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Remarks of the elementary theories of formal
and convergent power series

by , ,
Joseph Becker and Leonard Lipshitz (West Lafayette, Ind.)

Abstract. Iﬁ § 1 an example is given of two fields F,, F; of characteristic 0 such that F, = F,
but F[[xy, %]] # Fi[l%, %]]. In § 2itis shown that {C{x, 3}, C{x}><<C[lx, #]], C[{x]]>, where
x = (xy, %) and y = (Y1, ¥a, ¥s, Yo

Tn [3] and [4] Ax and Kochen and Ersov showed among other things that the
ring of convergent power series C{x}, over the complex numbers C, is an elementary
subring of the ring of formal power series/C[[x]] over C. This means that the same

first order statements (in the language of valued rings) with constants from C{x},

are true in both rings. (This is denoted C{x}<C[[x]].) Also they showed that if
fields F, and F, of characteristic O are elementarily equivalent, denoted Fy=F,

- (i.e. the same first order statements in the language of fields are true of F, and Fa)

then F,[[x]] = F,[[x]] as valued rings (i.e. the same first order statements, in the
language of valued rings, are true about Fy[[x]] and F,[[x]]). It is natural to ask
whether these results extend to power series rings in several variables. In Section 1,
we show that one can have fields Fy=F, but F[[x,, x,]] # Fa[[x;, x.1]. In
Section 2 we show that a slightly stronger statement than C{x, ..., x¢}<<
C[[xl, «es Xg]] is false (). These remarks contradict some results claimed in [7].

Section 1. Ersov [4] showed that for any field F and for n=2, F[xy, ..., x,]]
is undecidable. We shall give a slightly different proof of this for the case that F has
characteristic zero and use this proof to show that we can have F; =F, of charac-
teristic 0 but Fy[[xy, ..., %,]] # Fo[[%1, ..., %,]] (r2) as rings. Let F be a field of
characteristic zero. ‘

For the sake of clarity, we begin by showing that & = F[[x,, ..., %,]] is un-
decidable as an F algebra with x, and x, picked out, i.e., that & as a ring under
the operations of addition and multiplication, with constants for x; and x,, and with
an additional predicate which picks out a particular lifting of the residue field F

(*) (Added in proof) Some of the results of this paper and some extensions have been

discoverd independently by F. Delon, Résultats d’indécidabilité dans les ux de séries for-
melles (to appear). )
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in &, is undecidable. We do this by showing how to pick out N from F in a first
order way, and applying the well known result of Gédel that the natural numbers
with addition and multiplication are undecidable.

For a« e F, let N(x) denote the statement:

AfeF (£ OAGIS) A |

. A[VB e F{(x,—Bx,1 f) = [(xs =B+ D)%, S) v (B = H)]}]}
Tt is trivial to check that « is natural number if and only if N(«) is true. (If « is an
integer, let f = ﬁ)(xl—ixz); If « is not an integer, the statement implies that f is

divisible by x, —nx, for each ne N; since char F =0, {x;—nx,},.y are all ine-
quivalent primes; since F[[x,, x,]] is a unique factorization domain it follows
that f has infinite order, and hence f = 0.)

n

Remark. It is interesting to notice that since H (xy—ix,) is a Weierstrass

polynomial in x,, that & is undecidable even if we restrlct quantification to Weier-
strass polynomials.

We now show % is undecidable as a ring by codmg up the same idea in the
residue field of & rather than in its lifting. In 4) below we give a first order state-
ment which says the constant term of a unit is a natural number. In the above we
made use of the specific elements 0, 1, x;, and x, of the ring &. Zero and one are,
of course, first order definable over the ring, but x; and x, are not. In line 3, we
eliminate the usage of x, and x, by coding up a property of x, and x, which is
sufficient for the application in 4).

Let # = F[[x, ..., x,]] and let m be the maximal ideal of .EF Then m is the
set of non-invertable elements of # and hence is first order definable in the ring &.
Hence & [m(=F) is first order definable from &. We shall show how to define the
natural numbers N in &/m in a first order way. Notice that the units in & are the
power series with nonzero constant terms.

