

	Fage
A. Tyc, Basic properties of h-regular local Noetherian rings	1-1:
— On h-regular grades algebras of characteristic p>0	17-28
Y. Koda ma and J. Ono, On fine shape theory	29-3
R. L. Russo, Universal continua	41-6
J. Bourgain, Decomposition in the product of a measure space and a Polish space	61-7:
K. Tamano and Y. Yajima, On total paracompactness and total metacompactness	73-7

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Théorie Descriptive des Ensembles, Algèbre Abstraite

Chaque volume paraît en 3 fascicules

Adresse de la Rédaction: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Pologne)

Adresse de l'Échange: INSTITUT MATHÉMATIQUE, ACADÉMIE POLONAISE DES SCIENCES Śniadeckich 8, 00-950 Warszawa (Pologne)

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA. Krakowskie Przedmieście 7, 00-068 Warszawa (Pologne)

Correspondence concerning editorial work and manuscripts should be addressed to: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Poland)

Correspondence concerning exchange should be addressed to:
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, Exchange,
Śniadeckich 8, 00-950 Warszawa (Poland)

The Fundamenta Mathematicae are available at your bookseller or at ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Poland)

© Copyright by Państwowe Wydawnictwo Naukowe, Warszawa 1979

ISBN 83-01-01396-6 ISSN 0016-2736

DRUKARNIA UNIWERSTTETU JAGIELLONSKIEGO W KRAKOWIE

Basic properties of h-regular local Noetherian rings

by

A. Tyc (Toruń)

Abstract. A commutative local Noetherian ring R is called h-regular if its maximal ideal is generated by a sequence $u_1, ..., u_{n_1}$ such that $u_i \neq 0$, i = 1, ..., n and $(u_1, ..., u_{k-1})$: $(u_k) = (u_1, ..., u_{k-1}, u_k^{h_k-1}), k = 1, ..., n$, where h_k is the minimum of integers $m \geqslant 0$ such that $u_k^m = 0$ (if $u_k^m \neq 0$ for all m, then we put $h_k = \infty$ and $u_k^{\infty - 1} = 0$).

In the paper basic properties of such rings are investigated. One proves, in particular, that if R is an h-regular local ring, then so are its completion \hat{R} and every localization of R at a prime ideal. Moreover, under this assumption, the associated graded algebra $Gr(R) = R/m \oplus m/m^2 \oplus ...$ is h-regular, i.e. the ideal $\oplus m^i/m^{i+1}$ is generated by an h-regular sequence of homogeneous elements. Also a characterization of h-regular local complete rings is given.

Introduction. Let R denote a commutative ring with identity. Recall that a sequence $u_1, ..., u_n, u_i \in R$, is called regular in R if $(u_1, ..., u_{k-1})$: $(u_k) = (u_1, ..., u_{k-1})$ for k = 1, ..., n ($(u_1, ..., u_{k-1}) = 0$ for k = 1). In [8] the notion of a regular sequence has been generalized in the following way: let $u_1, ..., u_n$ be as above and let $h(u_i) = h_i$ be the minimum of integers $m \ge 0$ such that $u_i^m = 0$ (if there is no such an integer, put $h(u_i) = \infty$ and $u_i^\infty = u_i^{\infty - 1} = 0$). The sequence $u_1, ..., u_n$ is said to be h-regular in R if $(u_1, ..., u_n) \ne R$ and $(u_1, ..., u_{k-1})$: $(u_k) = (u_1, ..., u_{k-1}, u_k^{h_k-1})$ for k = 1, ..., n. A local Noetherian (commutative) ring A is called h-regular if its unique maximal ideal is generated by an h-regular sequence.

The aim of this paper is an investigation of basic properties of h-regular local Noetherian rings. In particular, we show that if R is an h-regular local Noetherian ring then so is its completion \hat{R} , and the associated algebra $\operatorname{Gr}(R) = R/m \oplus m/m^2 \oplus ...$, where m is the maximal ideal of R, is an h-regular graded R/m-algebra in the sense of [8]. Also, a full description of complete h-regular local Noetherian rings is given.

In the whole paper the word "ring" means a commutative ring with identity. All local rings are assumed to be Noetherian.

Properties of h-regular sequences and h-regular local rings. Let R be a ring and let $u \in R$. The height of u (shortly h(u)) is the minimum of integers $m \ge 0$ such that $u^m = 0$. If $u^m \ne 0$ for all m, then we put $h(u) = \infty$.

1 - Fundamenta Mathematicae T. CV

1. DEFINITION. A sequence $u_1, ..., u_n$, $0 \neq u_i \in R$, is called h-regular in R if the following conditions hold:

$$1^{\circ} (u_1, ..., u_n) \neq R,$$

$$2^{0} (u_{1}, ..., u_{k-1}): (u_{k}) = (u_{1}, ..., u_{k-1}, u_{k}^{h_{k}-1}) (^{1}), k = 1, ..., n, h_{k} = h(u_{k}).$$

2. Definition. A local ring R is said to be h-regular if its unique maximal ideal is generated by an h-regular sequence.

It is clear that every regular local ring is an h-regular local ring and that every h-regular local ring without non-zero nilpotent elements is a regular local ring. In what follows we show (see Theorem 19) that if R is a regular local ring, u_1, \ldots, u_n is a regular sequence of generators of the maximal ideal in R and h_1, \ldots, h_n is a sequence of elements of the set $N^{\infty} = N \cup \{\infty\}$ (N will denote, as usual, the set of positive integers), then $R/(u_1^{h_1}, \ldots, u_n^{h_n})$ is an h-regular local ring.

3. Remark. It was proved in [8] that if $u_1, ..., u_n$ is an h-regular sequence in a local ring R then so is $u_{\sigma(1)}, ..., u_{\sigma(n)}$ for each permutation σ of the set $\{1, ..., n\}$. Moreover, it is easy to verify that each h-regular sequence $u_1, ..., u_n$ is a minimal set of generators of the ideal $(u_1, ..., u_n)$.

In the sequel we frequently use the following

4. Lemma. If $u_1, ..., u_n$ is an h-regular sequence in a ring R, then for each i, $1 \le i \le n$, $u_1, ..., u_i$ is an h-regular sequence in R and the images $\overline{u}_{i+1}, ..., \overline{u}_n$ of u's in $\overline{R} = R/(u_1, ..., u_i)$ form an h-regular sequence in \overline{R} such that $h(\overline{u}_j) = h(u_j)$, j = i+1, ..., n. Conversely, if there exists an i, $1 \le i \le n$, such that $u_1, ..., u_i$ is an h-regular sequence in R, $\overline{u}_{i+1}, ..., \overline{u}_n$ is an h-regular sequence in R and $h(\overline{u}_j) = h(u_j)$ for j = i+1, ..., n, then $u_1, ..., u_n$ is an h-regular sequence in R.

