), I s w([O,;lD = q(0)e(1), T,
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and for k=2,3,..,n

W([k—l’q)  SSTERLT., w([—f— ’f]) = e(k—1)e(®), T, .
n 'n "

So ¢(0) = ¥(0) = q(0), p(1) = b(n) = b, and ¢(I) = (0B, Ty, ¥(D) = ¢(O)e, Ty,
Finally, if z e [0, ;1] then

(¢ (2, ¥ (2)<d(q(0), () +d(q(0), ¥ ()<Ig (@) b(D), T +'!q(0)e(1), T

by (3) and (4) since @ (z) € g(0)b(1), Ty, Y (2) € q(0)e(1), T;,. If ze [k; 1 , f] for

n
k=2,..,n, then

d ((p‘(z) LW (@) <d(e@), b)) +d(bK), e(k))+d(e(®), ¥ (2))
<]b(k-1)b(k) T, +3&5+le(k— l)e(k) T,

1*
<tigtistTiv =30

by (2) and (1). Thus o(p, ¥)<75. W
Define p: (R, 0)~(Y, (1,0)) by

[(6(n+5—2),0) if zeln,n+3l,
(6(z—n—%),3m) if zeln+g,n+3l,
(6(m+1-2),%n) if zeln+d, n+dl,
(6(z—n—1%),%m) if zeln+d,n+il,
(6(n+—6--z), $n) if ze[+i, n+2l,
(6(z—n—%,0) if zem+i,n+l]

p(z) =

in polar coordinates for 7 an integer. The continuity of p is clear. Define
ret (TNY, g(0))~(Y; (1, 0))
by
rdg@m) = (1,0, ro{s(m) = ru(m) = r(w@) =0,
rx(l(n)) = (l H %ﬂ) ] ‘rx(v(")) = (1 H %TC) >

and extend r, lmeariy to the rest of T,\Y. So r, is continuousand is a projection
of T\Y onto Y. Define ry: (T,\Y, g(0))—(R, 0) by

@) =0, ram)=1, ra@+D)=v@F(=1F
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where / is an integer and 1</<mq;
’:lc(s(l)) = % B r;(s(Z)) = 'tlﬁ' »

, L PEEDH R ks een,
Tx(s("l(k)'['l)) = {v(k)_l_(__l)’”ll—-g— if k& is odd ;

M) =1, @) =1,

, y(&)+(=1**+3  if k is even,
rlitn (B +0) = {v(k)+(—-1)"+1l—% if & is 0dd ;

ru®) =4, rw@)=1,

. V) +(—DF UL if k is even,
rafuln+1) = {V(k)+(—1)"+1l~% if k is odd ;

r;(v(l)) = % ) I’;(U(Z)) = ZZT ’
- _ @+ (=D¥"+3  if k is even,
@ +0) = {v(k)+(‘——- D=4 i & is odd ;

) =5, ) =%,

v _ EH(-DULE ik is even,
rdw(®)+1)) = {v(k)_*.(h_ DF*-%  if k is odd.

Extend r,, linearly to the rest of 7,\Y; then r, is continuous. Tt may be checked that
pory=ry If 0: (I,0)>(T\Y, ¢(0)) is continuous, then 6’ will mean 7. o 0.

By critical points, we mean the points (1, 0), (1, ¢%), (1, £n),

LemumA 1. Consider p: (R, 0)—(Y, (1, 0)). If z, € R is such that p(z,) is & critical
point and if §=|z;—2,| 2+, then d(p(zy), p(z2)) >+

Proof. Suppose p(z;) = (1,%m), then z; = n+} for some integer n. Since
3>z, —zl 275, then n—i<z,<n+45 or n+ii<z,<n+1+L. Thus, p(z,)
= (a,0) for 0<a<l or p(z,) = (a,%n) for 0<a<l or p(z,) = (a, %m) for
0<a<%. In any case, d(p(z)),p(z,))=2¥>5%. The cases where p(z,) = (1,0)
or p(z;) = (1, %n) are similar. B

. TeEoreM 3. Let ¢: (I, 0)—~(T,\Y, ¢(0)) and y: (I,0)—(T\Y, q(0)) be two

maps, where Ty, T, e J. If o(p, W<y, then 10'(2)—y'(2)| <35 for ze I such that
rd@(2) or r,(Y(2)) is a critical point.

