Upper semicontinuous decompositions of convex metric spaces *

by

S. E. Rodabaugh (Youngstown, Ohio)

Abstract. All decompositions in this paper are upper semicontinuous.

Theorem A. If G is a locally null, properly starlike-equivalent decomposition of a locally compact, SC-WR-CE metric space (X, d), then G is radially-shrinkable in (X, d) and $X/G \approx X$.

Corollary. If G is a locally null, starlike-equivalent decomposition of E^n, then $E^n/G \approx E^n$.

Theorem B. If G is a star-0-dimensional decomposition of a locally compact, SC-WR-CE metric space (X, d), then G is shrinkable and $X/G \approx X$.

1. Introduction. All decompositions in this paper are upper semicontinuous. The famous “dogbone” space of R. H. Bing [5] has spawned an amazing array of results and questions. In [4], Bing showed that if G is a decomposition of E^3 into at most countably many tame arcs and points, then $E^3/G \approx E^3$. This raised the following question (see S. Armentrout [2, Question 1]): Suppose G is a decomposition of E^3 into tame 3-cells and points; is $E^3/G \approx E^3$? A partial answer was given by D. V. Meyer [11]: A null decomposition of E^3 into tame 3-cells and points is E^3. This result was improved by R. J. Bean [3]: Null, starlike-equivalent decompositions of E^3 yield E^3. This led J. W. Lamoreaux in [8] to ask whether locally null, starlike-equivalent decompositions of a SC-WR metric space (X, d) yield X. In this paper we show the answer is no (see Example 1 of Section 2) yet obtain the following theorem.

Theorem A. If G is a locally null, properly starlike-equivalent decomposition of a locally compact, SC-WR-CE metric space (X, d), then G is radially-shrinkable in (X, d) and $X/G \approx X$.

T. M. Price [13] has proved that if G is a decomposition of E^n such that for each $g \in H(G)$ and for each open set V containing g there is an n-cell B such that $g \in \operatorname{Int} B \subseteq V$ and $B \cap (\bigcup H(G)) = \emptyset$, then $E^n/G \approx E^n$. The condition that B is an n-cell is weakened in this paper. We strengthen Price’s theorem and extend it to SC-WR-CE metric spaces in the following theorem.

* This paper formed an essential part of the author’s dissertation written under Professor Dix H. Petey (University of Missouri-Columbia; December 1974). The author expresses his gratitude to Dr. Petey for his guidance during the preparation of this paper.
THEOREM B. If \(G \) is a star-0-dimensional decomposition of a locally compact, SC-WR-CE metric space \((X, d)\), then \(G \) is shrinkable and \(X/G \approx X \).

To illustrate Theorems A and B, we give three examples; Examples 1 and 2 are consequences of Theorem A, Example 3 of Theorem B.

Example 1. If \(G \) is a locally null, starlike-equivalent decomposition of \(E^n \), then \(E^n/G \approx E^n \). In particular, we can choose \(G \) to be locally null deformation of \(E^n \) into tame cells (dimension \(<n \)) and points such that given \(\varepsilon > 0 \), infinitely many of the cells have diameter \(\geq \varepsilon \).

Example 2. Let \(X(n) = \bigcup_{i=1}^{\infty} \{x_i, \ldots, x_{n+1} \}: \sum_{i=1}^{n} x_i^2 = 1, x_i \geq 0, \ldots, x_{n+1} \geq 0 \} \), and let \(X(n) \) be topologized by \(d_2 \), the "great \(S^{n-1} \)-metric of \(S^n \). Let \(G \) be a locally null decomposition of \(X(n) \) such that \(\bigcup H(G) \) is contained in the manifold interior of \(X(n) \). \(H(G) \) is a collection of tame cells (dimension \(<n \)), tame whisk-brooms, tame fan-spaces, etc., and given \(\varepsilon > 0 \), infinitely many members of \(H(G) \) have diameter \(\geq \varepsilon \). Then \(G \) is radically-shrinkable in \((X(n), d_2) \) and \(X(n)/G \approx X(n) \).

Example 3. Let \(G \) be a decomposition of \(E^n \) such that each \(g \in G \) possesses a neighborhood base \(\{U_n \} \) such that \({\cap} H(G) = \emptyset \), \(U_n = CI U_{n+1} \), \(U_n \) is an open \(n \)-cell, and \(CI U_n \) is starlike but not an \(n \)-cell. Then \(G \) is maximal and \(E^n/G \approx E^n \).

Example 3. This example can be modified for non-Euclidean spaces as in Example 2. It is the principal goal of this paper to prove Theorems A and B: Theorem A is established in Section 5 and Theorem B in Section 6. In Section 2 we give preliminaries and in Section 3 we develop the machinery used in Sections 4, 5, and 6.

2. Preliminaries. We are always in a locally compact, strongly convex metric space \((X, d)\). For the definitions of betweenness, midpoint, convexity, strong convexity (SC), and without ramifications (WR), see D. Rolfsen [15]. We do not assume that strongly convex spaces are separable or complete. Let \(a, b \in X \). We say \(L \) is a segment between \(a \) and \(b \) (or from \(a \) to \(b \)) if \(a, b \in L \), each point of \(L \) is between \(a \) and \(b \), and \(L \) is isometric to a real line interval of length \(d(a, b) \). If \(L \) is the unique segment from \(a \) to \(b \) we write \(L = \{a \} \). A segment \(L \) from \(p \) to \(y \) is maximal if there is no \(x \in X \) such that some segment from \(p \) to \(x \) properly contains \(L \). It is well known (see [15]) that in a complete, convex metric space, there is a segment between each two points. In the presence of local compactness and strong convexity, the requirement of completeness may be dropped.

Proposition 2.1. Let \((X, d)\) be a locally compact, SC metric space.

1. If \(a, b \in X \) then there is a segment joining \(a \) to \(b \) (see [14]).
2. \(X \) is arc-wise and locally arc-wise connected.
3. For each \(a, b \in X \), there is a unique segment joining \(a \) and \(b \). If \((X, d)\) is also a WR space, \(y \neq y' \), \([x] \) and \([x'] \) are segments in \(X \), \(y \notin [x'] \), and \(y' \notin [x] \), then \([x] \cap [x'] = \{x\} \).
4. Let \(a, b, x \in X \) such that \(x \) is between \(a \) and \(b \). Then \(x \in [ab] \).