We begin by listing some first order statements:

1) U(?) denotes the statement that ¢ is a unit.
U@) < Jo(tv =1).
2) P(t) denotes the statement that ¢ is prime.
Py« [Vq,rlt = gr—~ U(g) or U(®]] and 1U®).

3) P(yy,y,) says that dlﬁ'erent linear combinations of y, and y, give inequiv-
alent primes.

P(p1,92) & P(y)AP() AVuy, uz[{U(u1) AU(uz) AUy —u,)}
g {P(J’1 — U1 2) AP(P1~12¥2) A (non B[U@ A@(r—u,3,) = p, ”‘uzyz)])}] .
Note that P(x,‘, X,) is true.
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4) Define

UN(t) <> U@ Ay 15 Y2, S [P0, I A # ) A(p2—y11 ) A
AYSI{UE) A (7 =592 | £} {@r U AT U(r—s=1) A
AL =2 V(U= -

LemMA. In & ,ﬂ UN(f) <> t is a unit and the constant term of t is in N.
Proof. If the constant term of #=neN take y, = Xx;, y, = x, and

n
S = T]xy—ix,). It is trivial to check that UN(#) is true. Conversely suppose that
i=1

UN(¢) is true but that the constant term of ¢ is ¢ N. Then from the truth of UN(#)
it follows that there exist y; and y, and f such that P(y;, ,) and there exist units s;,
ie N, such that for all i, y, —s,y,|f, and the constant term of s;,; = i+1. But
from P(y,,y,) it would then follow thatallthe y, —siy, (i€ N) are inequivalent
primes and hence that f has infinite order. This contradicts f # 0.

Remark. Clearly the same argument also shows the ring of convergent power
series in n>2 variables is undecidable.

Let N(f) denote the image of UN(¥) in &/m, with the mduced operations of’
addition and multiplication from &. It is«clear that N(¢) is first order definable over #
by the formula N(¢) say, and that N(z) is true iff r € N=&[m. Let R denote the real
numbers and let-R* denote any nonarchimedian real closed field, for instance an
ultrapower of R. (For such a field F, the order is first order definable in terms of the
field operations because a number y € F is positive iff there exist x € F with y = x2.)
Let ¢ be the statement which says that N(z) is cofinal in #m. Then ¢ is true in
R[[x1, ...; x,]] and false in R*[[x,, ..., x,]]. Hence we have:

THEOREM 1. There exist fields Fy, and F, of characteristic 0 such that F; = F,
but for n=2, Fi[[xg, -y X,1] % Fa[[%1, oons %,]] as rings.

In the spirit of the above one can write down a formula A(z) such that A(¢)
picks out the elements of % /m which are algebraic (over @) and hence one can con-
clude that for 22, O[[x1, ..., %,]] % C[[xy, ..., x,]] where @ denotes the algebraic
closure of Q. The details are long and tedious so we defer them to an appendix.

At this point, one should point out that a transfinite counting argument shows.
that there exists nonisomorphic fields Fy, and F, such that ’

Fi[lxrs s %]] = Fo[ %y, won %11 -

(There are more than 2*° isomorphism classes of fields, but at most 2% elementary
equivalence classes since there are only countable many first order statements and an
elementary equivalence class is determined by the set of all first order statements
which hold in that class.) However, if F; and F, are countable fields it is tempting
to conjecture that Fy[[x;, x,]] = Fo[xy, X.I] = Fy is isomorphic to F,. The opinion
of the authors on this question is somewhat less than unanimous.
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We now recall Artin’s theorem [2]: There is an. integer valued function
B =B, N,d, &) so that for any field F ‘and polynomials f = (fy,...,/;s) in
Flx,y], where x = (x{,..,%,) and y = (yy,..,yy) with X degree (f)<d, if
F = (F1, ..., Py) € k[x] satisfy £(x, §) = Omodm(x)® then there exist

y = (yl: '"JyN) Ek[[x]]

so that f(x,y) =0 and y = ymodm(x)*. A similar result holds for polynomials
in y with coefficients in the power series ring F[[x]], without any explicit bound
on f. )

If one restricts consideration to only existential statements, then we get some

positive results. By an existential statement, we mean a first order statement using
only existential quantifiers. By a positive existential statement we mean an existential
statement containing equalities, but no inequalities. R, =,R, means that the same
existential statements are true of R, and R,. R;< R, means the same existential
statements with constants from R, are true in R; and R,. R, =R, and R <R,
-are defined in a similar manner using positive existential statements.