Proof. Suppose not. There is a first z, € I such that r.(¢(zo)) or r,(V(zo)) is
a critical point and [¢'(zp) —¥'(2,)| 21'z. We note 0<zy; and, for any z<z, such
that r(¢(2)) or r,(¥(2)) is a critical point, then |¢/(2) —/(z)| <+%. It is clear that if
d(¢p(@, ¥ (@)< 313:‘ then d(r (¢ (2), 1,V (2))) < 35

Case 1. $>1¢'(20)—V'(z0)| > ¥5. By Lemma 1, since po'(zy) = p o 0 ¢ (o)

= 1,0 (2,) and pyr'(zy) = ¥ (2o), then d(P(P/(Zo),P‘V(zo)) = d(’x¢ (z0), ry¢(zo))> ﬁ-
This is a contradiction.
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Case 2. |¢'(zo)—Y/'(z0)|>%. Let Z be the last number less than z, so that
rip(2) or r,(2) is a critical point and |¢'(Z)—y' ()| < 5. £ clearly exists.

Suppose 7,0 (z,) = (1,0), so ¢'(zy) = n for some integer n and either
V'(zp)<n—=% or Y'(zo)>n+2. Now if ryp(Z) = (1,0), then ¢'(Z) =n (since if
¢'(E)<n—1 or ¢'(2)=n+1, then there is z' so that Z<z'<z, and ¢'(z') =n—%
or ¢'(z) = n+% respectively.. Thus, r.p(z) = pe'(z) = (1, %n). Since z'<z,,
[¢'(z)—¥'(z)| < £ contradicting the fact that z is last) But |¢'G)— V' @|< 75
50 n— fe<y¥'(B)<nt . Since Y'(zo)<n—% or Y'(zo)>n++%, then there exists z’
50 that Z<z'<z, and ¥'(z') = n—% or Y'(z") = n+% respectively. Thus r,¥(z")
= pY'(z") = (1, %m). Since z' <z, |¢'(z")—P'(z")| < 4%, contradicting the fact that Z
is last. . ‘

If rup(®) = (1,%n), then ¢'(%) =n+} (ince if ¢'(D)<n—1+% or ¢'(2)
>n+1+1 we can find 2’ such that Z<z' <z, and ¢’(z') = n—1+% or ¢'(z") = n+%
respectively. Thus, r,(z) = pe'(z') = (1,%n) and |¢'(z)—y'(z)| < {v which is
a contradiction.) But |@'(®)—y/'(B)| < g5 50 nt++g <yY(F)<n+ 5. Since ¥'(zo)
<n—% or Y'(zp)>n+3<, there exists 2 so that Z<z'<z, and Y'(z) = n—% or
¥'(z') = n+%respectively. Thus, r, (z) = p¥'(z) = (1, 4im) and |’ (2 —V¥'(z)| <75
a contradiction.

If r.@(®) = (1, 4m), the proof is similar.

If r, 0 (2) = (1,0), then ' ()<n—1 or Y'(Z)zn+1 (since if n—1<Y'(B)<n+1,
then Y/'(2) = n. But y’'(zo) <n—= or ¥/'(z)>n+% so that there is z’ with Z<z'<zo
and Y/'(z') = n—% or Y'(z') = n+}% respectively. Thus, r,¥(Z') = pY'(z) = (1, )
and [¢'(z')—y'(z)|< &5, a contradiction.) But |¢'(@—V'(@I<{s so ¢'(2)
<n—1+ 45 or ¢'(B)>n+1— 1. Since ¢'(z,) = n, there is z’ with Z<z'<z and
¢'(z) = n—3% or ¢'(z') = n+}% respectively. Thus, r,@(z)) = pp'(z) = (1, %m) and
lo'(z")—y'(z")| < 1%, a contradiction. : :

If 7,y () = (1,%n) or (1, %m), the proof is similar.