Let \([ab]\) be a segment in \(X \) and let \(h \) be the isometry of \([ab]\) onto \([0, d(a, b)]\) such that \(h(a) = 0 \). For \(x, y \in [ab] \) and \(\lambda \in (0, 1) \), define \((1 - \lambda)x + \lambda y \) to be \(h^{-1}((1 - \lambda)h(x) + \lambda h(y)) \). This algebraic operation has many useful properties (including that it is jointly continuous in \(x, y \) if \(x, y \) are contained in a compact subspace of \(X \)) which will be extensively used in this paper (see [10], [14], and [15]).

The closure of a set \(A \) is denoted by \(\overline{A} \) and its boundary by \(\partial A \). A collection of neighborhoods containing a set \(A \) is a neighborhood base for \(A \) if each open set containing \(A \) contains an element of the base. Neighborhoods are open. If \(N \) is a neighborhood of \(p \), then the edge of \(N \) w.r.t. \(p \), or \(Ed_N \), is \(\{y \in CL: [y] \) is maximal\}. We say \((X, d)\) has closed edges (or \((X, d)\) is CE) if for each point \(p \) of \(X \), \(Ed_X \cup \{p\} \) is closed (the class of convex metric spaces satisfying the closed edge property strictly contains the class of normed linear spaces). A set \(A \) is starlike w.r.t. \(p \) if for each \(x \in A \), \([x] \subset A \); the point \(p \) is called a reference point of \(A \). A starlike w.r.t. \(p \) set \(A \) is properly starlike w.r.t. \(p \) if for each \(x \in A \), the segment \([x] \) is not maximal. A neighborhood \(N \) of \(p \) is ideally starlike w.r.t. \(p \) if \(N \) is starlike w.r.t. \(p \) and for each \(x \in X \), \([x] \) intersects \(N \) in at most one point. A set \(A \) is radially pointlike w.r.t. \(p \) if \(A \) is starlike w.r.t. \(p \) and for each neighborhood \(U \) of \(A \), there is an ideally starlike w.r.t. \(p \) neighborhood \(V \) of \(A \) and homeomorphism \(H \) from \(X - A \) onto \(X - p \) such that \((1) CI V = U, (2) H \) takes \(CI V - A \) onto \(CI F - p \), and \((3) \) for each \(x \in X - A, H(x) \in [x] \). A collection \(J \) of subsets of \(X \) is locally null if for each \(x \in X \), there is an open set \(U \) containing \(x \) such that the collection of all sets of \(J \) that intersect \(U \) is a null collection.

For the definitions of upper semicontinuous (u.s.c.) decomposition, decomposition (\(X/G \)), monotone, pointlike, 0-dimensional, and shrinkable (or Condition B) see [1], [9], or [17]. Let \(G \) be a decomposition of \(X \). Let \(H(G) \) denote the collection of nondegenerate elements of \(G \) and let \(G(\delta) = \{g \in H(G): \text{diam} g \geq \delta \} \), where \(\delta > 0 \). We say \(G \) is null (locally null) if \(H(G) \) is a null (locally null) collection.

Proposition 2.2. Let \(G \) be an u.s.c., monotone decomposition of \(X, d \). Then \(G \) is locally null if and only if for each \(p \geq 0 \), every subcollection of \(G(\delta) \) has a closed point-set union. In either case, \(H(G) \) is countable and hence \(G \) is 0-dimensional (see [14]).

We say \(K \) is an open covering of \(H(G) \) if \(K \) is a collection of open sets such that each element of \(H(G) \) is contained in some element of \(K \). We say \(G \) is starlike if each \(g \in H(G) \) is compact and starlike. We say \(G \) is starlike-equivalent (properly starlike-equivalent; radially-pointlike) if each \(g \in H(G) \) is equivalent under a space homeomorphism to a compact, starlike set (compact, properly starlike set; compact, radially-pointlike set). Often when showing a decomposition to be shrinkable, the nondegenerate elements are shrunk along arcs (e.g. see [3] and [11]). We isolate this property, calling it radial-shrinkability. Intuitively, a decomposition is radially-shrinkable if for each \(g \in H(G) \) we can choose a space homeomorphism \(H \), a compact, starlike set \(G \), and a reference point \(p \) of \(G \) such that \(H \) takes \(g \) onto \(G \), and \(G \) can be shrunk along segments toward \(p \) in such a way that \(g \) is shrunk along arcs toward \(H^{-1}(p) \).
Let $H(G) = \{g_x : x \in \mathbb{R}\}$. We say G is \textit{radially-shrinkable} in (X, d) if there are collections of maps $\{h_x\}$, compact, starlike sets $\{g_x\}$, and points $\{p_x\}$ such that for each $g_x \in H(G)$, h_x is a space homeomorphism taking g_x onto g_x and q_x is starlike w.r.t. p_x, and such that for each $\epsilon > 0$ and for each open set U containing $\bigcup H(G)$, there is h such that

(1) h is a homeomorphism from X onto X and $h(x) = x$ for each $x \in N$;

(2) diam$(g_x) < \epsilon$ for each $g_x \in H(G)$; and

(3) if $g_x \in G(0)$, there is a neighborhood V_x and there is a map h_x such that $g_x \in V_x \subset C_i V_x$ and $h_x : C_i V_x \to h_x : C_i V_x$, is a starlike w.r.t. p_x, and $h_x : C_i V_x \subset C_i V_x$ is the identity, $f_x(h_x)(x) \in \{p_x, h(x)\}$ for each $x \in C_i V_x$, and $h_x : C_i V_x \to h(x) = h_x$. If $B \subset X$, then let $G(B)$ be the decomposition of X such that $H(G(B)) = \{g \in H(G) : g \subset B\}$. We say G is \textit{shrinkable} (radially-shrinkable) at each $g \in H(G)$ if there is an open set U containing g such that $B \cup U \cap (\bigcup H(G)) = \emptyset$ and $G(U)$ is shrinkable (radially-shrinkable). We say G is \textit{star-0-dimensional} if for each $g \in H(G)$, there is a neighborhood base $\langle U_n \rangle$ for g such that for each n, $U_n \cap (\bigcup H(G)) = \emptyset$, $U_n \subset C_i U_{n+1}$, and $C_i U_n$ is compact and homeomorphic to the closure of an open, starlike w.r.t. p_x, set with empty edge w.r.t. p_x.