PROPOSITION 1.  Let x denote (xy, ..., X,)

(i) If F, and F; are fields and Fy =,F,, then F\[[x]] = ,F,[Ix]] as rings.

(i) If FicF, are fields and Fy<,F,, then F\[[x]]<,Fo[[x]] as rings and
i .as Fy algebras. S

(iii) If the existential theory of the field F is decidable, then the positive existential
theory of F[[x]] as a ring and as an F algebra is decidable (i.e. positive existential state-
ments from the ring are decidable), where F is of characteristic zero.

(iv) For any field F, the existential theory of F[[x,, x,]] with two predicates P,
-and P,, picking out the subrings F[[x,]] and F[[x,]] is undecidable i.e., formula of
he form -

ok
Fyg o Ay e FlIxI] A 4\1 pix,y) =0Aq(x,) #0)

{&; = 1, 2) are undecidable. This statement will be abreviated by saying that the system
(Fllxy, %1}, F[Ix:10, F[Ix.10) is existentially undecidable.

Proof of (i) and (ii). Since 3 distributes over v, it clearly suffices to consider
just formulas of the form: s

k
Ay, - Elyw(ié\1 pi*,¥) =0Aq(x,y) #0), where p;,qeF[[x]][y].

By Artin’s theorem this can be reduced to a existential statement about a finite di-
mensional vector space over F;.

Proof of (iii). By the above argument, it suffices to give an algorithm for com~
puting the B in Artin’s theorem. This can be done by a careful chase through its

proof, using the fact that the y of Theorem 6.5 is computable because its statement is
a first order statement in logic.
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Proof of (iv). We show how to pick out N with existential quantifiers, by
associating 7 to the powers x4 and x%. Addition in N corresponds to multiplication
in F[[xy, x,]]. Multiplication in N is defined as follows:

ordf(xy) =n, and ordg(x,) =k,

and
ordh(x;) = nk < (9 (32) 5 %2 ——f(xi))F[[xl, xz]] = (h(x1), x2_f(x1))F[[xia xz]] s

which is an existential statement. In this statement we only need inequalities to say
that the elements f(x,) and g(x,) are nonzero. For additional details of this argu-
ment, see [5] where N is coded up using the full first order theory, but no subrings.
It is interesting to note the following corollary of the above, pointed out by
Jan Denef. Let F be a finite field or an uncountable algebraically closed field. In
the existential theory of (F[[x;, x,]], F [:[xl]], F[[x,]]), it is possible to code up N
with the operations of addition and multiplication, but it is not possible to code it
up in the positive existential theory of (F{[x,, x,1], F[[x:1], F[[x.]]). We see this
by considering the following statement which codes up an arbitrary, diophantine
equation. i

3Y15 REEE ) Ym EYF[[XJ.]],EY;"-H,}-., Y-IEF[[xZ]] »
k

ElYx+1: ey YNEF[[xu xz]]({APi(x;y) = 0, where Pi:qEF[x,y])-'

By a standard iterated projection argument, if this has a solution modm(x)" for
all n, then it has a solugion. It follows immediately that there exist § such that if it
has a nonzero solution modm (x)”, then it has a nonzero solution. Since F is decid-
able, by checking if there is no solution modm(x)" for each n, we give an algorithm
which will detect if there is no solution. On the other hand, we can check for solutions
of a diophantine equation by substituting integers inductively. This gives an algorithm
for deciding the positive existential theory of N, a contradiction.