The other two cases of values of 7, (z,) and three cases of values of 7,y (zo),
each with six subcases of values of r,@(%) and ry¥(Z), are also similar. M

THEOREM 4, Let x,ye[l,2) with x # y. Let

*seqx = 1,0y, My ey My M s Pl oon
and ‘

seqy = 1,00y, Mgy ees My Mg 15 M 25 oe s
where 1, >myyy, ie. x>y and x and y first disagree at the (k+1)-st . decimal
place. Let ¢: (I, 0)=(T,\Y, ¢(0)) and : (I,0)—~(T,\Y, q(0)) be maps such that
p(N=q© gk, X)+myr,+1), T, and Y(I) = g©)q(n(k+2,)), T, with ¥ (1)
= q(n(k+2, ). Then there exists a zo €I such that d{p(zo), ¥ (20))> 55

Proof. Suppose for every z e I that d(¢(2), ¥(2))< =5, then by Theorem 3,

19'(2) ' (2)| < 75 for every zel In particular, |¢'(1)—¥'(1)I< 5, but ¥'(1)
= W) = ry(qnk+2,)) = v(k+2,)). However, v(k,x)=v(k,») is the
smallest negative value ¢’(1) can assume if k is odd and is the largest positive value
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@'(1) can assume if k is even. Now, if k is even, /(1) is positive so [y'(1)~=¢'(D|
is minimized when ¢’(1) is the largest positive value it can assume. If k is odd, y'(1)
is negative so |{'(1)—¢'(1)| is minimized when ¢'(1) is the smallest negative value
it can assume. Therefore, in cither case

I’ W)= (D] = WD)~ (=1} s + (=120 > 1> 75
which is a contradiction. So there is a z, €I such that d(g(z), ¥ (z0))> 75 B

THEOREM 5. Let x, 7, seqx, seqy be as above. Let ¢: (I, 0)~(T.\Y, ¢(0)) and
v (I, 0+(T,\Y, g(0)) be maps such that o(I) = q(0)g(n(k, x)+mys+1), Ty
with (1) = q(n(k, x)+myy,+1). Then there exists a zo €l so that

d(‘P(Zo)s ‘/’(Zo))> 35 -

Proof. Suppose not. Then d(¢(z),¥(2))< s for every zel. But (b
= q(n(k X)+myyq+1) and thus r.p(1) = 1. Thus, by Theorem 3, |¢'(1)—y'(L)}
< 10 Now, ¢'(1) = v(k, x)+(— D *(mee+1) = v(k+1, P +(=DF

Crame. (1) ¢ g0 g(n(e+2, ), T,.

Case 1. Suppose ¥(1) e g(0)g(n(k+1,), T}, theu v(k+1, y) is the smallest
negative value y'(1) can assume if k41 is odd and is the largest positive value it can
assume if k+1 is even. If k+1 is even, ¢'(1) is positive, so [@'(1)—y (1) is
minimized when ’(1) is the largest positive value it can assume. If k+1 is odd,
¢’'(1) is negative, so |¢'(1)—y’(1)] is minimized when ’'(1) is the smallest negative
value it can assume. Thus, in either case, |o'(1)—y/'(1)] = [(—1)*"!] = 1>
which is a contradiction.

Case 2. Suppose ¥(1)eg(n(k+1,3))q(nk+2,), Ty, then Ny'()—o (1)
= |p(k+1, )+ (=D*F2U=vE+1, D+ (=~ DF2 = [(=D(+D)] = I+1>1> 75
where 0</<my,, and [ is a real number, not necessarily an integer. But this is
a contradiction. Hence (0) = ¢(0) and '

Yy (D) eTNgOg(nk+2, ), T,.

Since ¥ is continuous and I is a continuum, there is a first w € I so that (1)
= g(n(&+2, ). Let h: I=[0, u] be defined by h(x) = x-u, then } is continuous
and 2(0) = 0, (1) = u.Let @'’ = gpohand y" =y o h,then¢”: (J, 0)—)(7@\1’(1(0))
and z[/” (I, 0)={(T,\Y, q(0)) are continuous and

" (Do) = g q(nk, x)+my. +1), Ty,
YD) = (0, u)) = g q(nk+2,5), T, -

with y’(1) = ¥ (u) = g(n(k+2, y)). Hence, by Theorem 4, there is a z, € I so that
d(@"(21), ¥'"(z))> 55 Let z, = h(zy), then z, € 1 and ¢(zy) —‘(p(h(zl)) @' (zy),
Y(zo) = Y(h(zy)) = 1//"(z1) Thus d(¢p(z,), 1//(20‘))>‘30 which is a contradiction. M
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THEOREM 6. Let H be a continuum. Let T, Tye S and f: H-T, and g: H-T,
be onto maps. If o(f, 9)< 1355, then x =y, i.e., Ty = Ty,

Proof. Suppose x # y. We assume without loss of generality that x>y. Let
SEQX = 1, My, eeuy Mgy Mg 15 Mpgzy - @04 S€QY = 1, By, wv, My, Mgy g, Mgyn, ... Where
Mgy q>Myyy Since x>y. By Theorem 1, there is a subcontinuum H; of H so that