\textbf{Examples.} Let (X, d) be as defined in Example 2 of Section 1. Then (X, d) is a compact, SC-WR-CE metric space (which is not the linear subspace of any normed linear space). Let $p = (4, 3, 0, 2)$ and let $N(p, \epsilon)$ be the neighborhood of p with radius ϵ. Then for each $p \in C_i Ed_{n}(N(p, \epsilon))$, circumstances like this will force us to be careful when constructing starshrinkings which move points toward a given point.

\textbf{Example 1.} Let G be the decomposition of (X, d) such that $H(G) = \{g\}$, where $g = \{(x, y, z) : (x, y, z) \in X(2)$ and $y = x\}$. Then G is a null, starlike decomposition of (X, d) and $(X, G) \cong (X, d)$.

\textbf{Example 2.} Let G_2 be the decomposition of (X, d) such that $H(G_2) = \{g\}$, where $g = \{(x, y, z) : (x, y, z) \in X(2)$ and $y = 0\}$. Then G_2 is a null, starlike decomposition of (X, d) which is shrinkable and pointlike but neither radially-shrinkable nor radial-pointlike in (X, d).

3. \textbf{Neighborhood bases for starlike sets.} One key to constructing the shrinkings used by Bing [6], Meyer [11], and Bean [3] is the fact that in E^3 starlike sets possess neighborhood bases of ideally starlike sets. In a convex metric setting, the existence of such neighborhood bases is non-trivial. In this section we show that in locally compact, SC-WR metric spaces, compact, starlike sets have neighborhood bases of ideally starlike sets. Using this result, we establish two results needed to construct the shrinkings of Sections 5 and 6.

\textbf{Lemma 3.1.} Let (X, d) be a locally compact, SC-WR metric space. Let $p \in N \subset X$ and let h be a continuous map of $N \to N$ such that $h(x) \in [p_x]$ for each $x \in N$. Then h is extended continuously to N by letting $h(p) = p$, and h, thus extended, is one-to-one if and only if $y \in [p_x] \subset \{x, p\}$ implies $h(y) \in [p_x] \subset \{x, p\}$ for each $x \in N$.

\textbf{Lemma 3.2.} Let A and B be subsets of a locally compact, SC-WR metric space (X, d) such that N is a neighborhood of A, and each of A and $C \subset N$ is a compact, starlike w.r.t. p set. Let h be an embedding of $C_i N$ into $C_i N$ such that $h \subset C_i N \subset C_i N$. Then there is an embedding H of $C_i N$ into $C_i N$ such that $H(x) \in [p_x]$ for each $x \in C_i N$, $H(A) = h$, and $h(B)$ is the identity, and if $H(0)$ is the identity, then H is a homeomorphism of $C_i N$ onto $C_i N$.

\textbf{Proof.} Let f be a continuous function of $C_i N$ onto $[0, 1]$ such that $f(0) = 0$ and $f(Bd N) = 1$ and let $F(x) = \max \{f(y) : y \in [p_x]\}$ for each $x \in C_i N$. It follows that F is a continuous function of $C_i N$ onto $[0, 1]$ such that $F(0) = 0$ and $F(Bd N) = 1$. Furthermore, if $y \in [p_x]$ then $F(y) \leq F(x)$. Now for each $x \in C_i N$, define

$$G(x) = F(x) \left[1 - \frac{d(p, h(x))}{d(p, x)} \right] + \frac{d(p, h(x))}{d(p, x)}.$$

It follows that $G(x)$ is a continuous function of $C_i N \to [0, 1]$. We now construct H. For each $x \in C_i N$, define

$$H(x) = \begin{cases} G(x) \cdot \frac{(1 - G(x))}{p} & \text{for } x \neq p, \\ p & \text{for } x = p. \end{cases}$$

Clearly H satisfies the requirements of the conclusion providing H is an embedding. The continuity of H follows from Lemma 3.1. We need only show H is one-to-one, and this is done by satisfying Lemma 3.1. Let $x \in C_i N \setminus p$ and let $y \in [p_x] \subset \{x, p\}$. It is not hard to show that $H(y) \in [p_x] \subset \{x, p\}$ if and only if $G(x) \frac{d(p, x)}{d(p, y)} < G(x) \frac{d(p, x)}{d(p, y)}$. We establish this inequality by considering, three cases: $F(y) = 1$, $F(y) = 0$, and $0 < F(y) < 1$. The inequality holds trivially in the first two cases. Now suppose $0 < F(y) < 1$. Observing that $h(y) \in [p_x] \subset \{x, p\}$ by Lemma 3.1 and hence $d(p, h(x)) > d(p, h(x))$, it follows that

$$d(p, y) - d(p, x) < \left[\frac{d(p, h(x))}{d(p, x)} - d(p, h(x)) \right] \frac{1}{1 - F(y)}. \tag{1}$$

Manipulating algebraically, we have

$$F(y) \left[\frac{d(p, y) - d(p, h(x))}{d(p, y)} + d(p, h(x)) \right] + d(p, h(x)) \leq F(y) \left[\frac{d(p, h(x))}{d(p, x)} + d(p, h(x)) \right] + d(p, h(x)).$$

This completes the proof.

\textbf{Lemma 3.3.} Let A be a compact, starlike w.r.t. p set in a locally compact, SC-WR metric space (X, d) and let B be an open set containing A. Then there is a neighborhood N of A such that $C_i N$ is compact, $C_i N \subset U$, and N is ideally starlike w.r.t. p.

\textbf{Proof.} Let $\delta > 0$ such that $C_i N(A, \delta)$ is compact and contained in U. Define N^*_δ to be $\{y : [p_y] \cap Bd N(A, \delta) = \emptyset\}$. It follows that $C_i N^*_\delta$ is compact, $C_i N^*_\delta \subset U$, and N^*_δ is starlike w.r.t. p. It follows from Proposition 2.1(4) that N^*_δ is a neighborhood.
of A. Let $A = \text{diam} A$. Choose a circular neighborhood S of p such that $\text{CNS} \subset N$. Let $\epsilon > 0$ such that $0 < \epsilon < \delta$ and $\text{CNS} \subset S$, and let $\lambda = \frac{\epsilon}{\delta}$. Define h by

$$h(x) = \begin{cases} \frac{1}{2}(x + (1 - \lambda)p) & \text{for } x \neq p, \\ (1 - \lambda)p & \text{for } x = p. \end{cases}$$

As in the proof of Lemma 3.2, it can be shown that h is an embedding of CNS into CNS. By Lemma 3.2, there is an embedding H of CNS into CNS such that $H(x) \in [px]$ for each $x \in \text{CNS}$, $H(A) = h(A)$, and $H/\text{Bd}N$ is the identity. It follows that $H(A) = S$. We choose N to be $H^{-1}(S)$. It is straightforward to show that N is the required neighborhood of A.

