On absolutely kth continuous functions

by

A. G. Das and B. K. Lahiri (Kalyani)

Abstract. In [3] and [4] Russell derives some properties of the functions of bounded kth variation (BV functions). Here we introduce the notion of ACk functions and obtain some relations with those of BVk functions involving kth Riemann $*$-derivative. We also refine the definitions of BVk and ACk functions to obtain the classes of BVk_*, BVk_0, ACk_* and ACk_0 functions and then study various interrelations of these classes.

1. Preliminaries and definitions. A. M. Russell in [3] obtained the definition of functions of bounded kth variation (BVk functions). In the definition there were certain restrictions which he removed in [4], where he investigated in detail the properties of functions of bounded kth variation. Prior to [3], [4], he obtained in [2] the properties of functions of second variation. In this paper we introduce the notion of ACk functions and investigate their properties. Also from BVk functions we derive the notions of BVk_* and BVk_0 functions and obtain their relations. In the sequel, we shall need the following definitions and results from [4].

Definition 1(a). Let f be a real-valued function defined on $[a, b]$ and let $x_0, x_1, ..., x_k$ be $k+1$ distinct points, not necessarily in the linear order, belonging to $[a, b]$. Define the k-th divided difference of f as

$$Q(f; x_0, x_1, ..., x_k) = \frac{1}{k!} \sum_{i=0}^{k} \left[f(x_i) \prod_{s \neq i} (x_i - x_s) \right] .$$

Definition 2. Let $x, x_1, ..., x_k$ be $k+1$ distinct points in $[a, b]$. Suppose that $h_i = x_i - x$ when $i = 1, 2, ..., k$ and that

$$0 < |h_1| < |h_2| < ... < |h_k| .$$

Then define the k-th Riemann $*$-derivative by

$$D^k_f(x) = k! \lim_{h_0, h_1, ..., h_k \to 0} \lim_{h_0 \to 0} \lim_{h_1 \to 0} ... \lim_{h_k \to 0} Q(f; x, x_1, ..., x_k) ,$$

if the iterated limit exists. The right and the left Riemann $*$-derivative are defined in the obvious way.
This definition has certain connections with the kth Riemann derivative as discussed in [1].

We shall call a subdivision of \([a, b]\) at \(x_0, x_1, ..., x_n\) a \(\pi\)-subdivision of \([a, b]\) when \(a=x_0<x_1<...<x_n=b\) and denote it by \(\pi(x_0, x_1, ..., x_n)\).

Definition 3. The total k-th variation of \(f\) on \([a, b]\) is defined by

\[V_k(f; a, b) = \sup_{\pi} \sum_{i=0}^{n-k} (x_{i+k} - x_i) |Q_k(f; x_i, x_{i+1}, ..., x_{i+k})| \]

If \(V_k(f; a, b)<\infty\), we say that \(f\) is of bounded k-th variation on \([a, b]\) and write \(f \in BV_k([a, b])\). The summations over which the sup is taken are called approximating sums for \(V_k(f; a, b)\).

Lemma 1. \(Q_k(f; x_0, x_1, ..., x_k) = 0\) for all choices of \(x_0, x_1, ..., x_k\) if \(f\) is a polynomial of degree \(k-1\) at most.

Lemma 2. \(Q_k(f; x_0, x_1, ..., x_k)\) is independent of the order in which the points \(x_0, x_1, ..., x_k\) appear.

Lemma 3. \(Q_k(f; x_0, x_1, ..., x_k)\) is of degree \(k-1\) at most.

Theorem 3. The addition of extra points of subdivision to an existing subdivision does not decrease the approximating sums for \(V_k(f; a, b)\).

Theorem 4. If \(f \in BV_k([a, b])\) and \(f\) has a \((k-1)\)-th Riemann *-derivative at \(c\), where \(a<c<b\), then \(f \in BV_k([a, b])\).

Lemma 1. If \(g \in AC_k([a, b])\), then \(g\) possesses the \((k-1)\)-th Riemann *-derivative in \([a, b]\).