The proof of the lemma is easy and is left to the reader.

5. PROPOSITION. Suppose $f: R \rightarrow R'$ is a homomorphism of rings such that R' is a flat R-module. Then, for each h-regular sequence u_1, \ldots, u_n in R with $h(u_i) = h_i$, $v_1 = f(u_1), \ldots, v_n = f(u_n)$ is an h-regular sequence in R' whenever $(v_1, \ldots, v_n) \neq R'$.

Proof. By the assumption, for all i = 1, ..., n

$$0 \rightarrow (u_1, ..., u_{i-1}, u_i^{h_{i-1}}) \hookrightarrow R \xrightarrow{u_i} R/(u_1, ..., u_{i-1})$$

is an exact sequence of R-modules. Hence the sequences

$$0 \rightarrow (u_1, \dots, u_{i-1}, u_i^{h_{i-1}}) \otimes_R R' \rightarrow R \otimes_R R' \xrightarrow{u_i \otimes 1} R/(u_1, \dots, u_i) \otimes_R R'$$

are exact because R' is a flat R-module. However, $I \otimes_R R' = f(I)R'$ for each ideal $I \subset R$ (again by the flatness of R'), and so it follows that

$$0 \rightarrow (v_1, \dots, v_{i-1}, v_i^{h_i-1}) \hookrightarrow R' \xrightarrow{v_i} R' / (v_1, \dots, v_i)$$

is an exact sequence for $i=1,\ldots,n$. Consequently (v_1,\ldots,v_{i-1}) : $(v_i)=(v_1,\ldots,v_{i-1})$

Let R be a local ring with the maximal ideal m and let \hat{R} denote the m-adic completion of R. Since \hat{R} is a flat R-module and every set of generators of the ideal m is a set of generators of the maximal ideal \hat{m} of \hat{R} , the above proposition yields

6. COROLLARY. If R is an h-regular local ring, then so is its completion \hat{R} . Now one can also prove

7. Proposition. If R is an h-regular local ring, then so is the localization $R_{\mathfrak{R}}$ of R at each prime ideal $\mathfrak{R} \subset R$.

Proof. In virtue of the assumption the maximal ideal m of R is generated by an h-regular sequence $U=(u_1,\ldots,u_n)$. By Remark 3 we may assume that u_1,\ldots,u_p is the maximal subsequence of U consisting of nilpotent elements. Then clearly u_1,\ldots,u_p are in \Re and $u_1'=u_1/1,\ldots,u_p'=u_p/1$ form an h-regular sequence in R_{\Re} in view of Proposition 5. Hence, in order to prove that R is h-regular, it is sufficient to show, by using Lemma 4, that $R^*=R_{\Re}/(u_1',\ldots,u_p')$ is a regular local ring. It is obvious that $R^*=(R/(u_1,\ldots,u_p))_{\Re}$ where R is the image of \Re under the natural homomorphism $R \to \overline{R} = R/(u_1,\ldots,u_p)$. Furthermore, R is a regular local ring by Lemma 4. The conclusion now follows from the well-known fact that the localization at each prime ideal of a regular local ring is also a regular local ring.

Let R be a local ring with the maximal ideal m and the quotient field k = R/m. As usual, Gr(R) will denote the associated graded k-algebra $k \oplus m/m^2 \oplus ...$ We are now going to show that if R is an h-regular local ring, then Gr(R) is an h-regular graded k-algebra in the sense of [8], i.e. that its augumentation ideal $\bigoplus_{i>0} m^i/m^{i+1}$ is generated by an h-regular sequence of homogeneous elements. Let us start with the following

8. PROPOSITION. If u is an element of m and $h(u) \le h$ for some $h \in N^{\infty}$, then the element $u^* = u + m^2 \in Gr(R)$ is h-regular in Gr(R) and $h(u^*) = h$ if and only if u is h-regular in R, h(u) = h, and the natural homomorphism of graded k-algebras $p \colon Gr(R) \to Gr(R/(u))$ induces an isomorphism $p_* \colon Gr(R)/(u^*) \to Gr(R/(u))$.

Proof. Suppose u^* is an h-regular element in Gr(R) and $h(u^*) = h$. First we show that u is h-regular in R and h(u) = h. Let ru = 0. Then $r \in m$ and certainly $(r+m^2)u^* = 0$. Hence $r = y_1'u^{h-1} + y_2$ for some $y_1' \in R$ and $y_2 \in m^2$, which implies $0 = ru = y_2 u$. Therefore $(y_2 + m^3)u^* = 0$ whence $y_2 = y_2'u^{h-1} + y_3$ with $y_3 \in m^3$. Consequently, $r = (y_1' + y_2')u^{h-1} + y_3$ and continuing this procedure we get sequences $r_n \in R$ and $y_n \in m^n$, n = 2, 3, ... such that $r = r_n u^{h-1} + y_n$ for all n. It follows that $r \in \bigcap_n (Ru^{h-1} + m^n) = Ru^{h-1}$ by the Krull Intersection Theorem. Since h(u) = h (otherwise $h(u^*) < h$), u is h-regular in R.

Now we show that p_* : $Gr(R)/(u^*) \to Gr(R/(u))$ is an isomorphism. For this purpose it is sufficient to prove that for given n the kernel of the nth component of p:

$$p_n$$
: $Gr(R)_n = m^n / m^{n+1} \rightarrow m^n + (u) / m^{n+1} + (u) = Gr(R/(u))$

⁽¹⁾ Throughout the paper the following conventions are in force: $\infty - i = \infty$ if $i < \infty$, $x^{\infty} = 0$, $x^{0} = 1$, $(u_{1}, ..., u_{m}) = 0$ if m = 0.