Lemma 3.4. Let A be a compact, properly starlike w.r.t. p set in a locally compact, SC-WR metric space (X, d) and let U be an open set containing A. Then there is an ideal starlike w.r.t. p neighborhood N of A such that CNS is compact, $\text{CNS} \subset U$, and no nondegenerate segment from p in A has its terminal point in $\text{Bd}N$.

Lemma 3.5. Let A be a compact, properly starlike w.r.t. p set in a locally compact, SC-WR-C metric space (X, d), let U be an open set containing A, and let $s > 0$. Then there is an ideal starlike w.r.t. p neighborhood N of A such that CNS is compact, $N \subset U$, and $\text{Ed}_p N \subset (p, s)$.

Proof. Let S denote the collection of segments in A from p which cannot be extended in A. Let $s \in S$ and suppose the conclusion is false for s as a properly starlike w.r.t. p set. Let $\{N_i(s)\}$ be a nested neighborhood base of ideal starlike w.r.t. p sets for s such that $\text{CNS}(s)$ is compact and $s \cap \text{Ed}_p N_i(s) = \emptyset$ for each i (Lemma 3.4). We choose $x_i \in \text{Ed}_p N_i(s) - \text{N}(p, s)$, for each i. Then $\{x_i\}$ is contained in the compact set $\text{Ed}_p N_i(s) - \text{N}(p, s)$.

We may assume $x_i \to x$, where $x \in \text{Ed}_p N_i(s) - \text{N}(p, s)$. But $x \in (\bigcap \text{CNS}(s)) - \text{N}(p, s)$, this implies $x \in s - p$. A contraction. Thus for $x \in S$, we have a neighborhood $N(x)$ of x such that $N(x) \subset U$, CNS is compact, and $N \cap \text{Ed}_p N_i(s) = \emptyset$ for each i. Since A is covered by $\{N(x) : x \in S\}$, we may choose an ideal starlike w.r.t. p neighborhood N of A such that CNS is compact and $N \subset \text{CNS}$ (Lemma 3.5). Since $\text{Ed}_p N \subset \text{Ed}_p N_i(s)$, we have $\text{Ed}_p N \subset (p, s)$.

Lemma 3.6. Let (X, d) be a locally compact, SC-WR metric space and let U be an open set in X containing p such that $\text{CNS} = \text{compact and } \text{Ed}_p U = \emptyset$. Then p is starlike w.r.t. p if and only if $U = \bigcup V_x$ where each V_x is ideal starlike w.r.t. p neighborhood and $\text{CNS} = V_{x+1}$ for each n.

Proof. Sufficiency is straightforward. As for necessity, let z be a segment from p to $\text{Bd} U$ and let p be considered the first point of z where $h(s)$ is the first point on s where h hits $\text{Bd} U$. Then U is starlike w.r.t. p implies $U = \bigcup\{[px(s)] - x(s)\}$. Now let $s_1 > 0$ such that $e_1 < \frac{d(p, \text{Bd} U)}{2}$. It can be shown that there is $\delta_1 > 0$ such that $y \not\in \text{N}(\text{Bd} U, e_1) \implies [px(s)] \cap \text{N}(\text{Bd} U, e_1) = \emptyset$. Fix a segment s with respect to the linear ordering on $[px(s)]$, let $y_1(s) = \sup\{y \in [px(s)] : y \not\in [yx(s)]\}$ such that $d(y', \text{Bd} U) > s_1 \implies \text{CNS} = \bigcup \{[yx(s)] \cap \text{Bd} U \}$, then $A_1 \subset \text{Bd} U$. Since A_1 is starlike w.r.t. p and CNS is compact, A_1 is starlike w.r.t. p by Lemma 3.3. We obtain an ideal starlike w.r.t. p neighborhood N_x such that $\text{CNS} = N_x \subset \text{Bd} N_x$. It follows that $\text{d}(\text{Bd} V_x, \text{Bd} U) < s_1$. Let $s_2 > 0$ such that $s_3 < \frac{d(\text{Bd} V_x, \text{Bd} U)}{2}$. As above, we obtain an ideal starlike w.r.t. p neighborhood N_y such that $\text{CNS} = N_y \subset \text{Bd} N_y$, and $\text{d}(\text{Bd} V_y, \text{Bd} U) < s_2$. Necessity now follows by induction.

4. Radially-shrinkable and radially-pointlike decompositions. All spaces in this section are locally compact SC-WR metric spaces. We show that radially-shrinkable decompositions are radially-pointlike (Theorem 4.3); this result is an important cog of Section 5. We also establish two results for radially-shrinkable decompositions previously established for shrinkable decompositions (Theorems 7 and 10 of [9]).

Theorem 4.1. Let X be an open set in (X, d) containing a compact, starlike w.r.t. p set A and let f be an embedding of CNS into CIU such that $f(x) \in [px]$ for each $x \in \text{CIU}$. Then (1) if Y is a starlike w.r.t. p neighborhood of A such that CNS is compact and $Y \subset U$, then $f(\text{CNS}) \subset Y$, and (2) if $f(\text{Bd} U) = \text{Bd} Y$, then $f(\text{CNS}) \subset Y$. (3) There is a homeomorphic F of CNS onto CIU such that $f(x) = [px]$ for each $x \in \text{CIU}$, $f(A = f, d)$ and $F(\text{Bd} F)$ is the identity.

Proof. (1) follows from the fact that CNS is starlike w.r.t. p. (2) follows from (1), Lemma 3.3, and Lemma 3.2.

Theorem 4.2. Let G be a 0-dimensional decompositions of (X, d) such that $\text{H}(G) = H(G')$. If G is radially shrinkable in (X, d), then G' is radially shrinkable in (X, d).

