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... Remarks. 1) To get a theorem similar to Mycielski’s (see introduction) we can
extend Theorem 5.3 to the case where the number of relations is countable. Th1s
follows by the countable additivity of the measure Pin 27 .

2) Combining Theorems 3.3 and 5.3 it follows that almost every tree function
is independent with perfect range in [0, 1].
. ..3) Theorem 4.3 ensures that Theorem 5.3 remains valld if the Hausdorff
(—=1/logp)"-measure of R is zerc.

4) Theorem 4.4 ensures that Theorem. 5.3 remains valid 1f R is of measure zero
with respect to the product measure (hy-measure)”.

-.5) The mapping o—f, from 27 to the space [0, 1]° is continuous: For-any Borel

set B<[0, 1] ‘we define u(B) = P({u €2": f, € B}). Under this Borel measure,
and for.any. -null R<[0, 17% ‘almost every f€[0,11¢ is independent over R.
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‘Sequence of iterates of generalized contractions

" Kanhaya L. Singh (College Station, Tex.)

Abstract. The main purpose of this paper is to study some properties of generalizéd contrac-
tion mappings. In Section 1 we have shown that if T'is a generalized contraction mapping of closed,
bounded and convex subset of a uniformly convex Banach space into itself with nonempty fixed
points set, then the mapping T2 defined by T3 = AI+ (1—)T, for any A such that 0 <1< 1 is asympto-
tically regular. As a-corollary of this .we get the result of Schaeffer (Jbr. Dcutch Math. Verein:
(1957), pp. 131-140). In Sectlon 2, we prove for Hilbert spaces. the mapping Tz as deﬁned above i is
a reasonable wanderer. Asa coro]lary of this weé obtain the fesult of Browder and Petryshyp

(1. Math, Anal. and Appl. 20 (1967), pp. 197-228). Finally in Sections 3 and 4, we ‘have obtained .

some results for the weak and strong convergence of sequence of iterates for mappings of this type.

Introduction. The main aim of this paper is to study some properties of géner-
alized contraction mappings. In Section 1 wehaveshown that if T'is a generalized
contraction mapping of a closed, bounded and conyex subset of a uniformly convex
Banach space into itself with non-empty fixed point set, then the mapping T, defined
by Ty = Al+(1—A)T, for any A such that 0<i<1 is asymptotically regular. In
section, it is shown.that if T is a generalized contraction self mapping of a closed,
convex subset of Hilbert space with non-empty fixed point set, then the mapping T,
defined as above is a reasonable wanderer with the same fixed point as 7. Finally
in Sections 3 and 4 we have obtained some results for the weak and strong conver-
gence of sequence of iterates of such kind of mappings.

DERINITION 1.1. Let C be a closed, bounded and convex subset of a Banach
space X. A mapping T: C—C is said to be nonexpansive if

| Tx~Ty||<]|x—y|| forall x, y in C.
.DEFINITION 1.2. A mappikng T: C—C is said to be quasi-nbnexpansive if
N Tx =Tyl <allx =yl +b|lx~Txl| +clly =Tyl

for all x, y'in C, 220, 520, ¢>0 and a+b+c<1.
‘The following example shows that there are quas1-nonexp'ms1ve ‘mappings wlnch
are not nonexpansive.
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Exampie 11, Let X = [0,1] and let Tx = }x, for 0<x<1 and T(1) = §,
then T is quasi-nomexpansive, but it is not nonexpansive.
DermNITION 1.3, A mapping T: C—~C is said to be a generalized contraction
if for any x, y in C we have
|7 — Tyll <max {|lx—yl|: $(llx =T+ {1y =Tyl 2Alx— Tyl + 11y — T} .
The following example shows that there are generalized contraction mappings
which are not quasi-nonexpansive mappings.
ExampLE 1.2. Let
M, ={mph: m=0,1,3,9,.,n=1,4,7,..,3k+1, .},
M, ={mn: m=1,3,9,27,..,n=2,5,..., 3k+2 v}
and let M = M, U M, with the usual metric. Define T: M—M as follows

T(x) = {iﬁ

Then T is generalized contraction. Indeed, if both x and y are in M, orin M, then
17 —Ty|| < }||x—]|. Therefore ||Tx—Ty||<max{||x—yli; $(lx—Txll+|ly—TyID;
3x=Ty|[+|ly—Tx|))}. If x in M, and y in M,, then for x = 1, y = % we have

ITx—Tyll = 3—% = 4.

for
« for

xin M,
xin M,.