FUH) = 4 g(n(k, 1)+ ey +1), T

Case 1. g(H,)&T,\Y., We apply Theorem 2 with H; for H, g(0) for a,

q(n(k, A)+m,H +1) = b, g(H,) = ce, T,, where ¢ precedes e. Note |g(0)a, T,
= 0< iy and reg(f Ya) lmplles d(q(O}, r)< 1s%s Wwhich in turn implies
ium‘i']< —+5. Also, o(f, 9)< T555 < 755 Thus, there are maps ¢: (/,0)—
(T\Y, g(0)) and ¥ (I, 0)~(T,\ Y, ¢(0)) with o(I) = q(0)q(n(k, X)+mye+1), Ty
and ¢(1) = ¢(y(k, x)+m,, +1) and g(@, ) <75. But this contradicts Theorem 5.

Case 2. g(H)) n Y # &. Now, there is an h, € H; such that f(h;) = g(0),
but d( £ (), g(hy)) = d(q(0), g(#1))< 150 Also, there exists an hip € Hy s0 that
g(hy) € Y. But g (H,) is connected, so T,\(¥ U q(O)g(hl) T)Sg(H,y). Let a= g (hy),
then applying Theorem 1 to H, and g, there is a subcontinuum H, of Hy so that
g(Hy) = ag(ne+2, ), Ty. We know f (H;) Sf (Hy) = q(0)a(ne, ) +myp s +1), T
We apply Theorem 2 with H, for H 1, g forf,ffor g, x for y, y for x, a as above,
b= q(nlk+2,), ), and f(Hz) = ce, T, where ¢ precedes e. We note d(g(0), @)
< 1855, 50 |g(0)a, T, ] < 150 Also, if r ef (g7 *(a)), then tl(q(O), r)<d(q(0), a)+
+d(a, )< 1455 + 1555 = 7o¢ Which implies |g(0)r, T|< t35. Furthermore,

sup d(f ), g(m)< 1360 < 57 -
(=253

Thus, by Theorem 2 there are maps ¢: (I, 0)=(T,\Y, ¢(0)) and y: (1, 0)—
S(TNY, g(0) with o() = 7@ q(nk+2,), T, and ¢(1) = g(1(k+2,5)) and

y() = g(@)e, T, = g(O)¢, Ty U ce, T, = g0}, Tee U f (Ha)
QQ(O)Q(U(k:J‘)+mk+1+1)1 Tx .

and ¢(p, ) <+%. But this contradicts Theorem 4 with ¢ and ¥ interchanged. B

Remarks. It is easily seen that every element of # is a planar A-dendroid.
So there is no model for planar J-dendroids. Since every clement of # is one-
dimensional, we have also shown there is no modcl for (planar) one-dimensional
continva.

Note also that, for every x, T, x I is aposyndetic. Further, T, x I can be mapped
onto T, by projection. Thus, there can be no model for aposyndetic continua. If
there were a model H, it could be mapped onto T x I and hence onto T, for every
¥ e[l, 2). This contradicts the fact that there is no model for 7 J°. So H cannot exist.
It is, however, still an open question whether there exists a model for planar apo-
syndetic continua. i
"
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The uncountable collection & of planar continua which Waraszkiewicz pre-
sented is ’

& = {8 xel[l,2)}

where S, is defined exactly as T, except that for S the alternating spiral limits on
a unit circle instead of on a simple triod. Each S, can be mapped onto the cor-
responding T, in an obvious fashion, so there is no model for &.

Fig. 2

Section 2. There is an uncountable collection .# of indecomposable trec-like
plane continua which has no model. We construct for every 7, € 7 an indecomposable
tree-like continuum I(7}) in the plane such that 77, is a retract of I( T3).

We construct I(7)) by “blending” Knaster’s indecomposable continuum K
with T, in the manner shown in Figure 2. We define & = {I(T}): T, e T YIf
a continuum H could be mapped onto every I(T,) e %, then H could be mapped
onto every T, € 7. But we have just shown this is impossible. So .# has no model.

Each continuum in # contains a simple triod. Since this paper was written,
Ingram has constructed an uncountable collection of planar atriodic indecomposable
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tree-like continua without a model [5] and an uncountable collection of planar
hereditarily indecomposable tree-like continua without a model [6].