Proof. Some details are the same as in Theorem 7 of [9]; we sketch the differences. Let $H(G) = \{q_x \in \emptyset\}$ and let $\{h_x\}, \{q_x\}$, and $\{p_x\}$ be the collections of maps, compact, starlike sets, and points, respectively, given us by the radially-shrinkability of G. We claim that $\{h_x : q_x \in H(G')\}, \{q_x : q_x \in H(G')\}$, and $\{p_x : p_x \in H(G')\}$ are the required collections for G'. Let $s > 0$ and let U be an open set containing $\bigcup H(G')$. Then $\{U - X \cup G'(s)\}$ is an open cover of $H(G)$ and is refined by s, a disjoint collection of open sets ([9], Theorem 1). Let U' be the union of all components of U which intersect $\bigcup G'(s)$. Then U' is an open subset of U (Proposition 2.1(2)). Since G is radially shrinkable, there is a homeomorphism h of X onto X such that $h(U - X \cup G'(s))$ is the identity, diam $h_g < \epsilon$ for each $g_x \in H(G')$, and for each $q_x \in G'(s)$ there are V_x and f_x such that $h_x, q_x, p_x, U, h_y, V_y$, and f_a satisfy the remaining radial-shrinkability conditions at g_x for G. Define

$$h(x) = \begin{cases} e & \text{for } x \in U \cup U', \\ h(x) & \text{for } x \in U' \end{cases}$$

then h is a homeomorphism of X onto X such that $H(U - X \cup G'(s))$ is the identity, and diam $h_g < \epsilon$ for each $g_x \in H(G')$. Let $g_x \in H(G')$. Choose a starlike w.r.t. p_x neighborhood W_x such that $q_x \subset W_x \subset h_x(V_x \cup U')$ and $U W_x$ is compact (Lemma 3.3). Letting $F_x = f_x(\text{CNS})$, it is easy to verify using Lemma 4.1(1) that $h_x, q_x, p_x, U, H, h_x, (W_x),$ and F_x satisfy the remaining radial-shrinkability conditions at g_x for G'.

ICM © 2021
Theorem 4.2. Let G be a 0-dimensional decomposition of (X,d). Then G is radially-shrinkable in (X,d) if and only if G is radially-shrinkable in (X,d) at each element of $H(G)$.

Proof. The proof of Theorem 10 of [9] may be modified to obtain this proof in virtually the same way the proof of Theorem 7 of [9] is modified to obtain the proof of Theorem 4.1 (see [14]).

Theorem 4.3. Let G be a 0-dimensional radially-shrinkable decomposition of (X,d). Then G is radially-pointlike in (X,d).

Proof. Let $g \in H(G)$ and let h, q, p be such that h is a space homeomorphism taking g onto q and q is a compact, starlike w.r.t. p subset, given us by the radially-shrinkability of G. Let U be an open set containing g. We must construct V and H satisfying the radially-pointlike conditions for q in order to conclude G is radially pointlike. The rest of the proof is divided into several parts.

(i) For each $s > 0$, there is an open set O containing g such that for each open subset W of O containing g, there are homeomorphisms H_s and F_s such that H_s is a homeomorphism of X onto X, $H_s((X-h^{-1})(U))$ is the identity, $diam H_s(g)<e$, F_s is a homeomorphism of $h(Cl W)$ onto $h(Cl W)$, $F_s(Bd h(Cl W))$ is the identity, $F_s(h(x)) \in [ph(x)]$ for each $x \in Cl W$, and $H_s(Cl W) = h^{-1}\ast F_s + h$.

Let G_1 be the decomposition of X such that $H(G_1) = (g)$. Then by Theorem 4.1, G_1 is a radially-shrinkable decomposition. Thus we have a homeomorphism h_1 from X onto X such that $h_1((X-h^{-1})(U))$ is the identity, $diam h_1(g)<e$, and there are O and f such that h_1, g, f, $h_1^{-1}(U)$, h_1, O, and f satisfy the remaining radially-shrinkability conditions at g for G_1. Let W be any open set containing g such that $W \subset O$. By Lemma 4.1 there is a homeomorphism F_1 taking $h(Cl W)$ onto $h(Cl W)$ such that $F_1(h(x)) \in [ph(x)]$ for each $x \in Cl W$, $F_1(f) = f$, and $F_1(Bd h(Cl W))$ is the identity. Define

$$H_1(x) = \begin{cases} x & \text{for } x \in X - Cl W, \\ h^{-1}(F_1(h(x))) & \text{for } x \in Cl W. \end{cases}$$

It follows that H_1 is a homeomorphism of X onto X and $H_1((X-h^{-1})(U))$ is the identity. It also follows that $diam H_1(g) = diam h_1(g)$; hence $diam H_1(g)<e$.

(ii) Construction of V of H.

Let $\{N_k\}$ be a neighborhood base for g such that $N_k \subset Cl N_{k+1} \subset N_{k+2} \subset \cdots$, $Cl N_k$ is compact, $h(Cl N_k) \subset U$, and $h(N_k)$ is starlike w.r.t. p (Lemma 3.3). Choose M_s to be N_k and set $V = h(N_k)$. By the uniform continuity of h on $Cl M_s$, there is a sequence of positive numbers $\{\delta_s\}$ such that $d(x,y) < 2\delta_s$ implies $d(h(x),h(y)) < 1/n$ for each $x,y \in Cl M_s$. For each positive integer n, let O_n be the open set containing g given us by (i) for δ_s and h. Assuming $M_s \in \{N_k\}$ has been chosen, choose $M_{s+1} \in \{N_k\}$ such that $Cl M_{s+1} \subset M_s \cup O_n$. Then by (i) we have collections of homeomorphisms $\{H_s\}$ and $\{F_s\}$ such that for each n the following hold: H_s is a homeomorphism of X onto X, $H_s((X-h^{-1})(U))$ is the identity, $diam H_s(g)<\delta_s$, F_s is a homeomorphism of $h(Cl M_s)$ onto $h(Cl M_s)$, $F_s(Bd h(Cl M_s))$ is the identity, $F_s(h(x)) \in [ph(x)]$ for each $x \in Cl M_s$, and $H_s(Cl M_s) = h^{-1}\ast F_s + h$.

For each n define $h_n(x) = F_n(\cdots(F_n(\cdots(F_n(h(x)))\cdots) for $x \in Cl (h(M_{s+n})-h(Cl M_{s+n}))$. Define

$$H^n(x) = \begin{cases} x & \text{for } x \in X - h(M_s), \\ h_n(x) & \text{for } x \in Cl h(M_{s+n}). \end{cases}$$

and

$$H(X) = \{H^n(x) for x \in X - \{h(M_s)-h(Cl M_{s+n})\}, h_n(x) for x \in Cl h(M_{s+n}).$$

Clearly H is well defined on $X - q$.

(iii) $x_n \to q$ implies $H(x_n) \to p$.