is equal to $(Gr(R)u^*)_n = \{au + m^{n+1}; a \in m^{n-1}\}$. It is clear that $(Gr(R)u^*)_n$ $\subset \text{Ker}(p_n)$. Let $b+m^{n+1} \in \text{Ker}(p_n)$, i.e. $b+m^{n+1}=au+m^{n+1}$ and assume that $a \in m^{i} \setminus m^{i+1}$. If $i \ge n-1$, then $a \in m^{n-1}$ and $b+m^{n+1} \in (Gr(R)u^*)_n$. Suppose i < n-1. In this case $(a+m^{i+1})u^* = b+m^{i+2} = 0$ because $b \in m^n \subset m^{i+2}$. Hence $a = a'u^{h-1} + a_1$ for some $a' \in R$ and $a_1 \in m^{i+1}$, which gives $au = a_1u$. Proceeding in this way we will finally find an $a'' \in m^{n-1}$ such that au = a''u, whence $b + m^{n+1}$ $=a''u+m^{n+1}\in (Gr(R)u^*)_n$, as was to be shown. Thus we have proved the "if" part of the proposition. In order to prove "only if" one assumes that u is h-regular in R, h(u) = h, and that p_* : $Gr(R)/(u^*) \rightarrow Gr(R/(u))$ is an isomorphism. Moreover, take a homogeneous element $\bar{a} \in Gr(R)$ such that $\bar{a}u^* = 0$. Then $\bar{a} = a + m^k$ for some k, $a \in m^{k-1}$ and $au \in m^{k+1}$. It follows that $au + m^{k+2} \in \operatorname{Ker} p_{k+1} = (\operatorname{Gr}(R)u^*)_{k+1}$ by the assumption, and therefore $au = a_k u + b_k$ where $a_k \in m^k$, $b_k \in m^{k+2}$. This means $(a-a_k)u \in m^{k+2}$, whence $(a-a_k)u + m^{k+3} \in \text{Ker } p_{k+2} = (\text{Gr}(R)u^*)_{k+2}$. So, there are $a_{k+1} \in m^{k+1}$ and $b_{k+1} \in m^{k+3}$ such that $au = a_{k+1}u + a_ku + b_{k+1} = a'_{k+1}u + b_{k+1}$ where $a'_{k+1} \in m^k$. Repeating this procedure, one gets elements $a'_{k+n} \in m^k$ and $b_{k+n} \in m^{k+n+2}$, n = 0, 1, ..., such that $au = a'_{k+n}u + b_{k+n}$ for each n. Hence $au \in \bigcap (m^k u + m^n) = m^k u$ by the Krull Intersection Theorem, i.e. au = a'u for some $a' \in m^k$. Consequently, there is $a, b \in R$ such that $a = a' + bu^{h-1}$ because (0): (u) $=(u^{h-1})$ by the assumption. Hence we conclude that $a+m^k=bu^{h-1}+m^k$ and it

9. Lemma. If (0): $(u) = (u^{h-1})$ and the natural homomorphism

$$p_*: \operatorname{Gr}(R)/(u^*) \to \operatorname{Gr}(R/(u)), \quad u^* = u + m^2,$$

remains to find such a b which belongs to $m^{k-1+h+1}$. But this is a consequence

is an isomorphism of graded k-algebras, then for each i, $0 \le i \le h$, the natural homomorphism

$$p_*^i$$
: $Gr(R)/(u^*i) \rightarrow Gr(R/(u^i))$, $p_*^1 = p_*$,

is also an isomorphism of graded k-algebras.

of the lemma below (for i = h-1).

Proof. Applying induction on i, one can assume that i>1 and that the lemma is true for i-1. As above, it is sufficient to show that the kernel of the nth component

$$p_n^i$$
: $Gr(R)_n = m^n/m^{n+1} \rightarrow m^n + (u^i)/m^{n+1} + (u^i) = Gr(R/(u^i))_n$

of the natural homomorphism of graded k-algebras p^i : $\operatorname{Gr}(R) \to \operatorname{Gr}(R/(u^i))$ is equal to $(u^*i)_n = \{au^i + m^{n+1}; \ a \in m^{n-i}\}$. The inclusion $(u^{*i})_n = \operatorname{Ker} p_n^i$ is trivial. Let $a \in m^n$ and let $\overline{a} = a + m^{n+1} \in \operatorname{Ker} p_n^i$. Then $\overline{a} = bu^i + m^{n+1}$ for some b such that $bu^i \in m^n$. Writing $\overline{a} = (bu)u^{i-1} + m^{n+1}$ we see that $\overline{a} \in \operatorname{Ker} p_n^{i-1}$. Hence $(bu)u^{i-1} + m^{n+1} = b_1u^{i-1} + m^{n+1}$ where $b_1 \in m^{n-i+1}$, which implies $(bu - b_1)u^{i-1} + m^{n+2} \in \operatorname{Ker} p_{n-1}^{i-1}$ as $(bu - b_1)u^{i-1} \in m^{n+1}$. Again by the induction hypothesis there exists a $b_2 \in m^{n-i+2}$ such that $bu^i - b_1u^{i-1} - b_2u^{i-1} \in m^{n+2}$. Continuing in this way we may find $b_s' \in m^{n-i+1}$, $s = 1, 2, \ldots$ for which $bu^i - b_s' u^{i-1} \in m^{n+s} \subset m^s$. Therefore $bu^i \in \bigcap (m^{n-i+1}u^{i-1} + m^s) = m^{n-i+1}u^{i-1}$, i.e. there is a $b' \in m^{n-i+1}$ such that

 $(bu-b')u^{i-1}=0$. This implies $bu-b'\in (u^{h-i+1})\subset (u)$ in view of [8], Lemma 1.2. In particular, $b'=ru\in m^{n-i+1}$. Since p^1 is an isomorphism, $b'+m^{n-i+2}=b''u+m^{n-i+2}$ with $b''\in m^{n-i}$ because $b'+m^{n-i+2}\in \operatorname{Ker} p^1_{n-i+1}$. Consequently, $\overline{a}=bu^i+m^{n+1}=b'u^{i-1}+m^{n+1}=b''u^i+m^{n+1}\in (u^{*i})_n$ and thus the proof of the proposition is completed.

Now we are able to prove

10. THEOREM. A local ring R is h-regular if and only if there exists a sequence $u_1, ..., u_n$ of generators of the maximal ideal m such that $u_1^*, ..., u_n^*, u_i^* = u_i + m^2$, is an h-regular sequence in the graded k-algebra Gr(R) and $h(u_j^*) = h(u_j)$ for j = 1, ..., n.