Section 2. Let x = (xy, x,) and y = (¥, Y2, Y3, ¥4). In this section we shall
show that C {x, y}<C[[x, y]] as rings with a designated subring C{»} (resp. C[[¥]]
picked out. We do not know what happens without the designated subrings. The
counterexample of Gabrielov in [6] shows that there exists ¢ (x) = (@;(x), ..., Pa(x)),

. ¢x) e C{x} such that mapping f () »f (@) is one-to-one from C{y}—~C{x} but is

not one-to-one from C[[»]] to C[[x]], i.e.,in C{x, ¥}, AF (N (f(») #~ OAf () = 0)
is false, and in C[[x, y1], A () (f(») # 0Af(¢) = 0) is true. Notice that in this
statement we have used the subring to talk about £ (») (i.e. fe C{y}, resp. C[[¥]]-
We have also used composition of power series. Next we show how to make an
equivalent statement without using composition,

LEMMA. Let X = (X1, ey Xp), ¥ = Y1, s Yy and let

"

f(x’ y): V (p(x) = ((/)l(x): (RS (PN(x))
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be fixed elements of K{x, y} or K[[x, yI] (X is a (valued) field). Then for bothformal
and convergent power series:

@) =034, )[f (>, ») = A&, )(y—e®)].

Proof. One direction is trivial by substituting y = @(x). The other direction
follows from Taylor’s Theorem as follows: f{x, @(x))—f(x,7) is an element of
the ideal generated by y—¢(x). Hence f(x, p(x))—f(x,») = 4(x, »)(y—0(x)),
for some A4(x, y) = (4,(x, ), ..., An(x, 3)).

Let x denote the formula 3/, 4 [ fdepends only ony A (f # 0) Af= A (y—o(x))].
Then  is true in € [fx, 1] and false in C {x, y}. By U<, B we mean that A< B and
that every existential statement with constants from 2 whlch is true in B is true in A.
Then we have: ) ‘

THEOREM 2. Let x = (X1, X5), ¥ = (Y1, 72, Y3, ¥a). Then C{x,y}=<,C[lx, y1]
as rings with designated subrings corresponding to the power series whlch depeml only
on y.

The authors do not know in general if C{z}<C[[z]], or C{z} = C[[z]], where
z = (24, ..., 2,). However, the theorem of Artin in [1] is equivalent to the statement
that C{z}<, C[[z]] as rings (or rings with the oider valuation into N).

Proof. Artin’s theorem says that a convergent power series 1 (x, ¥) has a non-
zero solution y(x) in C{x} if and only if it has a nonzero solution in C[[x]]. We
show that it suffices to consider only polynomial equations with coeflicients in
C{x,y}. Let f(x,) be a fixed element of C{x, y}. Then

o) (x, () =
A, P, e[ fx, ) =
A4, Y [f (x5 = 4, D(-¥(x,3) with ¥ modm®¥?*? specified] .

Note that we may also restate the conditions without order by introducing universal
quantifiers: .

Jo(x) # 0(f(x, p(x)) = 0)
34,9, 9, Y[ f ) =

0, with ¢ modm” specified]
A(x, )(y—o(x)), with ¢ modm® specified]

A, (=1, M) A A
AW Gx, p) = x(x, 3)+ 325 (x, )]

where by »* we mean the set of all monomials of degree 2 in the yis.
We now improve Theorem 2 in a manner which is probably of more interest
to algebraists.

THEOREM 3. Let x = (X1, %5), ¥ = (¥1, V2, ¥3 ¥a). Then C{x,y} % C[[x, y]]
as rings with designated subrings corresponding to the power series which depend
only on y.

Proof. We will show how to remove the reference to the specific power series
@(x). We begin by showing that the order valuation is first order definable in both
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of the rings R = C[[xy, ..., x,J], C{x{, ..., x,}. (One does not need to add it to the
language.) We begin by listing some first erder statements:
a) Let z € R be prime. The statement that f is a power of

z, i.e., f = unit-2,
for some /e N: .

Pow,(f) +> (2| f)AY prime p € R(p|f—p is equivalent to z).
Clearly the set of powers of z is isomorphic to N, and are ordered by divisibility.

b) fem® o 3fis fis G1s s uem k= (3) 50 £ = Thig.
c) S(z,, ...,

d) g e C,(f) < 3o,(S(zy, -o-» 2,), and oy, ...,
in ideal generated by z;—0i,7, ...y Z,— 04,21, f ).

e) ord f = mlng,gcz yord,(9).