Let $y_n = h^{-1}(x_n)$, let $s > 0$, and let N be a neighborhood of q such that $h^{-1}(N) \subset U$. Since H_N is uniformly continuous on $Cl M_s$, there is $\zeta > 0$ such that $\zeta < diam g$ and $d(x,y) < \zeta$ implies $d(H_N(x),H_N(y)) < \delta_N(x,y) = \zeta$ for $x,y \in Cl M_s$. Let J be so large that $m \geq J$ implies $\{x_n \in Cl M_{s+n}\}$ and $d(y_n, q) < diam g$. Then $m \geq J$ implies $d(H_N(y_n),H_N(q)) < 2\delta_N$, which implies $d(F_N(x_n), F_N(q)) = d(h(h_N(y_n)), h(h_N(y))) < 1/N$.

So $d(F_N(x_n), p) < 2\zeta < 2/N < e$. Now suppose $x \in h(M_s)-h(Cl M_{s+n})$, where $m \geq J$ and $n \geq N$. Since $H_N(x_n) = F_n(\cdots(F_n(x_n))\cdots), it follows that $d(H_N(x),p) < d(F_N(\cdots(F_N(x_n))\cdots),p) < d(F_N(x_n), p) < 2\zeta < e$.

It follows that $x_n \to q$ implies $H(x_n) \to p$.

(iv) H is continuous on $X - q$.

Since $\{h(M_s)\}$ is a neighborhood base for q, then $\{h(M_s)-h(Cl M_{s+n})\}$ is locally null collection of disjoint, open sets. Since each of H^n and h_n is continuous on its domain, it follows from Theorem 2 of [9], that H is continuous on $X - q$.

(v) $H(x) \in [px]$ for $x \in X - q$.

If $x \in X - V$, then $H(x) = x$. If $x \in V$, assume x is in some $h(M_s)-h(Cl M_{s+n})$.

Then $H(x) = F_n(\cdots(F_n(x))) \in [pF_n(\cdots(F_n(x)))\cdots] = [pF_n(x)] \subset [px]$ by applying Lemma 3.1 inductively to $\{F_1, \cdots, F_n\}$.

(vi) $H(X - q) = V - p$ and $H(Cl V - q) = Cl V - p$.

Since H is the identity on $X - q$, assume H shows $H(X - q) = V - p$. Let $x \in X - q$ and assume $x \in h(M_s)-h(Cl M_{s+n})$. For each k, $F_k(\cdots) \in q$ if and only if $x = p$. Since $x \in V - q$, then none of $F_k(\cdots)$, $\cdots, F_1(\cdots) equals p$ by induction, $H(x) \neq p$. Thus $H(V - q) \subset V - p$. Now let y $\in V - p$ and suppose $y \in [py] - x$ where we assume $H(x) = x$. From (v) we have $H^{-1}(y) \subset [py]$. We suppose there is no preimage of y on $[py]$, then the continuity of H, $H(([py]) = ([py])$.

From (ii) we have $d(x,y) < s$ implies $d(H(x),p) < e$. This contradicts the fact that $d(x,y) < s$. Thus $H(V - q) = V - p$.

(vii) H^{-1} is continuous on $X - p$.

It is straightforward to show (using (v), the properties of the F_i's, and Lemma 3.1) that H is one-to-one. It is also straightforward to show that for each n, F_n takes open sets of $h(M_n)$ onto open sets of $h(M_n)$. Hence it follows from (iii) that \(\{h(M_n) - h(M_{n+1})\} \) is a locally null collection of disjoint, open sets. We now apply Theorem 2 of [9], to obtain the continuity of H^{-1} on $X - p$.

5. Properly starlike-equivalent decompositions. In this section (X, d) is a locally compact, SC-WR-CE metric space. We show that locally null, properly starlike-equivalent decompositions of (X, d) are radially-shrinkable. We then show that for locally null decompositions of (X, d), some of the properties studied in this paper are equivalent. These two results include Theorem A as stated in Section 1. We must first establish a result (Lemma 5.1) in which we construct a preliminary shrinking which moves along segments and moves any edge points; if a map moves along segments and moves edge points, it cannot be an onto map and hence cannot be a shrinking. The reader might find it helpful to refer to the space $(X(2), d_2)$ of the examples of Section 2 while working the proof of Lemma 5.1; he may also wish to consult [14].

Lemma 5.1. Let G be a monotone, locally null decomposition of (X, d), let $g \in H(G)$ be a compact, properly starlike w.r.t. p set, let W be an open set containing g, and let $\varepsilon > 0$. Then there is an open set U, an open set M, and a homeomorphism h from X onto X satisfying

1. $g = M = CLM \subset U \subset W$;
2. $U \cap h(\{\emptyset\}) = \emptyset$;
3. M is ideally starlike w.r.t. p;
4. $h(x) \in [px]$ for each $x \in CLM$;
5. $h(X - M)$ is the identity; and
6. $(diam h') < \varepsilon$ for each $g' \in H(G(U))$.

Proof. The proof is given in three parts.

(i) Construction of the "controls" and the open sets U and M.

Because of Proposition 2.2 we may choose a neighborhood base $\{U_n\}$ for g such that $Bu_n \cap (\{H(G)\} - \emptyset) < U_n \subset W$ for each n. Let G' be the decomposition of X such that $H(G') = H(G) - \{g\}$. Because of Proposition 2.2 we may choose a neighborhood base $\{V_n\}$ for p such that $Bu_n \cap (\{H(G')\} - \emptyset) < V_n$ for each n. There is a nested neighborhood base $\{N_n\}$ for g such that CLM_n is compact, each N_n is ideally starlike w.r.t. p, and no nondegenerate segment from p in g has its terminal point on the edge w.r.t. p of any N_n (Lemma 3.4). Choose $F_n \subset V_n$ such that $CLM_n \cap N_n(p, 1/2)$ and $\delta_j > 0$ such that if $a, b \in Bu_n \cap Ed_n, a$ and $d(a, b) < \delta_j$, then for every ideally starlike w.r.t p neighborhood N with $N \subset N_n$, $d([pa] \cap (Bu_n \cup Ed_n), [pb] \cap (Bu_n \cup Ed_n)) < 1/2\varepsilon$. Let $\delta_j > 0$ such that if $a, b \in Bu_n \cap Ed_n, a$ and $d(a, b) < \delta_j$, then $d(a, b) < \delta_j$. Let $\delta_j = d(Bu_n, g)$ and let $\delta_j > 0$ such that $\delta_j < \Omega$ and $\delta_j < \Omega$. Since G is locally null and g is compact, we may choose $U \in \{U_n\}$ such that $U \cap N_n$ and if $g' \in H(G) - \{g\}$, then $g' < U$ only if $diam g' < \delta_j$. Let $R_i = N(i, i\delta_j), i = 1, 2, 3, ..., \infty$ We now choose $M_1, ..., M_k$ members of $\{N_n\}$ such that