Proof. Let R be an h-regular local ring with the maximal ideal m. We show by using induction on $n=e-\dim R$ (1) that, for each h-regular sequence u_1,\ldots,u_n of generators of the ideal m,u_1^*,\ldots,u_n^* is an h-regular sequence in $\operatorname{Gr}(R)$ and that $h(u_1^*)=h(u_1),\ j=1,\ldots,n$. Case n=0 is trivial. Suppose that n>0 and that our assertion is true for all h-regular local rings R' with $e-\dim R'< n$. Now let $e-\dim R=n$ and let u_1,\ldots,u_n be an h-regular sequence of generators of the ideal m. First we prove that u_1^* is an h-regular element in $\operatorname{Gr}(R)$ and $h(u_1^*)=h_1$ where $h_1=h(u_1)$. By Proposition 8 we need only to check that the natural epimorphism $p_*\colon \operatorname{Gr}(R)/(u_1^*)\to \operatorname{Gr}(R/(u_1))$ is an isomorphism. Take $\overline{a}=a+m^{k+1}\in \operatorname{Ker}(p_k)$ where $p_k\colon \operatorname{Gr}(R)_k=m^k/m^{k+1}\to m^k+(u_1)/m^{k+1}+(u_1)=\operatorname{Gr}(R/(u_1))_k$ is, as above, the kth component of p. Then $\overline{a}=bu_1+m^{k+1}$ where $bu_1\in m^k$. Hence there exist a $b'\in m^{k-1}$ and a form $f\in R[X_2,\ldots,X_n]$ of degree k such that

(*)
$$bu_1 = b'u_1 + f(u_2, ..., u_n)$$

and $\deg_{X_i} f < h_i$ for $h_i = h(u_i)$, i = 2, ..., n. Now consider the homomorphism of graded k-algebras $g \colon k[X_2, ..., X_n]/(X_2^{h_2}, ..., X_n^{h_n}) \rightarrow \operatorname{Gr}(R/(u_1))$ given by $g(X_i) = \overline{u}_i + \overline{m}^2$, where $\overline{u}_i = u_i + (u_1) \in \overline{R} = R/(u_1)$ and \overline{m} is the maximal ideal of the ring \overline{R} . In virtue of Lemma 4 and the induction assumption, $\overline{u}_2^*, ..., \overline{u}_n^*$ is an h-regular sequence in $\operatorname{Gr}(R/(u_1))$ with $h(\overline{u}_i^*) = h_i$, i = 2, ..., n, whence g is an isomorphism by [8], Lemma 1.8. Furthermore, if \overline{f} denotes the reduction mod m of the form $f(X_2, ..., X_n)$ from the equality (*), then $g(\overline{f} + (X_2^{h_2}, ..., X_n^{h_n})) = 0$ because $f(u_2, ..., u_n) \in (u_1)$. Since $\deg_{X_i} f < h_i$, i = 2, ..., n, it follows that $\overline{f} = 0$, i.e. $f(u_2, ..., u_n) \in m^{k+1}$. Consequently $\overline{u} = bu_1 + m^{k+1} = b'u_1 + m^{k+1}$ where $b' \in m^{k-1}$ and thus $\overline{u} \in \operatorname{Gr}(R)u_1^*$. From this we conclude that p_* is an isomorphism and, as a result, we know that u_1^* is an h-regular element in $\operatorname{Gr}(R)$. Besides, $u_2^* + (u_1^*)$, $u_n^* + (u_1^*)$ is an h-regular sequence in $\operatorname{Gr}(R)/(u_1^*)$ and $h(u_1^* + (u_1^*)) = h(u_1)$ because so is \overline{u}_2^* , ..., \overline{u}_n^* and $p_*(u_1^* + (u_1^*)) = \overline{u}_1^*$. Now Lemma 4 implies that u_1^* , ..., u_n^* is an h-regular sequence in $\operatorname{Gr}(R)$ and the implication \Rightarrow is proved.

For the implication \Leftarrow it is sufficient to show that if a sequence u_1, \ldots, u_n satisfies the assumption of the theorem, then it is h-regular in R. But this easily follows by induction on n in virtue of Proposition 8. The theorem is proved.

⁽¹⁾ Here and in what follows $e-\dim R = \dim_{R/m}(m/m^2)$.

11. COROLLARY. If R is an h-regular local ring, then Gr(R) is an h-regular graded k-algebra. Precisely, if $u_1, ..., u_n$ is an h-regular sequence of generators of the maximal ideal m and $h(u_i) = h_i$, then $u_1^*, ..., u_n^*, u_i^* = u_i + m^2$, is an h-regular sequence of homogeneous generators of the augumentation ideal of the k-algebra Gr(R). Moreover, the homomorphism of graded k-algebras

$$g: k[X_1, ..., X_n]/(X_1^{h_1}, ..., X_n^{h_n}) \to Gr(R)$$

defined by the formula: $g(X_i) = u_i^*$, i = 1, ..., n, is an isomorphism.

Proof. This is a consequence of the proof of the implication \Rightarrow in Theorem 10 and [8], Theorem 1.9.

12. COROLLARY. If R is an h-regular local ring, $u_1, ..., u_n$ and $v_1, ..., v_m$ are h-regular sequences of generators of the ideal m, then n = m and $h(u_i) = h(v_i)$ for i = 1, ..., n whenever $h(u_1) \le ... \le h(u_n)$ and $h(v_1) \le ... \le h(v_n)$.

Proof. The equality n=m follows from Remark 3. In order to prove the remaining equalities assume that $h(u_1) \leqslant ... \leqslant h(u_n)$, $h(v_1) \leqslant ... \leqslant h(v_n)$ and consider the diagram

$$k[X_1, ..., X_n]/(X_1^{h_1}, ..., X_n^{h_n})$$

$$Gr(R)$$
 $k[Y_1, ..., Y_n]/(Y_1^{s_1}, ..., Y_n^{s_n})$

where $h_i = h(u_i)$, $s_i = h(v_i)$ and $g_1(X_i) = u_i + m^2$, $g_2(Y_i) = v_i + m^2$, i = 1, ..., n. By Corollary 11, g_1 and g_2 are isomorphisms of graded k-algebras whence there is an isomorphism of graded k-algebras

$$f: k[X_1, ..., X_n]/(X_1^{h_1}, ..., X_n^{h_n}) \to k[Y_1, ..., Y_n]/(Y_1^{s_1}, ..., Y_n^{s_n})$$

We show by induction on n that the existence of f implies $h_j = s_j$ for j = 1, ..., n. If n = 0, there is nothing to do. Suppose that n > 0 and that our assertion is true for all graded k-algebras of the above form generated by less than n elements. Let us start with the proof that $h_1 = s_1$. Denote: $y_j = Y_j + (Y_1^{s_1}, ..., Y_n^{s_n}), j = 1, ..., n$, $y = f(X_1 + (X_1^{h_1}, ..., X_n^{h_n}))$ and write $y = \sum_{1}^{n} k_i y_i, k_i \in k$. Then $k_q \neq 0$ for some q and