There is no model for arc-connected continua. We follow the same plan as
in Section 1. We construct an uncountable collection & of arc-connected continua,
all subcontinua of a continuum N. We show & has the property that if H is a con-
tinuum and f and g are two maps of H into N such that f(H), g(H)e & and
o(f, 9) <1555, then f(H) = g(H). Again this is sufficient to show that H is not
a model for &.

Refer back to Section 1. Define

My = M = {(x,,0): (x,) €M},
j.e., My is M considered embedded in R3. Define

-1
Mn={(x’y=—):(x,y)EM}' for n=l,‘2,3,...
. n

Zi ={(2,0,2): 0<z<1},
Z, = {(2,0,2): —1<z<0},
Zy={(1,0,2: —1<z<0},
Zy = {(x,0, =1): 1<x<2}.
o 4 :
Define N = ( U M,) u( UZ,), then N is a continuum. Note that M = M,
n=0 n=1

is a retract of N\Z, simply by defining r: N\Z,—»M by r(x, ¥, 2) = (x,y, 0). Recall
from Section 1 how seqx and T, are defined for x e [1, 2). Define

T.0) = T, = {(u,v,0): (,v) e T},
1 —
T.(n) = {(u, v,—): (u,v) e g0 g(n), Tx} for n=1,2,3,..
n -
We associate with x a subcontinuum F, of N defined by

© 4
Fo=(UTe) o (UZ).

+ 1t is easily seen that F, is an arc-connected continuum. Define # = {F,: x e [1, 2)}-

Note that T, = T,(0) is a retract of F,\Z, where the retraction map is r|F\Z,,
written hereafter simply as 7.
THEOREM 7. Let H be a continuum and F.e &F. If f1 H—F, is an onto map,-
then for any nz1, there exists a subcontimmm H, of H so that f(Hy) = T,(n).
Proof. The proof is exactly the same as that of Theorem 1 with a few changes’
in notation. M ‘
TueoreM 8. Let H be a continuum. Let Fy;, F, € # and f: H-F, and g H—F,
be onto maps: If o(f, 9)<issw, then x =y, i.e., F, = F,. .
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Proof. Suppose x # y. We assume without loss of generality that x>y. Let
SeqX = 1, 7y, vuuy Mios M 1> Myay - A0A S€QY = 1,1, woo, Ty, Wiy, My 5 .. Where
Mys1>Meyq since x>y, By Theorem.7, there is a subcontinuum Hy of H so that
S#H) = T(n(k, x)+mg +1). Now, o(f, g)<1dss, so f(HISFNZ, and
g(H)SFN\Z,. Thus, 1f (Hy) = q(0)q(n(k, x)+my+1,T,) and rg (H) =T, and

sup d(rf (h), rg ()< sup d(f (h), g(W)) <1555 -
heH, heH, .

The remainder of the proof is exactly the same as that of Theorem 6 starting
from Case 1 with rf in place of f and rg in place of g. H

Remarks. Unfortunately, the F, in & are not planar. Thus, it is still an open
question whether there exists a model for planar arc-connected continua.

_Section 3. In this section we generalize the results of Section 1 where we showed
there was no model for Y-like continua. If £ is any collection of polyhedra other
than {arc}, {circle}, or {arc, circle}, we show there is no model for #-like continua.
The method used is to construct an uncounterable collection & = {D,: xe[1, 2)}
of #-like continua with the property that D, can be mapped onto T, for every x,
or D, can be mapped onto S for cvery x. Since there is no model for 7~ or &, there
can be no model for 2. '

PROPOSITION 1. Let 2 be a collection of polyhedra. If P contains a polyhedron
of dimension greater than 1, then every tree-like continuum is P-like.

" Proof. Let X bea tree, R be a polyhedron of dimension » greater than 1, and
&>0. It suffices to show there is'an ¢-map (diameters of point inverses are less than &)
from X onto R. Triangulate R, and let C be a simplex of maximal dimension. Then C
is homeomorphic to E", for some n>2, where

E"={peR": |p|<1}.