Also N
“max {{|x—yll; 2(lx—Tx|| +[1 = T¥I); 2(|x—Tyl| + |y — Tx())}
=max{}; 3(3+4);3G+P)) = max{}; 1,4} = 1.
Thus_

1 7% — Tyl| < max{|lx—yl}; $(1x = Tx||+11y = T¥1); 2(lx =Tyl + 11y —TxID} .
Howev‘er, T is not quasi-nonexpansive. Indeed, taking a = b =c¢ =13 we have
Hlbe—yll+llx=Txl[+l[y=TyI} = ${3+3+4} = 77,

it follows that
1Tx ~ Tyl & 3{llx—pil +x = x|l + |l y—Tl1} -

DerFINITION 1.4. A Banach space X is said to be wuniformly convex if given
&>0 there exists 6(e)>0 such that [[x—y||>¢ for ||x|[<1 and |[y||<] implies
IFG+M<1-5(e).

DEerINITION 1.5. Let X be a Banach space and C be a closed, convex subst of X.
A mapping T: C—C s called asymptotically regular at x if and only if ||T"x — T+ x||
—0 as n—c0. ‘

THEOREM 1.1. Let D be a nonempty, bounded, closed and convex subset of a uni-
Sormly convex Banach space X. Let T: D— D be a generalized contraction mapping.
Let us suppose that F = {x in D: Tx = x} is nonempty. Then the mapping T, defined
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by T, = AT+(1 =MW1 for any A such that 0<A<1 is asymptotically regular with the
same fixed point as T.

Proof. It is clear that F(T) = F(T},), where F(T) and F(T;) are the fixed point
sets of T and T respectively. Indeed, x in F(T) implies Tx = x. Thus T;x = Ax+
+(1=2)x = x, hence x in F(T}), i.e. F(T) is contained in F(T}). Conversly y in
F(T;) implies T,y = y = ATy-(1—A)y, which implies ATy = Ay, or Ty = y, Thus
F(T;) is contained in F(T). Hence F(T) = F(T).

Let xoin D, x4 = Ta(x,),n = 0,1,2, ... Since Ty x—x = A(x—Tx) forxin D,
it is enough to show that ||x,—Tx,||=0 as n—c0. Now let X in D and y in F(T),
hence in F(T}), then

D) NITx=yl| = |ITx-Tyl| _
< max{llx—yll;%(HX-TX[I+l|y-TyH);%([Ix—TylHlly—TXIl)}_
- = max {||x—yll; }|lx—=Txl; $(lx =yl +1y—=T*ID} .
Now .
[1Tx — Il <E)lx—Tx]| <3 (lx— Il + ||y —Txl))
implies

1Tx =y <llx—yll -
Thus from (1) we obtain

@ NTx=ylI<lIx=Jl .
Also
3 y=Tax) = lly—(1=Ax—1Tx|| = 1A —=H(y—x)+A(y—Tx]|
‘ < (L= Dlx=ll+Ally=Txl| < A = D [|x =yl +Allx =]
= |[y—xll .

So the sequence {||y—x,||} is bounded by M = ||y—x,|. If y = x, for some ,
then from (3), {x,} converges to y and the proof is complete. So we may assume
that y # x, for all n = 0,1,2,... Suppose 1<}. Now

@ 1y =%nsall = 1Ay =2, +y=Tx)+{- 20 (y—x)ll
€ Ay—%, 4y =Tl + (1 =20 [|y — %,

— —Tx :
= (|ly~x"n>AH3—-i“f—”——“f +A=2D]ly—x,l -
”y_xn“
Let
®) 0= -x)flly-xll and b=@=Tx)lly=xll,
then

lla+bll = ||y =Xp+y—Tx,/lly =%l
and ||a]|<1, [|b||<1. Thus from (4) we get
© 1y =% 1< 24|13 (a+ D) 1y =21+ (A =28 ||y =l
= {2413 @+ D)+ A =2} [y —xll -
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Since: X is uniformly convex

3(e) = inf{l—|l¥(x+Il: [IxlI<L, lI¥II<T, [lx—y||>s}
is positive for & in (0, 2]. Also 8(0) = 0. From (5) we have