(*)
$$0 = y^{h_1} = \sum_{i=1}^{n} (i_1, ..., i_n) k_1^{i_1} ... k_n^{i_n} y_1^{i_n} ... y_n^{i_n} + k_a^{h_1} y_1^{h_1}$$

where $(i_1, ..., i_n) = \frac{(i_1 + ... + i_n)!}{i_1! ... i_n!}$ and $i_1, ..., i_n$ run over all n-tuples such that $\sum_j i_j = h_1$, $0 \le i_j \le h_1$ and $i_q < h_1$. But this is possible only when $h_1 \ge s_1$ because otherwise the set $\{y_1^{i_1} ... y_n^{i_n}; \sum_j i_j = h_1, i_j \le h_1 < s_1 \le s_j\}$ would be a part of a basis of the k-vector space $k[Y_1, ..., Y_n]/(Y_1^{s_1}, ..., Y_n^{s_n})$ and the equality (*) would imply $k_q = 0$. Hence $h_1 = s_1$ as the role of h_1 and s_1 is symmetric. The argument following

 $< s_{t+1}$. Changing, if necessary, the ordering of the sequence 1, ..., t we may assume q=1, i.e. $k_1 \neq 0$. Then clearly $(y_1, ..., y_n)=(y, y_2, ..., y_n)$. Moreover, we claim that $y, y_2, ..., y_n$ is an h-regular sequence with $h(y)=h_1=s_1$. To prove this, by applying Lemma 1.4 in [8] (to the sequence $y_2, ..., y_n, y$) and the equality $y=k_1y_1+...+k_ny_n$, it suffices to show that $h(y)=s_1$. Case $y=k_1y_1$ is trivial. Let $k_i \neq 0$ for some i>1. Then from the equality (*) with q=1 we conclude that $(j,s_1-j)k_1^jk_1^{s_1-j}=0$ for all $j=1,...,s_1-1$. This means that $(j,s_1-j)=0$ in k for the same j. It is well known that such equalities hold in the field k only when the characteristic of k is p>0 and $s_1=h_1=p^r$, $r\geqslant 0$. Since $h(y_j)=s_1$ for j=1,...,t

it follows that $y^{s_1} = (\sum_{j=1}^{t} k_j y_j)^{p^r} = 0$, i.e. $h(y) \leq s_1$. On the other hand,

$$h(y+(y_2,...,y_n)) = h(k_1y_1+(y_2,...,y_n)) = s_1$$

by [8], Lemma 1.4, whence $h(y) = s_1$. Consequently, we know that $y, y_2, ..., y_n$ is an h-regular sequence of homogeneous generators of the augumentation ideal of the algebra $B = k[Y_1, ..., Y_n]/(Y_1^{s_1}, ..., Y_n^{s_n})$. Applying again [8], Lemma 1.4, Theorem 1.9, we infer from it that $B/(y) = k[Y_2, ..., Y_n]/(Y_2^{s_2}, ..., Y_n^{s_n})$. Similarly, if $A = k[X_1, ..., X_n]/(X_1^{h_1}, ..., X_n^{h_n})$, then $A/(\overline{X}_1) = k[X_2, ..., X_n]/(X_2^{h_2}, ..., X_n^{h_n})$. Furthermore, as $f(\overline{X}_1) = y$, the isomorphism $f: A \rightarrow B$ yields an isomorphisms of graded k-algebras $f': A/(\overline{X}_1) \rightarrow B/(y)$, i.e. an isomorphism

$$f': k[X_2, ..., X_n]/X_2^{h_2}, ..., X_n^{h_n} \rightarrow k[Y_2, ..., Y_n]/(Y_2^{s_2}, ..., Y_n^{s_n})$$

Now, using the induction hypothesis, we obtain $h_j = s_j$ for j = 2, ..., n. This completes the proof of the corollary.

13. COROLLARY. A local ring R is h-regular if and only if its completion \hat{R} is h-regular and there exists an h-regular (in \hat{R}) sequence $u_1, ..., u_n$ of generators of the maximal ideal \hat{m} in \hat{R} such that $u_i \in R$ for i = 1, ..., n.

Proof. The "if" part follows from Corollary 6. The "only if" part is a consequence of Theorem 10 in view of the fact that $Gr(R) = Gr(\widehat{R})$.

Corollaries 11 and 13 show that, if R is an h-regular local ring, then both the completion \hat{R} and the graded k-algebra Gr(R) are h-regular. We prove below (see Example 14) that one of the examples of "bad" Noetherian rings in Nagata's book "Local rings" provides a local ring R such that its completion \hat{R} (and hence $Gr(\hat{R}) = Gr(R)$) is h-regular whereas R itself is not h-regular.

14. Example ([6], Example 3.1, p. 206). Let k be a field of characteristic p>0 such that $[k:k^p]=\infty$ and let $S=\{f=\Sigma f_it^i\in k[[i]]; \{f_i\}$ generate in k a finite extension of $k^p\}$. One can verify that S is a local ring and $\widehat{S}=k[[i]]$. In particular, S is a regular local ring. Let b_1,\ldots,b_n,\ldots be a sequence of elements of k linearly independent over k^p and let $b=\Sigma b_it^i$ (observe that $b\notin S$). By definition

$$R = S[X]/(X^p - d)$$
 where $d = b^p \in S$.

Then $\hat{R} = \hat{S}[[X]]/(X^p - d) = k[[t, X]]/(X - b)^p \simeq k[[t, Y]]/(Y^p)$, which shows that \hat{R} is h-regular because $t + (Y^p)$, $Y + (Y^p)$ is an h-regular sequence of generators of the maximal ideal of the ring $k[[t, Y]]/(Y^p)$. On the other hand, R is not h-regular since otherwise R, being an integral domain, would be regular, which is impossible because \hat{R} is not regular.

The next example indicates the existence of non h-regular local rings R which are complete (even Antinian) and for which Gr(R) is an h-regular graded k-algebra.

15. EXAMPLE. Let k be a field of characteristic 2 and let $R = k[[X, Y]]/X^2 - XY^2$, Y^4). It is easy to see that $Gr(R) = k[X_1, X_2]/(X_1^2, X_2^4)$ and that there is no element $u \in R$ with h(u) = 2. It follows from Corollary 12 that R is not h-regular.

Corollary 12 justifies the following

16. Definition. A local ring R is called $(h_1, ..., h_n)$ -regular, $h_i \in N^{\infty}$, $h_1 \le ... \le h_n$, if there exists an h-regular sequence $u_1, ..., u_n$ of generators of the ideal m such that $h(u_i) = h_i$ for i = 1, ..., n.

It is obvious that each h-regular local ring R is $(h_1, ..., h_n)$ -regular for some sequence $h_1, ..., h_n$. Moreover, if R is $(h_1, ..., h_n)$ -regular, then so are its completion \hat{R} and the graded k-algebra Gr(R).

If R is an h-regular local ring, then by Remark 3 every h-regular sequence of generators of the maximal ideal m is a minimal set of generators of m. The next proposition decides when a given minimal sequence of generators of m is h-regular.