Proof. Let \(a<c<b\) and \(\varepsilon>0\) be arbitrary. There exists a \(\delta(\varepsilon)>0\) such that the condition of the definition of \(AC_k([a, b])\) functions is satisfied with \(\varepsilon\) replaced by \(\delta(\varepsilon)(k-1)\). We choose points \(x_{p+k-1} < x_{p+k-2} < ... < x_{p+1} < x_p < x_{p+1} < ... < x_{p+k-1} < \delta\).

Choose a positive integer \(i\) such that \(p-k+1 < i < p-1\) and consider the elementary system consisting of a single interval

\[I(x_{i+k}, ..., x_{i+k-1}): (x_i, x_{i+k}) \]

Using Lemma 4 of [4], we get

\[|Q_k(g; x_{i+k}, ..., x_{i+k-1}) - Q_k(g; x_i, ..., x_{i+k-1})| < \delta \]

Since \(i\) may assume \(k-1\) values in \(p-k+1 < i < p-1\), we see that the above inequality is true for any one of these values of \(i\), viz., for \(i = p-k+1, ..., p-1\).

It may be noted, however, that these \(k-1\) intervals taken together do not form an elementary system, because the intervals are overlapping.

Combining now the \(k-1\) inequalities, we obtain

\[|Q_k(g; x_i, ..., x_{i+k-1}) - Q_k(g; x_i, ..., x_{i+k-1})| < \delta \]

for \(i = p-k+1, ..., p-1\) and \(j = p-k+1, ..., p-1\).

Hence \(g(x)\) possesses the \((k-1)\)-th Riemann *-derivative at \(c\).

Note. With suitable modifications it may be shown that \(D^*_k g(a)\) and \(D^*_k g(b)\) exist.

Theorem 5. If \(g \in AC_k([a, b])\), then \(g \in BV_k([a, b])\).

Proof. There exists a \(\delta(\varepsilon) > 0\) such that for any elementary system

\[I(x_{i+k}, ..., x_{i+k-1}): (x_i, x_{i+k}), \quad i = 1, 2, ..., n, \quad \text{in \([a, b]\)} \]

with \(\sum_{i=1}^{n} (x_{i+k} - x_{i+k}) < \delta\) the relation

\[\sum_{i=1}^{n} (x_{i+k} - x_{i+k})|Q_k(g; x_{i+k}, ..., x_{i+k-1})| < \delta \]

is satisfied.

The interval \([a, b]\) is broken up into a finite number of sub-intervals \([c_0, c_1], [c_1, c_2], ..., [c_{n-1}, c_n]\) \((a = c_0 < c_1 < ... < c_n = b)\) such that \(c_{i+1} - c_i < \delta\) for each \(i = 0, 1, ..., n-1\).

We keep \(\varepsilon\) fixed temporarily and consider any \(\pi(x_0, x_1, ..., x_n)\) subdivision of \([c_0, c_{n+1}]\).

The sets of intervals \((x_i, x_{i+k}), \quad i \in A_r = \{ r, r+k, 2k+r, ..., \leq n \}\) and \(r = 0, 1, 2, ..., k-1\) form \(k\) elementary systems

\[I(x_{i+k}, ..., x_{i+k-1}): (x_i, x_{i+k}), \quad i \in A_r \text{ and } r = 0, 1, 2, ..., k-1. \]
On absolutely \(k \)-th continuous functions

(i) If \(y \notin [x_{i-k}, x_{i+k}] \) for some \(i \), \(0 \leq k < m \), then \(y \) may or may not coincide with any \(x_{i-j} \), \(-k \leq j \leq k \). Since the relation (2) is satisfied for all choices of \(x_{i-j} \) in \([x_{i-k}, x_{i+k}] \), we may take \(y \) coincident with a suitable \(x_{i-j} \).

(ii) If \(x_{i-k} < y < x_{i+k} \), then we can easily introduce a new interval and a set of points satisfying (2) and (4) and \(y \) coinciding with a suitable new point.

Thus in any case we may suppose that \(y \), \(0 \leq k \leq m \), coincides with \(x_{i-j} \) for some \(i \) and some \(j \) for \(0 \leq j \leq n \), \(-k \leq j \leq k \).