It is trivial to check that the above is independent of the choice of the z; and
defines the usual order. ‘

Now . @(x) induces a mapping ¢, of local Noetherian rings C{y}->C{x},
C[[y]]-C[[»]] and @, is injective, if and only if the two topologies on (C{y},
C[[y]] respectively) agree. (See the Chevalley subspace theorem [8 Vol. 2, page 270].)
Hence the statement

z) > (zyem) AV, e R( Y oz, m*—all o, €m).
i=1

a, are units, and Pow, (¢) and, g is

Vo(x) em [p4 injective — topologies agree]

is true formally but false convergently. It remains to make this into a first order
statement.
Note that v(f(¢)) = max{v(h): f(») € (h(x, 1), y—@(x))}. Hence

topologiés agree « VAV (3)[v( flo CN)=I->v(F () =k]
< VIANS ) [Fh(x, »)(fe (s y—o) avm=D—v(f)=k] .
For y(x,y), let TA()) be the statement:
. VkeNIeNYf@)[Eax, »(fet, y—p) aviy=D-v(f)=k] .

Also @, injective « V£ (3) Ik Vh(x, W feh, y—p)—>vH)<k]. For y(x,y), let
In()) be the statement:

Vf(») 3k e NVh(x,y)[fet,y—)->v(D)<K].
Then the following is‘ our required first order statement:
Vi (x, 3) e mI(yp) A @Y (x, ), Wale, )W = iy +322)) NIn (1) > TA )] -

Note that this statement contains the symbols y;, ¥, ¥a, ¥4 Which are in C{y}.
However we may remove the reference to these in the same manner as in defining
order. Details are left to the reader. <
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Section 3. If we consider C{x} and C[[x]] (one variable) as rings with the extra
operation of composition for elements of the maximal ideal, m, then we have:

ProrosiTioN. (i) C[[x]] and C{x} are undecidable.

(i) C[[x]] # C{x}.

(iii) There exist fields Fy and Fy with Fy=F,, but [F,[[x][#F,[[x]].

Proof. Define f~g +> (f|g and g|f) for f, g em. Then m/~ is isomorphic
to N, and multiplication and composition of elements of m corresponds to addition
and multiplication in N, respectively. Hence N is first order definable in C[[x]]
and C{x}. Also note that the order valuation is first order definable; just let

v(f) = [f], the equivalence class of f. For the proof of (ii) let R be either of the rings
C[[x]] or C{x}. Then the derivative f' is first order definable since

g =f’<—>VneNerNVheR[v(h)}k—»v(ip(—xi_—];z;{@ —g(x))?n].

. It is trivial to check that the only power series solution to the differential equation

X)) +x = f(x), is f(x) = Zn!x"“, which is divergent. This gives us a first

order statement using x whlch is true in C[x]], but false i C{x}; hence
C g+ Cli].

One can also show the rings are not elementauly equivalent, by eliminating
the use of the symbol x, in the following manner: It is not hard to show there is a for-
mal solution but no convergent solution to the equations:

(E-1)Y'+E~1=f

Alternate proof of part (ii). If we consider the rings C[[x]], C{x} with the
element x, picked out, we can show C{x}K,C[[x]] as follows: A straightforward
calculation shows that the equation f(x+x?) = 2f (x)—x has a unique solution
in C [[x]] and it is not convergent.

Proof of (iii). Recall F = %/m is first order definable over &#. For ke F,
let the first order statement that k is a power of 2 be denoted:

Pow,(k) > Afe F (1 Ulkk—f 2x)/f (x))) .

and E'=E and TUE-1).

Then the powers of 2 are cofinal in R but not in R*. Hence R[[x]]% R*[[x]].

Remark. It is interesting to note that in parts (i) and (ii) we only needed exis-
tential statements, but in part (iii), we used both universal and existential quan-
tifiers. If F; and F, are finite fields or uncountable algebraically closed fields then it
is not possible to do part (iii) with just existential statements because the remark
below shows i

(Fi[lx, 11, Fi[Ix1], Fu[[x]]) =4 (B[, ¥1], Fo[lx1], Fa[51])
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~as rings, implies Fl[[x]] =, Fz[[x]] with composition. The authors conjecture that

one can drop the condition on the fields F;.