17. PROPOSITION. If R is an $(h_1, ..., h_n)$ -regular local ring, then a minimal sequence $v_1, ..., v_n$ of generators of the ideal m is h-regular in R if and only if $h(v_j) \leq h_j$, j = 1, ..., n, provided that $h(v_1) \leq ... \leq h(v_n)$.

Proof. Taking into account Corollary 12, it is enough to show that a minimal sequence $v_1, ..., v_n$ of generators of m such that $h(v_i) \leq h_i$ and $h(v_1) \leq ... \leq h(v_n)$ is h-regular in R. It will be done (as usual in this paper) by induction on n. Case n = 1is easy and can be proved for each $v_1 \in m \setminus m^2$. Suppose that n > 1, that the assertion is true for all h-regular local rings whose maximal ideal is generated by less than n elements and that the maximal ideal m of the ring under consideration is generated by an h-regular sequence $u_1, ..., u_n$ with $h(u_i) = h_i$. Then $u_1 = \sum b_i v_i$ for some $b_i \in R$ and there is an r such that $b_i \notin m$. Hence in the ring $\overline{R} = R/(u_i)$ we have $\overline{m}=(\bar{u}_2,...,\bar{u}_n)=(\bar{v}_1,...,\hat{\bar{v}}_r,...,\bar{v}_n)$ (1) where \overline{m} denotes the maximal ideal of the ring \overline{R} . It is easy to verify that $\overline{v}_1, ..., \widehat{v}_r, ..., \overline{v}_n$ is a minimal set of generators of \overline{m} . Moreover, $h(\bar{v}_i) \leq h(v_i) \leq h_i \leq h_{i+1} = h(\bar{u}_{i+1})$ for $i \leq r$ and $h(\bar{v}_i) \leq h(v_i) \leq h_i = h(\bar{u}_i)$ for j > r. Since \overline{R} is an $(h_2, ..., h_n)$ -regular local ring by Lemma 4 it follows by the induction assumption that $\bar{v}_1, ..., \hat{v}_r, ..., \bar{v}_n$ is an h-regular sequence in \bar{R} . In particular, $h(\bar{v}_i) = h(\bar{u}_{i+1}) = h_{i+1}$ for i < r and $h(\bar{v}_i) = h(\bar{u}_i) = h_i$ for j > r in view of Corollary 12. Hence $h(\bar{v}_i) = h(v_i) = h_1$ for i < r and $h(\bar{v}_j) = h(v_j) = h_j$ for j > rbecause $h_r = h(\bar{v}_{r-1}) \geqslant h_{r-1} = h(\bar{v}_{r-2}) \geqslant ... \geqslant h_2 = h(\bar{v}_1) \geqslant h_1$ and $h_1 \leqslant ... \leqslant h_n$. Now, applying Lemma 4, conclude that $u_1, v_1, ..., \hat{v}_r, ..., v_n$ is an h-regular sequence in R,

- 18. COROLLARY. If R is an $(h_1, ..., h_n)$ -regular local ring, then a minimal sequence $v_1, ..., v_n$ of generators of the ideal m such that $h(v_1) \le ... \le h(v_n)$ is h-regular in R if and only if $h(v_j) = h_j$ for j = 1, ..., n.
- 19. THEOREM. If R is an $(h_1, ..., h_n)$ -regular local ring and $u_1, ..., u_n$ is an h-regular sequence of generators of the ideal m such that $h(u_i) = h_i$, i = 1, ..., n, then for each sequence $k_1 \le ... \le k_n$, $k_j \in N^{\infty}$, $R|(u_1^{k_1}, ..., u_n^{k_n})$ is an $(h'_s, ..., h'_n)$ -regular local ring where s is the first number such that $k_s > 1$ and $h'_i = \min(h_i, k_i)$.

In the proof of this theorem the following lemma is very useful:

20. Lemma. If $u_1, ..., u_m$ is an h-regular sequence in a ring S and $h(u_j) = h_j$, then for each sequence $k_1, ..., k_{m-1}, k_j \in N^{\infty}$, and for each $j, 0 \le j < h_m$ the following implication holds:

$$(*) au_m^j \in (u_1^{k_1}, \dots, u_{m-1}^{k_{m-1}}) \Rightarrow a \in (u_1^{k_1}, \dots, u_{m-1}^{k_{m-1}}, u_m^{k_{m-1}}).$$

Proof. It is clear that we may assume $k_i < h_i$ for i = 1, ..., m. Moreover, one can guess that, for the proof, induction on m will be used. If m = 1, then the lemma is a reformulation of [8], Lemma 1.2. Let m > 1 and let $au_m^j \in (u_1^{k_1}, \ldots, u_{m-1}^{k_{m-1}})$. Then the sequence $\bar{u}_2, \ldots, \bar{u}_m, \bar{u}_i = u_i + (u_1)$, is an h-regular sequence in $R/(u_1)$ with $h(\bar{u}_m) = h_m$ and by the induction hypothesis

$$a = a_m u_m^{h_m - j} + \sum_{i=2}^{m-1} a_i u_i^{k_i} + b u_1$$
 for some $a_i, b \in R$.

Multiplying this equality by u_m^j , we obtain

$$\sum a_i u_i^{k_i} u_m^j + b u_1 u_m^j = a u_m^j = \sum_{i=1}^{m-1} s_i u_i^{k_i} \quad \text{for some } s_i \in R.$$

Therefore $(bu_m^j - s_1 u_1^{k_1-1}) u_1 \in (u_2^{k_2}, \dots, u_{m-1}^{k_{m-1}})$, whence $bu_m^j - s_1 u_1^{k_1-1} \in (u_1^{k_1-1}, u_2^{k_2}, \dots, u_{m-1}^{k_{m-1}})$. Repeating the above arguments for b instead of a, we conclude that $b \in (u_m^{k_m-j}, u_2^{k_2}, \dots, u_{m-1}^{k_{m-1}}, u_1)$. Hence $a \in (u_m^{k_m-j}, u_2^{k_2}, \dots, u_{m-1}^{k_{m-1}}, u_1^2)$. Continuing in this way, one gets the required result.