Let \(J \) be any positive integer such that \(1 \leq j \leq k \). Consider the elementary system

\[I_k = \{(x_{i-1}, x_{i+1}), \ldots, x_{j-k+1} \} : (x_{i-1}, x_{i+j-k-1}) \] for \(i = 1, 2, \ldots, n \)

where \(x_{i-1} = x_{i-k} \) and \(x_{i+j-k} = x_{i+k} \).

As \(J \) ranges from 1 to \(k \), we obtain \(k \) numbers of elementary systems

\[I_k = \{(x_{i-1}, x_{i+1}), \ldots, x_{j-k+1} \} : (x_{i-1}, x_{i+j-k-1}) \] for \(i = 1, 2, \ldots, n \)

where \(x_{i-1} = x_{i-k} \) and \(x_{i+j-k} = x_{i+k} \).

From (3), it follows that

\[\sum_{i=1}^{m} Q_{i,j} \leq \sum_{j=1}^{k} \sum_{i=1}^{m} Q_{i,j} < \varepsilon / 2k \]

for \(j = 1, 2, \ldots, k \) and so

\[\sum_{j=1}^{k} \sum_{i=1}^{m} Q_{i,j} < \varepsilon / 2. \]

On the other hand, by using (3),

\[Q_{i,j} \leq \frac{\varepsilon (x_{i+k} - x_{i-k})}{2(k+1)(b-a)^2} \]

for \(i = 0, 1, \ldots, n \) and \(j = -k, \ldots, 0 \).

This gives

\[\sum_{i=0}^{n} Q_{i,j} < \frac{\varepsilon (x_{i+k} - x_{i-k})}{2(k+1)(b-a)^2}, \quad i = 0, 1, \ldots, n. \]

Consequently

\[\sum_{i=0}^{n} \sum_{j=-k}^{k} Q_{i,j} < \varepsilon / 2. \]

Since the addition of extra points does not decrease the approximating sum for \(V \) (Theorem 3, [4]), we have

\[\sum_{i=0}^{n} \sum_{j=-k}^{k} Q_{i,j} < \sum_{i=1}^{m} \sum_{j=1}^{k} Q_{i,j} + \sum_{i=1}^{m} \sum_{j=-k}^{k} Q_{i,j} < \varepsilon / 2 + \varepsilon / 2 = \varepsilon, \]

by (5) and (6).
Since \(\pi \) is any subdivision of \([a, b]\) and \(\varepsilon > 0 \) is arbitrary, it follows that

\[
V = V_1[g; a, b] = 0.
\]

Proof of the theorem. We consider a sequence of points \(a \leq x_1 < x_2 < \ldots < x_k = b \) of \([a, b]\).

For any collection of \(2k\) points \(x_i \), \(i = 0, 1, \ldots, 2k-1\) with \(0 \leq x_0 < x_1 < \ldots < x_{2k-1} \leq b \),

\[
Q_{a,b}(x_0, x_1, \ldots, x_{2k-1}) = \left| \sum_{i=0}^{k-1} (x_{2i} - x_{2i+1})Q_i(g; x_{2i+1}, x_{2i+2}) \right|
\]

and write

\[
\alpha = \sum_{i=1}^{n} (x_{i,k} - x_{i,0})Q_i(g; x_{i,0}, x_{i,1}, \ldots, x_{i,k}).
\]

where \(m \angle = \sum_{i=1}^{n} (x_{i,k} - x_{i,0}) \).

Definition 2. The function \(g(x) \) is said to be absolutely \(k\)-th continuous from above on \([a, b]\) if for an arbitrary \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for any elementary system \(I(x_{1,0}, \ldots, x_{k-1}) \), \(n > 1 \), \(\ldots, n \in [a, b] \) with \(m \angle < \delta \) the relation \(\alpha \angle < \varepsilon \) is satisfied. If it is said to be absolutely \(k\)-th continuous from below if the relation \(\alpha \angle > -\varepsilon \) holds when \(m \angle > \delta \). If \(g(x) \) is absolutely \(k\)-th continuous from above (or from below) on \([a, b]\), we write \(g \in AC_{+}^k [a, b] \) (or \(g \in AC_{-}^k [a, b] \)).