1. R_i contains N_i;
2. $g \in M_1 \subset M_2 \subset \ldots \subset M_k \subset CLM_k \subset \{AU\}$ $\cap \{N_n\}$;
3. if $g' \in H(G) - \{g\}$, and $g' \cap M_k \neq \emptyset$, then $g' \cap M_k = \emptyset, i \neq k$ implies $g' \subset M_i$, and in any case diam $g' < \delta_j$;
4. for each $i, g \cap Ed_i M_i = \emptyset$ and $Ed_i M_i \subset R_i$ (Lemma 3.5); and
5. if $a \in \{Bu_n \cup Ed_n\} - R_i$ and $i, j \in \{1, ..., k\}$, then $d([pa] \cap (Bu_n \cup Ed_n), [pb] \cap (Bu_n \cup Ed_n)) < \delta_j$.

We choose M to be M_k.

(ii) Construction of the shrinking h satisfying conditions (4) and (5) of the conclusion.

Let $x \in CLM_k - p$ and let s be the segment from p to a point in $Bu_n \cup Ed_n$, so that $[px] = s$. For $i \in \{1, ..., k\}$, let

$$m(x) = \begin{cases} s \cap \{Bu_n \cup Ed_n\} & \text{if } i \in \{1, ..., k\}, \\ \emptyset & \text{otherwise.} \end{cases}$$

It follows that each of $m_i(x)$ and $r_i(x)$ is continuous on $CLM_k - p$. We now define a map H from $\{\{Bu_n \cup Ed_n\} - CLM\}_{i=1, ..., k}$ into CLM_k by

$$H(m_i) = m_i \text{ for } d(p, m_i) < \varepsilon, r_i(m_i),$$

where $m \in \{Bu_n \cup Ed_n\}$ and $i \in \{1, ..., k\}$. It follows from properties (4) and (5) of $\{M_1, ..., M_k\}$ that $H(\{Bu_n \cup Ed_n\})$ is the identity. It can be shown that H is continuous on its domain. We now define h from CLM_k into CLM_k by

$$h(x) = \begin{cases} \frac{d(m(x), x) + d(x, m_x)}{d(m(x), x) + d(m(x), x)} & \text{for } x \in CLM_k - CLM_k, \\ d(m(x), x) + \frac{d(m(x), x)}{d(m(x), x)} & \text{for } x \in CLM_k - p, \\ d(m(x), x) + \frac{d(m(x), x)}{d(m(x), x)} & \text{for } x = p. \end{cases}$$

It follows that $h(x) \in [px]$ for each $x \in CLM_k$ and that h is continuous on $CLM_k - p$ and hence, by Lemma 3.1, on CLM_k. It can be shown that h is one-to-one on CLM_k by the definition and continuity of h and have $h([m(x)]_k) = [m(x)]_k$. It can now be shown that $H(\{Bu_n \cup Ed_n\}) = CLM_k$.

"Fondamenta Mathematicae" T. CV
We now define h from X onto Y by
\[h(x) = \begin{cases} \varphi(x) & x \in f^{-1}_s(U_s) \text{ and } n \geq 1, \\ x & x \in X \setminus \bigcup f^{-1}_s(U_s). \end{cases} \]
It can be shown that h and h^{-1} satisfy the conditions of Theorem 2 of [9] and thus h is a homeomorphism. It is not difficult to show that h^{-1}, $\{q_x\}, \{p_x\}$, U, h, $\{f^{-1}_s(V_x)\}$, and $\{f_x\}$ satisfy the conditions of radial-shrinkability for G.

Proposition 5.1. Let G be a decomposition of a locally compact, SC metric space (Y, e), where G need not be u.c. If G is radial-pointlike in (Y, e), then G is properly starlike-equivalent in (Y, e).

Proof. The proof follows by contradiction.

Theorem 5.2 (Theorem A). Let G be a locally null decomposition of (X, d). Then the following are equivalent:

1. G is properly starlike-equivalent in (X, d);
2. G is radially shrinkable in (X, d);
3. G is radially shrinkable in (X, d) at each element of $H(G)$; and
4. G is radially-pointlike in (X, d).

If any of the above hold, $X/G \cong X$.

Proof. The circle of implications follows from the theorems of Sections 4 and 5.

Corollary 5.1. Each compact starlike subset of E^s is radially-pointlike.

Other consequences of Theorem 5.2 are given in Examples 1 and 2 of Section 1.

6. **Star-0-dimensional decompositions.** In this section (X, d) is a locally compact, SC-WR-CM metric space. We recall from Section 1 that Price has shown [13] that a decomposition G of E^s yields E^s for each $g \in H(G)$, there is a collection of n-cells B_k such that $(\text{Int } B_k)$ is a neighborhood base for g and $\text{Bd } B_k \cap \{H(G)\} = \emptyset$ for each k. Such a decomposition is star-0-dimensional, but star-0-dimensional decompositions may not satisfy Price's conditions because there are open n-cells which are starlike but whose closures are not n-cells. In this section we prove Theorem B after first proving Lemma 6.1, a result analogous to Lemma 5.1.

Lemma 6.1. Let G be a monotone decomposition of an open starlike w.r.t. p set U in (X, d) such that G is compact and $E_d U = \emptyset$. Then for each $x > 0$, there is an ideal starlike w.r.t. p neighborhood V such that $GV \subset U$, and there is a homeomorphism h from $G U$ onto $G \subset U$ satisfying these conditions: $h(x) \in [p_x]$ for each $x \in G X$, $h(U - V)$ is the identity, and $d(h(x), e) < \epsilon$ for each $x \in G(U)$.

Proof. Let $\alpha > 0$. From Lemma 3.3 we may obtain an ideal starlike w.r.t. p neighborhood of N containing $G X$ such that $C X \subset U$ is compact and $E_d N = \emptyset$.