Once the lemma is shown, we can prove the theorem. For this purpose it is sufficient to show that $\overline{u}_s, \ldots, \overline{u}_n, \overline{u}_i = u_i + (u_1^{k_1}, \ldots, u_n^{k_n})$, is an h-regular sequence in $R/(u_1^{k_1}, \ldots, u_n^{k_n})$ and $h(\overline{u}_i) = h'_i$ for $i = s, \ldots, n$. It is obvious that $h(\overline{u}_i) \leqslant h'_i$, $i = s, \ldots, n$. If $q = h(\overline{u}_i) \leqslant h'_i$ for some i, i.e. $u_i^q \in (u_1^{k_1}, \ldots, u_n^{k_n})$, then

$$u_i^q (1 - a u_i^{k_i - q}) \in (u_1^{k_1}, \dots, u_i^{\hat{k}_i}, \dots, u_n^{k_n})$$

and by Lemma 20 we have $1 \in (u_1^{k_1}, ..., u_{i-1}^{k_{i-1}}, u_i^{k_{i-1}}, u_{i+1}^{k_{i-1}}, ..., u_n^{k_n}) \subset (u_1, ..., u_n)$ because $q < h_i' \le k_i$. This contradiction shows that $h(\bar{u}_i) = h_i'$ for i = s, ..., n. Now,

⁽¹⁾ $(x_1, ..., \hat{x}_i, ..., x_n) \stackrel{\text{df}}{=} (x_1, ..., x_{i-1}, x_{i+1}, ..., x_n).$

fix $i, s \le i \le n$, and take $\bar{a} \in \bar{R} = R/(u_1^{k_1}, \dots, u_n^{k_n})$ such that $\bar{a}\bar{u}_i \in (\bar{u}_s, \dots, \bar{u}_{i-1})$, i.e. $au_i \in (u_1, ..., u_{i-1}, u_i^{k_i}, ..., u_n^{k_n})$ (recall that $k_1 = ... = k_{s-1} = 1$). Then there is a $b \in R$ such that $(a-bu_i^{k_i-1})u_i \in (u_1, ..., u_{i-1}, u_{i+1}^{k_{i+1}}, ..., u_n^{k_n})$, whence $a-bu_i^{k_{i-1}}$ $\in (u_1, ..., u_{i-1}, u_i^{h_{i-1}}, u_{i+1}^{k_{i+1}}, ..., u_n^{k_n})$ on the basis of Lemma 20 applied to the h-regular sequence $u_1, ..., u_{i-1}, u_{i+1}, ..., u_n, u_i$ and $k'_1 = ... = k'_{i-1} = 1, k'_i = k_i, j = i+1, ..., n$. Since $(u_1, ..., u_{i-1}, u_i^{h_{i-1}}, u_{i+1}^{k_{i+1}}, ..., u_n^{k_n}) = (u_1, ..., u_{i-1}, u_i^{k_{i-1}}, u_i^{h_{i-1}}, u_{i+1}^{k_{i+1}}, ..., u_n^{k_n}),$ it follows that $\bar{a} \in (\bar{u}_1, ..., \bar{u}_{i-1}, \bar{u}_i^{h'_{i-1}})$, and thus the theorem is proved.

21. COROLLARY. If R is a regular local ring, then for each regular sequence u_1, \dots, u_n of generators of the maximal ideal m and for each sequence $k_1 \leq \dots \leq k_n$ $k_i \in N^{\infty}$, $R/(u_1^{k_1}, ..., u_n^{k_n})$ is an $(k_s, ..., k_n)$ -regular local ring where s is the first number such that k > 1.

22. Theorem. If a local ring R' is a homomorphic image of a regular local ring R, then it is $(h_1, ..., h_n)$ -regular if and only if there exists a regular sequence $u_1, ..., u_m$ of generators of the maximal ideal m in R such that

$$R' \simeq R/(u_{n+1}, ..., u_m, u_1^{h_1}, ..., u_n^{h_n})$$
.

Proof. By the above corollary we only have to prove the implication ⇒. Let R be a regular local ring and let p: $R \rightarrow R'$ be an epimorphism of rings, which exists in virtue of the assumption. Moreover, let I = Ker p and let $n = e - \dim R'$. If $I \not= m^2$ (m is the maximal ideal of R), then there is $u_{n+1} \in I \setminus m^2$ and p induces an epimorphism of rings $p': R/(u_{n+1}) \rightarrow R'$ such that $R/(u_{n+1})$ is again a regular local ring. Repeating this procedure one can find a sequence $u_{n+1}, ..., u_m, u_i \in I$, such that $\overline{R} = R/(u_{n+1}, ..., u_m)$ is a regular local ring and the kernel of the epimorphism $\bar{p}: R \rightarrow R'$ induced by p is contained in the square of the maximal ideal of the ring \bar{R} . Now we are done by the following

23. LEMMA. Assume that R is a regular local ring with the maximal ideal m, R' is an $(h_1, ..., h_n)$ -regular local ring with the maximal ideal m' and p: $R \rightarrow R'$ is an epimorphism of rings with $I = \text{Ker } p \subset m^2$. Then for each h-regular sequence u'_1, \dots, u'_n of generators of the ideal m' with $h(u_i) = h_i$ and for each sequence u_1, \dots, u_n in R such that $p(u_i) = u'_i$, i = 1, ..., n, $u_1, ..., u_n$ is a regular sequence of generators of the ideal m and the epimorphism

$$\bar{p}: R/(u_1^{h_1}, \ldots, u_n^{h_n}) \rightarrow R'$$

induced by p is an isomorphism (note that $u_i^{h_i} \in \text{Ker } p$).

Proof. Let $u'_1, ..., u'_n$ be an h-regular sequence of generators of the ideal m'such that $h(u_i) = h_i$ and let $p(u_i) = u_i$, j = 1, ..., n. Then clearly $m = (u_1, ..., u_n) +$ $+I = (u_1, ..., u_n) + m^2$ and by Nakayama Lemma $m = (u_1, ..., u_n)$. Moreover, u_1, \ldots, u_n is a minimal (hence regular) sequence of generators of m because so is u'_1, \ldots, u'_n for m'. We show by induction on n that $I = (u_1^{h_1}, \ldots, u_n^{h_n})$. Case n = 0is trivial. Suppose n>0. If $\overline{R}=R/(u_n)$, $\overline{R}'=R'/(u_n')$ and $p_1:\overline{R}\to\overline{R}'$ is the epimor-

phism induced by p, then from the induction assumption it follows that $\text{Ker } p_1$ $=(\bar{u}_{1}^{h_{1}},...,\bar{u}_{n-1}^{h_{n-1}}),\ \bar{u}_{i}=u_{i}+(u_{n}).$ Hence if $a\in I$ then

$$a = \sum_{i=1}^{n-1} a_i u_i^{hi} + a_n u_n \quad \text{for some } a_j \in R,$$

which implies $0 = p(a) = p(a_n)p(u_n) = p(a_n)u'_n$. By Remark 3 u'_n is an h-regular element in R' so it results $p(a_n) = p(r)u_n^{h_n-1} = p(ru_n^{h_n-1})$, i.e. $a_n =$ $ru_n^{h_n-1} + a'$ with $a' \in I$. Consequently $a = \sum a_1 u_1^{h_1} + (ru_n^{h_n-1} + a') u_n \in (u_1^{h_1}, \dots, u_n^{h_n}) + mI$ and $I = (u_1^{h_1}, ..., u_n^{h_n}) + mI$ because $u_1^{h_1} = 0$. The conclusion now follows by Nakayama Lemma.