Definition 3. The least upper bound and the greatest lower bound of the aggregate \(\{\alpha\} \) of sums of all possible elementary systems \(I \) in \([a, b]\) are called, respectively, the positive and the negative \(k\)-th variation of \(g(x) \) in \([a, b]\) and are designated by \(V_{+}^k[g; a, b] \) and \(V_{-}^k[g; a, b] \).

Henceforth we shall assume that \((k-1)\)-th divided differences of \(g \) in \([a, b]\) are bounded in absolute value by \(\lambda \).

Lemma 3. \(V_{+}^k[g; a, b] \geq 0 \) and \(V_{-}^k[g; a, b] \leq 0 \).

The proof is omitted.

Definition 4. If \(V_{+}^k[g; a, b] < +\infty \), we say that \(g \in BV_{+}^k[a, b] \) and if \(V_{-}^k[g; a, b] < -\infty \), then \(g \in BV_{-}^k[a, b] \).

Lemma 4. Let \(x_{0,1}, x_{1,1}, \ldots, x_{0,k} \), \(x_{1,k} \), \(x_{2,1}, \ldots, x_{2,k} \), \(x_{3,1}, \ldots, x_{3,k} \), \(\ldots \) be a set of points in \([a, b]\). If \(g \in BV_{+}^k[a, b] \) (or \(BV_{-}^k[a, b] \)), then the series

\[
\sum_{i=1}^{n} (x_{i,k} - x_{i,0})Q_i(g; x_{i,0}, x_{i,1}, \ldots, x_{i,k})
\]

is convergent.

Proof. We prove the lemma in case \(g \in BV_{+}^k[a, b] \). The other case is analogous.

Let \((\xi_{i,0}, \xi_{i,1}, \ldots, \xi_{i,k}) \), \(i = 1, 2, \ldots, \) be a subsequence of the sequence of all intervals \(\{(x_{0,1}, x_{1,0}), (x_{1,1}, x_{2,0}), \ldots \} \), \(x_{1,0} \), \(x_{1,1} \), \(x_{1,k} \) renamed as \(\xi_{1,i} \), \(\xi_{1,k} \), for each of which \((\xi_{i,k} - \xi_{i,0})Q_i(g; \xi_{i,0}, \xi_{i,1}, \ldots, \xi_{i,k}) \geq 0 \). If \(n \) is a positive integer, then, since \((\xi_{i,0}, \xi_{i,1}) \), \(i = 1, 2, \ldots, n \) form an elementary system in \([a, b]\), we have

\[
\sum_{i=1}^{n} (\xi_{i,k} - \xi_{i,0})Q_i(g; \xi_{i,0}, \xi_{i,1}, \ldots, \xi_{i,k}) \leq V_{+}^k[g; a, b].
\]

Since \(V_{+}^k[g; a, b] < +\infty \) and \(n \) may be arbitrary, it follows that

\[
\sum_{i=1}^{n} (\xi_{i,k} - \xi_{i,0})Q_i(g; \xi_{i,0}, \xi_{i,1}, \ldots, \xi_{i,k})
\]