By Lemma 3.6, $G X = \bigcup V_x$ where each V_x is ideally starlike w.r.t. p, $C X \subset V_x$, for each x, and each $E_d V_x = \emptyset$. Let $\delta > 0$ such that if $a, b \in B_d X$ and $d(a, b) < \delta$, then $d([p_x]) \cap B_d M, [p_b] \cap B_d M, < \frac{\delta}{2}$ for each ideal starlike w.r.t. p neighbor-
hool. $M \subseteq N$. Let $\delta > 0$ such that if $a, b \in B d N$, $c \in [p a] - V_1$ and $d \in [p b] - V_1$, and $d(c, d) < \delta$, then $d(a, b) < \delta_1$. Let $\delta > 0$ such that $\delta < \min \{\delta_1, \delta_2, \frac{1}{2} \varepsilon\}$. It follows that there is an integer J such that if $a \in B d N$ and $n, m > J$, then

$$d([p a] \cap B d V_n, [p a] \cap B d V_m) < \delta.$$

Let $V_n \in \{V_r\}$ such that $n_r > J$ and if diam $g \geq \delta$ (where $g \in H(G)$), then $g \subseteq CL V_n$. Let $V_n \in \{V_r\}$ such that $n_r > J$ and if $g \cap CL V_n \neq \emptyset$, then $g \subseteq V_n$. We continue this process inductively until a V_n has been chosen and k is so large that $\text{Cl} U = N(p, kR) \cap N$. We choose V to be V_n. Let $R_i = N(p, iR) \cap N$ for $i \in \{1, \ldots, k\}$. Each R_i is ideally starlike w.r.t. p. Let $x \in \text{Cl} U - p$. Then $x \in [p a]$ where $a \in B d N$. For $i \in \{1, \ldots, k\}$, let $r_i(x) = [p a] \cap B d R_i$ and $v_i(x) = [p a] \cap B d V_i$. The procedure is now completely analogous to that of Lemma 5.1.

Theorem 6.1 (Theorem B). Let G be a star-0-dimensional decomposition of (X, d). Then G is shrinkable. Hence $X/G \cong X$.

Proof. Let $g \in H(G)$, and let W be an open set about g such that $C(W)$ is compact and $B d W \cap \bigcup H(G) = \emptyset$. Let $\varepsilon > 0$ and let U be an open set containing $\bigcup H(G(W))$. Let $G_\varepsilon(g) = \{g' \in H(G(W)) \setminus \text{diam}(g') < \varepsilon\}$. Then $\bigcup G_\varepsilon(g)$ is compact. For each $g' \in G_\varepsilon(g)$, let $O(g')$ be an open set containing g' such that $O(g') \subseteq U$, $B d O(g') \cap \bigcup H(G) = \emptyset$, and $\text{Cl}(O(g'))$ is homeomorphic to an open, starlike set with compact closure and empty edge w.r.t. p. Using Lemma 6.1, we proceed exactly as in Lemma 1.2 of [13] to obtain a homeomorphism h of X onto X such that $h((X - U)$ is the identity and $\text{diam}(g') < \varepsilon$ for each $g' \in H(G(W))$. Hence $O(W)$ is shrinkable, i.e., G is shrinkable at g. By Theorem 10 of [9], G is shrinkable and by Theorem 4 of [9], $X/G \cong X$.

Corollary 6.1. Let G be a decomposition of E^3 such that $H(G)$ is countable.

1. The following are equivalent:
 (i) G is star-0-dimensional;
 (ii) G is shrinkable;
 (iii) $E^3/G \cong E^3$; and
 (iv) G satisfies Prices condition.

2. If G is starlike, then G is star-0-dimensional.

Proof. (1) follows from Theorem 6.1 and Theorem 1.4 of [13]; (2) follows from (1) and Theorem 2 of [4].

Other consequences of Theorem 6.1 are given in Example 3 of Section 1.

References

[5] — *A decomposition of E^3 into points and tame arcs such that the decomposition space is topologically different from E^3, Ann. of Math. 65 (1957), pp. 484-500.

Remarks of the elementary theories of formal
and convergent power series

by

Joseph Becker and Leonard Lipshitz (West Lafayette, Ind.)

Abstract. In § 1 an example is given of two fields F_1, F_2 of characteristic 0 such that $F_1 = F_2$ but $F_1[[x_1, x_2]] \not\cong F_2[[x_1, x_2]]$. In § 2 it is shown that $(C(x, y), C(x), C[[x, y]], C[[x]])$, where $x = (x_1, x_2)$ and $y = (y_1, y_2, y_3)$.

In [3] and [4] Ax and Kochen and Eršov showed among other things that the ring of convergent power series $C[[x]]$, over the complex numbers C, is an elementary subring of the ring of formal power series $C[[x]]$ over C. This means that the same first order statements (in the language of valued rings) with constants from $C[[x]]$, are true in both rings. (This is denoted $C[[x]] \cong C[[x]]$.) Also they showed that if fields F_1 and F_2 of characteristic 0 are elementarily equivalent, denoted $F_1 \equiv F_2$ (i.e. the same first order statements in the language of fields are true of F_1 and F_2) then $F_1[[x]] = F_2[[x]]$ as valued rings (i.e. the same first order statements, in the language of valued rings, are true about $F_1[[x]]$ and $F_2[[x]]$). It is natural to ask whether these results extend to power series rings in several variables. In Section 1, we show that one can have fields $F_1 \equiv F_2$ but $F_1[[x_1, x_2]] \not\cong F_2[[x_1, x_2]]$. In Section 2 we show that a slightly stronger statement than $C(x_1, ..., x_d) \cong C[[x_1, ..., x_d]]$ is false (*). These remarks contradict some results claimed in [7].

Section 1. Eršov [4] showed that for any field F and for $n \geq 2$, $F[[x_1, ..., x_n]]$ is undecidable. We shall give a slightly different proof of this for the case that F has characteristic zero and use this proof to show that we can have $F_1 \equiv F_2$ of characteristic 0 but $F_1[[x_1, ..., x_n]] \not\cong F_2[[x_1, ..., x_n]]$ ($n \geq 2)$ as rings. Let F be a field of characteristic zero.

For the sake of clarity, we begin by showing that $F = F[[x_1, x_2]]$ is undecidable as an F algebra with x_1 and x_2 picked out, i.e., that F as a ring under the operations of addition and multiplication, with constants for x_1 and x_2, and with an additional predicate which picks out a particular lifting of the residue field F

(*) (Added in proof) Some of the results of this paper and some extensions have been discovered independently by F. Delon, Résultats d'indécidabilité dans les anneaux de séries formelles (to appear).