I3 (B <1 =6 (11, ~ T iy =5} -
Since & is monotohica]ly nondecreasing on [0, 2] '
@ " eI~ Tl
Thus from (6) and (7) we have

@y =Xl < 24y —x/1(1 =8 (llx,—~ T /M) + (1 =2D) [y =
= {22-245(lx,— T, llM) (1 =20}y,
= (1-228(]lx, ~Tx,.lI/M)|ly Xl

From (8) and induction we obtain -
® [|¥—=Xpe 4]l < Ho(l ——2}“5(||xj—‘Tx,]|/M)M
j=

- Suppose {||x,~T,||} does not converge to zero. Then there exists a subsequence
{Zxm} of {x,} such that {||xy,,—Txll} converges to some constant o in (0, 00).
Since 6 is monotonically nondecreasing and 1—245(||x;—Tx;||/M) belongs to [0, 1]
for each j, we have from ) for sufﬁc1ent1y large n

Hy=Xpmepll <1— 2/15 (O‘/ZM)"M

8o {xy0} converges to y, but then from (2) we get the convergence of {Txy(m}
to y. Therefore {][xk(,,)—Txk(,,)ll} converges to zero, a contradiction to the choice
of o. If A% then 1—A<%, we can apply the same kind of argument as above by
replacing (5) as .

7= Eusall = (L= =%,y =T + @A~ 1) (=T,
<UDy x4y =Tx,|[+A=Dy—Tx|]
) = A=Dlly =l [[E@+B)l|+@i-D)ly—~Tx,lI
By interchangihg the roles of A and 1—1 we can obtain. as earlier a contradiction.
Thus T, is asymptotically regular.

Remark 1.3. A theorem similar to our Theorem 1.1 for nonexpansive mappmgs
was proved by Schaefer {15} and for quasi- nonexpanswe mappmgs by the prescnt
author {19}. :

DEFINITION 2.1. Let H be a Hilbert space and C be a closed, convex subset
of H. A mapping T: C—C is said to be reasonable wanderer in C if starting at any
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A
point x, in G, its successive steps x, = T"x, (n = 1,2, 3,. )are such that the sum
of square of their lengths is finite, i.e.

©

Tlxer =Xl <00
n=0

\

THEOREM 2.1. Let H be a Hilbert space and C be a nonempty, closed and convex
subset of H. Let T: C—C be a generalized contraction mapping. Suppose F, the fixed
point set of T in C is nonempty. Let T\, = A+ (1—2)T for any given A with 0<i<]1,
then T, is a reasonable wanderer from C into C with the: same fixed point as T.

Proof. For any x in C, set x, = T3x and let y be a fixed point of T"and, hence .
of T,. Then _

(10) Xyp1 =Y = A%+ (1= Tx,—Ay—(1 -1y
| = 20—+ (1= (Tx,~) -
Now
A1) 1 Tx=yll = 1T =Tyl
’ < max{[Ix, = yl; 3% — Tl + [y = TyID; X — Tyl +

= max{]lx,—y; 11— T l1; 31—l +11y = TxID} -
Since
1Tx,— 71l <3 %= Tl <3 %= 21|+ 11y =T,
implies .
IITxn—yllsllx,.—yll .
Thus from (11) we have

(12) 1T, =yl < % =211 -
For any constant a, we have ‘
(13) a0, = Tx,) = a(e,—y+y=Tx) = a(x,—y)—a(T%,—) .

Us.i.ng (10) we géi
14 Xy =2I1P = 2= VP + (=D | T, = |I* + 241 = D (T, —p, X, —)
< 22|10, =32+ (L= A 1= Y12 42401 = D (Tx, =, %, —)
= {2+ =H2}x,—y1> +22(1 = D (Tx—p, %,~) .
Using (13) we get )
(195) a||x,—Tx,||* = a®||x,—|* + || Tx,~ y||* = 2a*(Tx, ~y, %, —¥)
< 28%||x, = y|I* = 2a%(Tx, =y, X, ~3)- -
Addmg (14) and (15) we obtain
(16) x4 1 =Yl +a?|Ix, —Tix,||*
<{2a%+ A2+ (L=} |x, = yI*+2{A(1— 4 -—az}(Tx,, -y, X, =) .
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/

If we assume that a is such that a®<A(1—4), then from. (16) and using Cauchy—
~ Schwarz inequality we get .