is convergent.
Next, let \((\eta_{i,0}, \eta_{i,k})\), \(i = 1, 2, \ldots\) be a subsequence of \((x_{i,0}, x_{i,k})\), \(i = 1, 2, \ldots\) with \(x_{i,1}, \ldots, x_{i,k-1}\) renamed as \(\eta_{i,1}, \ldots, \eta_{i,k-1}\) for each of which
\[
\left((\eta_{i,k}-\eta_{i,0})Q(g; \eta_{i,0}, \ldots, \eta_{i,k})\right) < 0.
\]
For a fixed positive integer \(n\) we consider an elementary system
\[
I(\eta_{1,1}, \ldots, \eta_{k,1-1})/I(\eta_{1,0}, \eta_{1,0}), \quad i = 1, 2, \ldots, n \text{ in } [a, b].
\]
If \(I_e\) denotes the elementary system in \([a, b]\) complementary to \(I\), then \(I\) and \(I_e\) together form an elementary system in \([a, b]\), which we denote by
\[
J(x_{i,1}, \ldots, x_{i+i-1})/x_{i,0}, x_{i,1}, \ldots, x_{i+m-1} = b. \quad i \in A_e = \{r, k + r, 2k + r, \ldots, (m+1)k\}
\]
where \(x_0 = a\) and \(x_{(m+1)k} = b\). We consider \(k-1\) elementary systems
\[
J(x_{i,1}, \ldots, x_{i+i-1})/x_{i,0}, x_{i,1}, \ldots, x_{i+k} = b, \quad i \in A, \quad i = 1, 2, \ldots, n
\]
for each \(r = 1, 2, \ldots, k-1\), so that
\[
\sigma I + \sigma I_1 + \cdots + \sigma I_{k-1} = Q(g; x_{m+k}, \ldots, x_{m+k}) - Q(g; a, \ldots, x_{m-1}).
\]
Consequently, \(\sigma I \geq -2K - kV^*_k[g; a, b]\) and so
\[
\sum_{i=1}^{N} (\eta_{i,k} - \eta_{i,0})Q(g; \eta_{i,0}, \ldots, \eta_{i,k}) \geq -2K - kV^*_k[g; a, b].
\]
Since the left-hand expression is negative and \(n\) may be any positive integer, the series
\[
\sum_{i=1}^{N} (\eta_{i,k} - \eta_{i,0})Q(g; \eta_{i,0}, \ldots, \eta_{i,k})
\]
is convergent.

Because
\[
\sum_{i=1}^{N} (x_{i,k} - x_{i,0})Q(g; x_{i,0}, \ldots, x_{i,k})
\]
the lemma follows.

Corollary. Under the hypotheses of Lemma 4, for any positive integer \(n \geq 1\)
\[
\sum_{i=1}^{n} (x_{i,k} - x_{i,0})Q(g; x_{i,0}, \ldots, x_{i,k}) \leq (k+1)V^*_k[g; a, b] + 2K.
\]

Proof. It is seen that the right-hand quantities of (10) and (11) are independent of \(n\). So, by using (10), (11) and (12), the corollary follows.

Lemma 5. If \(g \in BV^*_k[a, b]\), then \(g \in BV^*_k[a, b]\) and conversely.

Proof. Suppose that \(g \in BV^*_k[a, b]\). We consider an elementary system
\[
I(x_{i,1}, \ldots, x_{i+k-1})/x_{i,0}, x_{i,1}, \ldots, x_{i,k}, \quad i = 1, 2, \ldots, n \text{ in } [a, b].
\]

By the corollary there exists a \(M > 0\), independent of the choice of elementary systems, such that
\[
\sigma I = \sum_{i=1}^{n} (x_{i,k} - x_{i,0})Q(g; x_{i,0}, \ldots, x_{i,k}) \geq -M,
\]
and so \(V^*_k[g; a, b] \geq -M\). Consequently, by Lemma 3, \(g \in BV^*_k[a, b]\). The other case is similar.

Lemma 6. If \(g \in BV^*_k[a, c] \text{ and } BV^*_k[c, b]\), where \(a < c < b\), then \(g \in BV^*_k[a, b]\) and conversely.

Proof. Suppose that \(g \in BV^*_k[a, c] \text{ and } BV^*_k[c, b]\). Let
\[
I(x_{i,1}, \ldots, x_{i+k-1})/x_{i,0}, x_{i,1}, \quad i = 1, 2, \ldots, n
\]
be any elementary system in \([a, b]\). We consider the following cases:

(a) If \(x_{m+k} < c\) then \(\sigma I \leq V^*_k[g; c, b]\).

(b) If \(x_{m+k} < c\) then \(\sigma I \leq V^*_k[g; a, c]\).

(c) If \(x_{m+k} < c\) then \(\sigma I \leq V^*_k[g; c, b]\).

(d) Let \(x_{m+k} < c\) then \(\sigma I \leq V^*_k[g; c, b]\).