We will consider R to be imbedded in R*>"*! and C to be E™

X is a contractible finite union of arcs which intersect only in their endpoints.
‘We may assume each arc is a straight line segment of length 1. We call an endpoint p
of an arc a free point if X\{p} is connected; otherwise, we call p a branch point.
If an arc has a free point, we call the arc free, ,

Let m be a positive integer such that 1/m<e/2. Divide each arc of X into m equal
intervals. Pick a free arc of X. Divide C'into m—1 concentric closed annular regions
surrounding a central closed spherical region. By the Hahn-Mazurkiewicz theorem
the first interval of the arc, starting at a free point, can be mapped onto RNC union
the closed outermost annular region of C in such a way that both endpoints of the
interval are mapped onto a point p, of the inner boundary of the annular region.
The next interval of the arc can be mapped ento the next closed annular region of C
so that the first endpoint of the interval is mapped onto Py and the other endpoint
is . mapped ‘onto a point p, of the inner boundary of this annular region. Continue
this process until the last interval of the arc. If the last endpoint is free, map the last
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interval onto the entire remaining closed region of C so that the first endpoint of the
interval is mapped onto p,.,. If the last endpoint is a branch point, divide the
remaining closed region of C into a closed outer annular region surrounding an inner
closed spherical region. Map the last interval onto the annular region as before-with
the branch point being mapped onto p,, on the common boundary of the annular
and spherical regions. If there are k other arcs emanating from the branch point, -
then divide the remaining closed region into k closed regions.each with the point Dm
in its boundary. Using the above procedure, map each of these k arcs into a different
one of the & closed regions. Eventually the process terminates, and all of the maps
can be fitted together into one map of X onto R which is an e-map. See Figures 3, 4,
and 5 for examples of this process., M

Fig. 3

THEOREM 9. If & is a collection of polyhedra other than {arc}, {circle}, {are,
circle}, then there is no model for P-like continua.

Proof. It suffices to consider & which contain only one polyhedron R, and R
is ’neither an arc nor a circle. We kitiow from Section 1 that there is no model for
Y-like continua. Suppose R has dimension greater than 1, then Proposition 1 says
every Y-like continuum is R-like. Thus, there can be no model for R-like continua
since such a model, if it existed, would be a model for Y-like continua. Therefore,
we may assume that R has dimension 1. S6 R is either a tree (but hot an arc) or a one -
dimensional continuum containing a simple closed curve as a proper subcontinuum. .


Artur


icm
56 R.L. Russo Universal continua ' 57

Suppose R is a tree but not an arc, then R may be represented as

R=YUuAduBuC

where Y is the standard simple triod as defined in Section 1; Aisatreeand 4 n Y
={(0,0)}or4 =@; Bisatreeand Bn ¥ = {(1,4m)} or B = &; Cis a tree and
CnY={(1,%n)} or C=@; and 4, B, and C are disjoint. Define

# = {R(T,): xell,2)}

where
RTYy=T,ud oB v
Fig. 5
homeororphic to B if B # @ and B’ lies in R* but not in R except for (1, %m);
C'=@ if C=@ or C’ is homeomorphic to C if C# @ and C' lies'in R® but not
in R% except for (1, #m); and A', B’ and C’ are disjoint. ' :
‘We can map R(T,) onto T, by f: R(T,)—Ty where

Fig. 4 (p if peT,,

. o S _J0.0)  ifped,

and T is as defined in Section 1; 4’ = @ if 4 = @ or 4’ is is homeomorphic to 4 if S @)= (1,%m) ifpeB’,

A % @and 4’ Hes in R® but not in R? except for (0,0); B’ = G.if B = & or B'is . (1,3m) f peC’.
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In fact, T, is a retract of R(T,). We discern by the use of nerves of ¢-covers that
R(T,)is R-like. But there can be no model for 2 since, if there were, it would also be
a model for 7.

Finally, suppose R contains a simple closed curve, then R may be represented as

R=8S'VGuU..uGu4d

where S* is the standard unit circle; Gy, ..., G, are arcs that all lie in the unbounded
component of R*\S*; G;n 8 =p, for 1<i<k where p, is one endpoint of
Gi;Gin G =@ or G, nG;=p; =p,fori + j; 4is a one-dimensional polyhedron
(not necessarily connected) and 4 N S* = @; if 4 # @, then 4 N (G u..uG
is a non-empty subset of the endpoints of the G;'s; and k31 (see Fig. 6).
Define Z = {R(S,): x € [1,2)} where R(S,) is the same as R except the k arcs
of R are replaced by k spirals limiting on S and each spiral alternates its direction

In general:
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Fig. 8
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as determined by x in the manner described in Section 1. See Figure 7 for a picture
of R(S,) where R is a figure eight, and Figure 8 for another example.