A7) llxns I + @~ T, |2
< {28+ 2+ (L=} Ix, =yl + {240~ =20} ||x, —yII* = ||x,—I*.

Lettmg a? = A(1—2)>0 and summing up (17) from n= 0ton =N we get

A(1-2) Z 114 -—Tx,.llz Z {I1x, —yll’—-llx,.H—yllz}

<”xo"'J'”2—”xN+1 —y”2<|]‘xo““3’”2 .

©

Hence Y, ||x,~Tx,||*<co. Since x,44—x, = (1—2)(Tx,—x,), we obtain
n=0

0 0
1
1=1 ) W= TP = 20-D ) cs el
n=0 . m=0 .
4 2 2
1= ot 1 =Xl < Nl = 11%
n=0

'
® :
: : 1-4
”xn+1_ "||2<T]|x0—y|]2<00,
n=0

i.e. T is reasonable wanderer.

Hence

Remark 2.1. A similar theorem for nonexpansive mapping was proved by
vBrowder and Petryshyn [2]. Unfortunately the theorem is not stated correctly there.
The mapping T, should be defined by T = AI'+(1—1)Tinstead of T = I+(1~2)T.

Levva 3.1. Let H be a Hilbert space and C be a nonempty, convex subset of H
Let T: C—»C be a generalized contraction mapping. Suppose F, the fixed point set
of T in C is nonempty, then F is convex. N

Proof. We may assume that F consists of more than one point; otherwise the
result is proved. Let x, y be in F. It is enough to show that z = Ax+(1—2A)y, 0<i<]
belongs to F. Since T is generalized contraction, from (2) we have

ITz—xlI<liz—x|| and || Tz=y|I<|lz—y]l.

Now z—x = Ix+(l—=Ay—x = —(1-2)(x—y). Hence x—z = (1—-1)(x—y), and
z—y = A(x—y). Thus we obtain

eyl < X =Tz I Tz= i< x— 2| + 12— ]|
© = 1= =yll+Alx =yl = lIx—y] .
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Hence ‘ .
l|x T2+ ||Tz—y|| = |lx=Tz+Tz—yl| .~

If x—Tz = 0, then [|Tz—y|| = |[x—yl|<llz—Jll = Allx~pll, whence 1<A, which
is not true. Similarly Tz—y = 0 implies 1<1—4, whence A<0, which is not true.
Since H is strictly convex, therefore there exists >0 such that Tz—x = a(y—7%),
whence Tz = (1—p)x-+ By, where f = a/(1+0). We have Tz—x = B(y—x) and so

Blly—xl = ||ITz=xlI<|lz—x[| = A =A{lx—»ll

which gives f<1—24. Using Tz—y = (1—B)(x—}), a similar argument gives f>1—41.
Thus f = 1—A and so 7z = Ax+(1 —A)y = z, i.e. z belongs to F.

LemMa 3.2 ([5], Proposition 2.5, pp. 53). Let X be a Banach space and g a comnvex
continuous real-valued function on X. Then g is weakly lower semicontinuous.

Lemma 3.3 ([5], Proposition 1.4, pp. 32). Let X be a topological space and C be
a compact subset of it. Let g: X—R be a lower semicontinuous function in X. Then
there exists x, in C such that g(x,) = mf g ().

DEFINITION 3.1. Let X be a Banach space. A mapping T: X—X is Sald to be
demiclosed if for any sequence {x,} such that x,—~x (i.e. x, converges weakly to x)
and Tx,—y, then y = Tx.

THEOREM 3.1. Let H be a Hilbert space and T be a generalized contraction asymp-
totically regular mapping of H into itself. Suppose T is continuous and I—T is demi-
closed. Let F, the fixed point set of T in H be nonempty. Then for each x, in H, the
sequence of iterates {T"x,} converges weakly to a point of F.

Proof. Since F is nonempty we see that a ball B about some fixed point and
containing x, is mapped into itself by T; consequently B contains the sequence of
iterates T™x,. So we may restrict ourselves to mappings of a ball into itself. It follows
from Lemma 3.1 that Fis convex. The continuity of Timplies that Fis closed. Thus F
being closed, bounded and convex is weakly compact.