Remark. The results of Section 3 have application to the previous two sections
because any statement using composition in F[[x]] can be changed into a corre-
sponding statement wusing just addition and multiplication in the system
(F[Lx, 11, F[[xI], FL[¥]]). This is done as follows: Let &(f, g) be any atomic
formula over F[[x]] in which the symbol f(g(x)) appears, where f, g e F[[x]],
and Q, O, (equal to either 3 or V) be the respective quantifiers of f and g. Change
&(f, g) to ¥(g,fs h,8,,8,,0), where ¥ is formed from & by replaciné‘f(g(x))
by h(x) and adding two statements which insufe that A(x) = f (g(x)). Mote precisely,.
Y is the statement:

0,90, 3RS, (x, ), S2(x, ¥), o (»)
[2(f: g, YA(S(X) = S1(x, Wy —x)+ () A
(h(x) = S,0¢, (=g (®)+e()].

Clearly the same thing works for convergent power series. As a consequence:
of part (ii) of the proposition, we can conclude that

(C{x,y}, C{x}, € {y) #,(C[Ix, 1], C[IxT], C[¥I])
as rings with the elements x and y picked out.

Appendix. We show how to say in a first order statement that the constant term
of an element in R = C[[x,y]] is an algebraic number. This will show that
A[[x, y]] # C[lx, »]] as rings with the elements x and y picked out. For each
integer d, the numbers A, which are algebraic over Q of degree d are first order
definable. The obvious problem is that one has no upper bound on the degree of’
the polynomial, the number satisfies. We begin with some observations:

a) Let y e C, then ye 4 if and only if there is a nonzero polynomial p(x, y)
of homogencous degree and with rational coefficients such that p(yy, y) = 0. By
passing to a polynomial of possible higher degree, we may assume that the coeffi-
cients ¢;; of x'y’, i+j = degp, are all nonzero.

b) Recall from Sections 1 and 2 the residue field F of F[[x, »]], the natural
numbers N in F, and the order evaluation v are all first order definable over the ring
F[[x, y]]. Hence Q, the rational numbers, are first order definable. If u € F[[x, »1],
by the statement u & Q we will mean the first order statement that the image i of u
in the residue field is rational. Also u e 4 will mean @ is algebraic.

¢) Let yeC[[x,»]], then yed iff there exist feC[lx,y[, f=p+h
p = initial term of £, p has rational coefficients, and v(f (y», »))>v(f (x, y)) Again.
we may assume all coefficients of p  are nonzero.

“
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"d) We would like say pick out the coefficients of f via the statement

CG.f, o) <> (W(f) =n)A
A@gy, gz €R so that f—ax'y"™ = x"*1g, +y" g,
However we do not have x' and »"~! in our language, only x and y. We can say
¢ = x' unit, via Pow,(¢) and v(p) = i, but we do not know the constant term. of

the unit. (Note if @, ¢, have the above property then the respective units have
the same constant term if and only if (@, —@,)>v(py) = v(p;).) We get around
these difficulties by saying the ratio of consecutive coefficients of p is rational. Since
this condition is vacuous when one of the coefficients is zero, we require that all

the coefficients be nonzero.
The statement that the initial term of f has rational coefficients becomes

IRC(f) > (v(f).=n)AVieN, 1<i<n,

Fuy, sy gy Wiy Unmts Vit Vnmiva €R
39,,92,93> G4> % B R, Ire Q so that
Pow,(u; - 1) APow,(1;) APoW,(it;4 1) A Powy(v,- 1) A
/\POWy(T’n~i+1)/\POWy(Un—Hz) A '
AWy = =D A@) = A (@) = i+1)A
A=) = 1= AP Oy-i31) = n—i+ D) AP Qrmsez) = n=i+2) A
A —u)> ) AP i= Ve i) >B—i+ 1) A
A(f=oty Vs = U191+ Vnoir192) A% # O) A
A= Bty g Uy i1 = g3+ 01129 A(B # O)A
A U@—1p)) -
Hence for ye R,
A@) —3f, geR, ne N[IRC(f)A(G(S) = n)A(v(g)>n)A
the ideals (x—yy,f)R and {(x—yy, g)R are equal].
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