We can map R(S,) onto 'S, by mapping S* identically onto itself, all of the
k spirals homeomorphically onto one of themselves, and 4 onto the endpoint of that
spiral. It may be checked by means of nerves of e-covers that R(S,) is R-like. But
there can be no model for £ since, if there were, it would also be a model for &. B

.

References

[1] H. Bell, On fixed point properties of plane continua, Trans. Amer. Math. Soc. 128 (1967)
pp. 539-548.

[21 D. Fellamy, Mappings of indecomposable continua, Proc. Amer. Math, Soc. 30 (197D),
pp. 179-180. .

[381 H. Cook, Tree-likeness of hereditarily equivalent continua, Fund. Math. 68 (1970), pp. 203-205.

[4]1 L. Fearnley, Characterizations of the contimious images of the pseudo-arc, Trans. Amer.
Math. Soc. 111 (1964), pp. 380-399.

[51 W.T. Ingram, Concerning atriodic tree-like continua, Fund. Math. 101 (1978), pp. 189-193.

[6] — Hereditarily indecomposable tree-like continua, Fund. Math. 103 (1979), pp. 61-64.

[7] F.B. Jones, Homogeneous plane continua, Proceedings of the Auburn Topology Conference,
1969, pp. 46-56.

[8] W. Kuperberg, Uniformly pathwise connected continua, Fund. Math. (to appear).

[91 A. Lelek, On weakly chainable continua, Fund. Math. 51 (1962), pp. 271-282,

[10] M. Mc Cord, Embedding P-like compacta in mm1z“folds, Canad. J. Math. 19 (1967),
pp. 321-332. )

[11] J. Mioduszewski, A functional conception of snake-like continua, Fund. Math. 51 (1962),
pp. 179-189, :

[12] J.T. Rogers, Psendo-circles and unigersal circularly chainable continua, 11l J. Math. 14
(1970), pp. 222-237. ) :

[13] J. W. Rogers, Continuous mappings on continua, Proceedings of the Auburn Topology Con-
ference, 1969, pp. 94-97.

[14] Z. Waraszkiewicz, Sur un probléme de M. H. Hahn, Fund. Math. 22 (1934), pp. 180-205.

Accepté par la Rédaction le 7, 3. 1977

icm

Decompositions in the product of a measure space
and a Polish space

by

J. Bourgain (Brussel)

Abstract. Let X, AG, 1 be a complete probability space and ¥ a Polish space with Borel field $y.
It is shown that if 4 € A@By, then {x € X; A(x) is F;} and {x € X; A(x) is Fys} are both measur-
able. Furthermore, we prove the existence of “measurable decompositions”. From those results, we
deduce a theorem on the stability of the class of the Baire-2 functions under integration.

Introduction. Assume X, pu a probability space and let .# be the o-algebra of
o-measurable subsets of X. Let ¥ be a Polish space with Borel field #y. By well
known arguments, we obtain that if 4 € 4 ®%y, then the sections A4 (x), where x is
taken in X, are of bounded Baire class. Hence . ®%y is the union of the classes &,
(x<wy), consisting of the sets A € .4 @y, such that 4 (x) is of Baire class at most ,
for each x e X, where the Baire class is defined with respect to the closed sets. Let
Fo=F,, which is stable under countable intersections. Starting from %#,, we
obtain a Baire system (#,),<,, - It is a natural question if ¥, and &, coincide for
all o< ;. We will answer if affirmatively for ¢ = 1 and o = 2.

Let # = {MxF; Me #, Fclosed in Y}. The class of the #-analytic subsets
of X'x Y will be denoted by &/ (X, Y), or simply &, if no confusion is possible.
Iet Aesf and assume 4 = = | Q(M"IkXFv!k)’ where v runs over J~ = NW.

Tn such a representation, it will be always assumed that

My X Fye # @, Mypas X Fyppy @ Myp X Fye and diamF,,<1/k,

for each ve ./ and ke N. It is easily seen that & contains .#®%Hy. s
DEFINITION 1, If AcXx Y, then A<Xx Y is defined by A(x) = A(x).
The following description of the set 4® will be useful. If y € ¥ and £>0, then

B(y, ¢) is the open ball with midpoint y and radius e. Let (»,), be a dense sequence

in Y. For every ne N and ke N we take My = n.{d n (X% B(y,,,vl/k))), wl.lere
7, is the projection on X. Then A° = U (M, X B(¥,, 1/k)). From this observation,
kn

we obtain immediately:
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