Define in F the following mapping g: F»R" (R* = nonnegative real numbers)

(18) g(y) = inf || T"xo—y|f = Hm||T"xo—| .
- n n—+o
(In. (18) lim = inf, because the sequence {||T"x,—»||} is nonincreasing, please
see (20)). The mapping g so defined is continuous. Indeed,
g9(2) = lim||T"x, —2|| Shm || T"x —y|| + [y —zll = g (3)+{|y—=|

from this inequality it follows that |g(¥)—g(z)|<||y—z||. On the other hand, g is
a convex function. In fact

g(Ap+(1=2)z) = lim||T"x — (A + (1 = Dz|
= lim||AT"x, — Ay + (1 = A (T"x,—2)||
< Alim || 7" — ||+ (1 — A} lim] | T"xo — 2|
=lg(N+1-1g() .
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Thus using Lemma 3.2 we see that g is weakly lower semicontinuous. Now applying
Lemma 3.3 we conclude that there exists ‘a point # in F such that .

g@~a—mwm
yeF

Now we claim that  is unique. In fact, suppose this not so, i.e. there exists another
point v in F such that g(v) = a. Since g is convex, for 0<A<1 we have

g(Au+(1~,l)u)<‘lg(u)+(l—).g(i:) = (1= = o,

Thus
‘ a3 g (-t (1= A)v) = inf[| T"xq — (e (1= Do)
' = inf[|A(T"xp — 1)+ (1= 1) (T"xo — )]
= Ainf||T"xq —ul| +(1 = ) inf|| T"xo — ||

=gW+A-g) = }.oc+(1 —Da = a.
Hence, g (Au +(1 —/1) v) = «. Since uis in Fand Tis generahzed contractlon it follows
that
(19)  |IT"xo—ul| = || T"xo— Tull <max {|| 7" *xo—u||; 1 (| 7" *x,

— Tl
A llu—=Tull5 3 (= T"xol| + 1177 x0 — T"ull)} |

= max{||7" *xo—ull; 3|7 "xo—T"%0ll; ‘}(”u”T"on-F
AT xp—ulD}
Now
]|T"Xo—u|1S%HT"“IXO—T"%H<%(||T"—lxo‘—“|l+||“*T"xo||
implies - o

. T —ul| < || T xo—u]
Thus from (19) we get :
(20) , IIT "o —ul| < T txg—ull .

Similarly for v in F it follows that -
21 . T =l < |7 =]}

So, the sequences {||T"x,—u|l} and {||T"x,—v||} are nonincreasing. Therefore

[l —ull = [[T"xo—ull=« and - |lx,—of| = |[T"xo—v|| >

Thus from the uniform convexity of .H, we conclude that ||(x,—z)— (x,—v)||—0,
ie u=no

Finally it remains to show that the sequence {T"x,} converges weakly to u.
Suppose not, then by the reﬂexmty of H and the boundedness of the sequence
{T"x,}, there exists a convergent subsequence of {T"¥x,} whose limit say z is
different from w. Since T is asymptotically regular, it follows that the sequence

icm
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{(]—T)(T"(”xo)} tends to zero as n—oo. Since by hypothesis I—7T is demiclosed,
(I-T)z =0, i.e. z a fixed point of 7. We'claim that z = u. Indeed, we have

TPy —ull® = (177050 —z-+2ul]
= 17" Pxo—2|*+ nz ull? +2Re(T"Pxg=z,2=) .
Takmg limits we obtam
o g() = g(2)+||z—ul|
which is possible only if z = w. Thus the theorem.

THEOREM 3.2. Let X be a reflexive Banach space and T an asymptotically regular
generalized contraction mapping from X into itself. Suppose T is continuous and I-T is
demiclosed. Let F(T), the fixed point set of T in X be nonempty. Then, for each x, in X,
every subsequence of {T"x,} contains a further subsequence which converges weakly
to a fixed point of T. In particular, if F(T) consists of precisely one point then the whole
sequence {T" o} converges to this point.

Proof Let y be in F(T). Since T'is generalized contraction, it follows as in
the der1vatlon of (20) that || T"xo —y|| <%0 — 71|. So the sequence {T™x,} is bounded.
Thur it follows from the reflexivity of X that every subsequence of {T"x,} contains
a further subsequence, which we again denote by {T"Px,} such that Ty —y.
Now we show that y is a fixed point of T: Indeed, since T"Wx,—, it follows that
(I-T)T"Px,—(I—T)y. On the other hand since 7 is asymptotlcally rcgular it follows
that

(I.'__]v)Tn(i)x = T"(f)x __T"U)'i'ix —0 as n—co .