The converse part is clear. By Definition 3 it easily follows that
\[
V^*_k[g; a, c] + V^*_k[g; c, b] < V^*_k[g; a, b].
\]

Theorem 3. If \(g \in BV^*_k[a, b]\) (or \(BV^*_k[a, b]\)), then \(g \in BV^*_k[a, b]\) and
\[
V^*_k[g; a, b] < V^*_k[g; a, b].
\]
Proof. Suppose that \(g \in BV^+_k [a, b] \), then by Lemma 5, \(g \in BV^+_k [a, b] \). We consider any \(\pi (x_0, x_1, ..., x_n) \) subdivision of \([a, b]\), \(n > k \). Then

\[
\sum_{i=0}^{n-k} (x_{i+k} - x_i) |Q(g; x_i, x_{i+1}, ..., x_{i+k})| = \sum_{i \in A^+_r} + \sum_{i \in A^-_r} - \sum_{i \in A^+_r} - \sum_{i \in A^-_r}
\]

where \(A \) contains the suffixes \(r, k, 2k, r, ..., \leq n \) for \(r = 0, 1, ..., k-1 \).

We now consider each \(A \) to be the union of two sets of suffixes \(A^+_r \) and \(A^-_r \) such that \(i \in A^+_r \) if \((x_{i+k} - x_i) Q(g; x_i, x_{i+1}, ..., x_{i+k}) \geq 0 \) and \(i \in A^-_r \) if \((x_{i+k} - x_i) Q(g; x_i, x_{i+1}, ..., x_{i+k}) < 0 \).

Then, from (13) we get

\[
\sum_{i=0}^{n-k} (x_{i+k} - x_i) |Q(g; x_i, x_{i+1}, ..., x_{i+k})| = \sum_{i \in A^+_r} + \sum_{i \in A^-_r} - \sum_{i \in A^+_r} - \sum_{i \in A^-_r}
\]

We thus obtain 2k elementary systems like

\[
I^+_r (x_{i+1}, ..., x_{i+k-1}): (x_i, x_{i+k}), \quad i \in A^+_r,
\]

\[
I^-_r (x_{i+1}, ..., x_{i+k-1}): (x_i, x_{i+k}), \quad i \in A^-_r
\]

where \(r = 0, 1, ..., k-1 \).

Hence, from (14), we get

\[
\sum_{i=0}^{n-k} (x_{i+k} - x_i) |Q(g; x_i, x_{i+1}, ..., x_{i+k})| = \sigma I^+_0 + ... + \sigma I^+_m - \sigma I^-_m - ... - \sigma I^-_{m-1}
\]

\[
\leq k \{ V^+_k [g; a, b] - V^-_k [g; a, b] \}
\]

Since \(\pi (x_0, x_1, ..., x_n) \) is arbitrary, it follows that

\[
V_k [g; a, b] \leq k \{ V^+_k [g; a, b] - V^-_k [g; a, b] \}
\]

This proves the theorem.

Theorem 4. If \(g \in AC^+_k [a, b] \) (or \(AC^-_k [a, b] \)), then \(g \in BV_k [a, b] \).

Proof. We prove the theorem in case \(g \in AC^+_k [a, b] \). The other case is analogous.

There exists a \(\delta (1) = \delta > 0 \) such that, for every elementary system \(I \) in \([a, b]\), we have

\[
\sigma I \leq 1 \quad \text{whenever} \quad mI < \delta.
\]

We subdivide \([a, b]\) into a finite number of subintervals \([c_0, c_1], [c_1, c_2], ..., [c_{N-1}, c_N]\) (\(a = c_0 < c_1 < ... < c_N = b \)) such that \(c_{r+1} - c_r < \delta \) for each \(r = 0, 1, ..., N-1 \).

For any elementary system \(I (x^{(r)}_0, ..., x^{(r)}_{k-1}): (x^{(r)}_0, x^{(r)}_k) \) in \([c_r, c_{r+1}]\), we have, from (15) \(\sigma I < 1 \). Consequently \(V^+_k [g; c_r, c_{r+1}] \leq 1 \). This implies, by Definition 4 and Lemma 3, that \(g \in BV^+_k [c_r, c_{r+1}] \). By Lemma 6, it therefore follows that \(g \in BV^+_k [a, b] \). Hence, by Theorem 3, \(g \in BV_k [a, b] \). This proves the theorem.