Thus (I-T)y = 0, i.e. y is fixed pomt of T. XY F(T) contams only one point y then
the whole sequence must converge to y

~ .Remark 3.1. A theorem similar to our Theorem 3.1 for nonexpansive mapping
was proved by Opial [10], and a theorem similar to our Theorem 3.2 was obtained
by Browder and Petryshyn [1].

In the sequel we will prove some theorems for the strong ‘convergence of sequence
of iterates for the generalized contraction mapping. We will assume that 7' is con-
tinuous in the present section.

THEOREM 4.1. Let X be a Banach space and T a generalized contractive asymptotically
regular mapping of X into itself. Suppose that F(T), the fixed point set of T in X is
nonempty. Let us further assume that T satisfies the followmg condmon

A) I-T maps bounded closed seéts into closed sets. ‘

Then for any point JLO in X rhe sequence {T"xo} converges strongly to some point
in F(T)

“Proof. Let ybe a ﬁxed pomt Qf T Since T is gencrahzed contractlon, 1t fol—
lows that

1|T”+1x0—'yll<llT«"xo‘-JJ|‘|, n=1,2,3,..
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So the sequence {T"x,} is bounded. Let D be the strong closure of {T"x,}.
By condition (A) it follows that (I—T)(D) is closed, This together with the fact
that T is asymptotically regular implies that zero belongs to (I—77)(D). So there
exists a zin D such that (/—T") z = 0. But this implies that either z = T"x, for some n,
or there exists a sequerice {T"¥x,} converging to.z. Since z is a fixed point of T,
we can then conclude that in either case the whole sequence {T"x,} converges to z.

COROLLARY 4.1. Let X be a uniformly convex Banach space and T a generalized
contraction mapping of X into itself. Suppose F(T), the fixed point set of T in X is
nonempty and T satisfies the following: condition:

(A) I—T maps closed, bounded sets into closed sets.

Then, for each point x, in X, the sequence {x,} defined by

Xpp1 = A, +(1-H)Tx,, 0<i<l

converges strongly to a fixed point of T.

Proof. Let A be such that 0<A<1. Let T, = AI+(1—-A)T. It follows from
Thecrem 1.1 that T is asymptotically regular. T satisfies condition (A) if and only
if T, also does. Indeed, we just observe that I—T; = (1—2)(I—T). Let us observe
that T, is not generalized contraction, however, for any y in F(T) it follows from (3)
that ||T;x—y||<||x—y||. From this we can conclude that the sequence {Tx,} is
bounded, hence the corollary follows from Theorem 4.1. )

DErFINITION 4.1, A continuous mapping 7 from a Banach X into itself is said
to be demicompact if every bounded sequence {x,} such that {(J—1)(x,)} converges
strongly, contains a strongly convergent subsequence {x,;}.

Remark 4.1. It follows from Proposition IL4 ([5], pp. 47) that a demicompact
mapping T of a Banach space X into itself satisfies condition (A). Thus we have
the following corollary:

COROLLARY 4.2. Let X be a uniformly convex Banach space. Let T be a generalized

contractive demicompact mapping of X into itself. Then, for each point x, in X, the
sequence {x,} defined by

Xpp1 = W+ (1= Tx,, 0<i<l

converges strongly to a fixed point of T.

. Remark 4.2. Theorem 4.1, Corollary 4.1 and Corollary 4.2 for nonexpansive
mappings were proved by Browder and Petryshyn [1].

As our final result we prove following:

THEOREM 4.2. Let X be strictly convex Banach space, and D be compact convex
subset of X. Let T: D—D be a continuous generalized contraction. Then the fixed
point set F\T) of T is nonempty and compact, moreover for any x, in D and any A such
that 0<i<1, {Tix,} converges to a fixed point of T, where

Tox=(1—-XA)x+iTx, x in X.
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Proof. By the continuity of T"and the Schauder-Tychonoff theorem, it follows
that F(T"), the fixed point set of T’ is compact and nonempty. Let n20, x, = Thxo-
Since D is compact, {x,} has a convergent subsequence {x;(,} which converges to
some point x in D. We need to show that x is a fixed point of T. From (2) it follows
that {|[x,—||}, where y is a fixed point of T is monotonically non-increasing. So by
the countinuity of norm || || and T, we have -

(22) [l =] = Hm [|xpn4 1 =PI SHM X504 1 =]
¢ n-roo n=+ o0
= lim“T(xk(n))'—y“ = [|Tx—yll .
n-o

By (22) and (3) we obtain

(23) (Tyx—yll = llx=yIl .
Moreover, )
24) Tyx—yll = |A = x+ATx=y|| = 1 =D x-»)+Ai(Tx—)l|

< (A=Dllx=yli+Alx=yll = llx—ll .

Combining (23) and (24) we conclude that all inequalities in (24) are equalities. So

(25) (1= =)+ A(Tx = = A=A [lx=y||+ Al Tx—y|
and . ' .
@6) 1 Tx—yl| = llx=l - v

By (25) and strict convexity of X, éither x = y, or Tx—y = t(x—y) for some £>0.
From (26) it follows that ¢ = 1. Thus Tx—y = x—y, or x = Tx. Hence x is a fixed
point of 7. It follows from (24) that the sequence {||x,—x||} is monotonically non-~
increasing, hence {x,} converges to x.

Remark 4.3. The above result was proved by Edelstein [6] for nonexpansive

mappings. ;
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- Berechnung einiger Poincaré-Reihen
yon

Jiirgen Herzog und Manfred Steurich (Essen)

Resiimee. In dieser Arbeit werden mit den Methoden von Shamash (siehe J. of Algebra 17, 19)

Poincaré-Reihen Pgr gewisser lokaler Ringe berechnet. Es wird zunidchst die Theorie von Shamash

auf kommutative, endlich dimensionale k-Algebren ausgedehnt, eine obere Abschidtzung der
Poincaré-Reihe durch eine rationale Reihe und Kriterien fiir die Gleichheit in dieser Abschidtzung
angegeben, Als Anwendung davon werden Poincaré—Reihen von einigen k-Algebren der Gestalt
klXq, ..., Xu]/2U bestimmt, wobei 2 ein Ideal ist, das von Monomen in den Unbestimmten X; erzeugt
wird. AuBerdem wird gezeigt, daB jeder Cohen—Macauley-Ring, dessen Multiplizitit kleiner oder
gleich 5 ist; eine rationale Poincaré—Reihe besitzt. SchlieBlich wird fir die Reduktion eines Ringes R
modulo eines Elementes aus dem Sockel die Abschitzung der Poincaré-Reihe PR des reduzierten
Rings R: PR Pr(1— X2PR)™? hergeleitet. Mit den benutzten Methoden 148t sich zeigen, daB fiir
eine gewisse Klasse von Gorensteinringen in dieser Abschidtzung Gleichheit gilt.

Das letztgenannte Resultat fiir beliebige artinsche Gorensteinringe wurde mit anderen Metho-
den von L. Avramov and G. Levin in den Stockholm Lecture Notes, No. 15, 1976, bewiesen.

Einleitung. Mit den Methoden, die Shamash in seinen Arbeiten [10], [11], [12]
entwickelt hat, sollen hier die Poincaré~Reihen gewisser lokaler Ringe berechnet
werden.

Im ersten Paragraphen wird die Theorie von Shamash kurz skizziert und gleich-

" zeitig auf kommutative, endlich-dimensionale k-Algebren ausgedehnt. Im allge-

meinen erhdlt man fiir die Poincaré-Reihen eine obere Abschiitzung durch eine
rationale Reihe, vgl. (1.2). In den Folgerungen (1.7) und (1.9) werden dann Kriterien
angegeben, wann in (1.2) Gleichheit gilt.

In § 2 wird die Theorie auf Algebren mit monomlalen Relationen angewandt
das heisst auf Algebren der Gestalt k[X7, ..., X,]/2L, wobei ¥ ein Ideal ist, das von
Monomen in den Unbestimmten X, erzeugt wird.

In §3 zeigen wir, dass jeder Cohen-Macaulay-Ring, dessen Multiplizitit
Kleiner oder gleich 5 ist, eine rationale Poincaré—Reihe besitzt.

Schliesslich untersuchen wir in § 4 das Verhalten der Poincaré—Reihe bei der ,
Reduktion eines Rings modulo einem Element aus dem Sockel.

Ist (R, m) ein noetherscher lokaler Ring mit maximalem Ideal m und ist ¢ ein
Element aus dem Sockel von R, dann gilt

(4.1) PR <PrX)(1~PrNX?) ™,
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