24. COROLLARY. Suppose R is an $(h_1, ..., h_n)$ -regular local complete ring with the maximal ideal m and the quotient field k = R/m if characteristic p (p can be 0). In equal characteristic case $R = k[[X_1, ..., X_n]]/(X_1^{h_1}, ..., X_n^{h_n})$. In non-equal characteristic case there exists a local complete discrete valuation ring A with the maximal ideal generated by p such that $R = A\lceil [X_1, ..., X_n] \rceil / (p-f, X_1^{h_1}, ..., X_n^{h_n})$ for some $f \in (X_1, ..., X_n) \subset A[[X_1, ..., X_n]]$ (observe that $p-f, X_1, ..., X_n$ is a regular sequence of generators of the maximal ideal of the ring $A[X_1, ..., X_n]$.

Proof. In equal characteristic case R contains the field k and the natural homomorphism of k-algebras $g: k[X_1, ..., X_n] \rightarrow R$ given by $g(X_i) = u_i$, where $u_1, ..., u_n$ is an h-regular sequence of generators of m is an epimorphism by the completness of R. Moreover, $Ker(g) \subset (X_1, ..., X_n)^2$ as $e-\dim(R) = n = e -\dim(k[X_1,...,X_n])$. In virtue of Lemma 23 it follows that

$$R \simeq k[[X_1, ..., X_n]]/(X_1^{h_1}, ..., X_n^{h_n})$$
.

In the non-equal characteristic case there exist ([2], Th. 12) a local complete discrete valuation ring A with the maximal ideal generated by p and a homomorphism $g': A \rightarrow R$ such that the induced homomorphism of the quotient fields $\bar{q}': A/(p) \rightarrow k$ is an isomorphism. Hence the homomorphism $g: A[X_1, ..., X_n] \to R$, defined by the formulas $g|_A = g'$, $g(X_i) = u_i$ for u_i 's as above, is an epimorphism of rings. In particular, there is an $f \in (X_1, ..., X_n)$ such that $g(f) = p \in m$, whence $p - f \in \text{Ker}(g)$. Furthermore, if $g_1: S = A[X_1, ..., X_n]/(p-f) \rightarrow R$ denotes the epimorphism induced by g, then $\operatorname{Ker} g_1 \subset m_1^2$ where m_1 is the maximal ideal of the ring S because $e - \dim R$ $= n = c - \dim S$. We have also $q(\overline{X}_i) = u_i$ for i = 1, ..., n. Consequently, by Lemma 23.

$$R \simeq S/(\overline{X}_1^{h_1}, ..., \overline{X}_n^{h_n}) \simeq A[[X_1, ..., X_n]]/(p-f, X_1^{h_1}, ..., X_n^{h_n}),$$

as was to be shown.

25. Remark. Theorem 22 shows that from the structural point of view the following question is of great importance:

QUESTION. Is every h-regular local ring a homomorphic image of a regular local ring?

The answer to this question is unknown to the author.

26. THEOREM. If k is a field and R is a local k-algebra of finite type such that R/m (m being, as usual, the maximal ideal of R) is a separable extension of k, then R is an $(h_1, ..., h_n)$ -regular local ring if and only if there exist a regular local ring S and an $r \le n$ such that

$$R = S[[X_1, ..., X_r]]/(X_1^{h_1}, ..., X_r^{h_r}).$$

Proof. The "only if" part is a consequence of Theorem 22. For the proof of the "if" part take an h-regular sequence u_1, \ldots, u_n of generators of m and denote by N the ideal (u_1, \ldots, u_r) where r is the maximal number such that $h_r < \infty$. Then S = R/N is a regular local ring by Lemma 4 (recall $h_1 \le \ldots \le h_n$) and its quotient field, being isomorphic to R/m, is a separable extension of k. By [4], Th. 6.3, Ex. 1.5, Def. 1.1, it follows that the structural homomorphism of rings $k \rightarrow S$ is formally smooth, i.e. for every k-algebra B and every nilpotent ideal J in B and every homomorphism of k-algebras $f : S \rightarrow B/J$ there exists a homomorphism of k-algebras $g' : S \rightarrow B$ such that the diagram

$$B \xrightarrow{g'} B/J$$

where p is the natural projection, is commutative. In particular, putting B = R, J = N and f = 1, one obtains a homomorphism of k-algebras $g' : S \rightarrow R$ such that $pg' = 1_s$. The homomorphism g' permits us to define a homomorphism of k-algebras $g: \overline{S} = S[[X_1, ..., X_r]]/(X_1^{h_1}, ..., X_r^{h_r}) \to R$ as follows: g(s) = g'(s) for $s \in S$, $g(X_i) = u_i$ for i = 1, ..., r. We claim that g is an isomorphism. Using the equality pq' = 1. one can easily show by induction on m that $R \subset \text{Im } g + N^m$ for $m = 0, 1, ... (N^0 = R)$. Since N is a nilpotent ideal, this implies that g is an epimorphism. The injectivity of g will be proved by induction on r = r(R) (note that r is an invariant of R because $r = e - \dim R - \operatorname{Dim} R$ where $\operatorname{Dim} R$ denotes the Krull dimention of R). If r = 0then the injectivity of g = g' is a consequence of the equality pg' = 1. Suppose that r>0 and that for all h-regular local k-algebras R' of finite type with the separable (over k) quotient field and r(R') < r all homomorphisms constructed analogously to the homomorphism g (g depends on $u_1, ..., u_n$ and g') are injective. Now, if $g(\overline{a})=0$ for some $\overline{a}\in S[[X_1,\ldots,X_r]]/(X_1^{h_1},\ldots,X_r^{h_r})$, then \overline{a} has a unique representative $a\in S[[X_1,\ldots,X_r]]$ such that $a=\sum_{i=1}^{h_r-1}s_i(X_1,\ldots,X_{r-1})X_r^i$ and $\deg_{X_i}s_j< h_i$ for i = 1, ..., r-1 and $j = 0, ..., h_r-1$. Consider the following commutative diagram:

$$S[[X_1, ..., X_r]]/(X_1^{h_1}, ..., X_r^{h_r}) \xrightarrow{g} R$$

$$\downarrow q \qquad \qquad \downarrow pr$$

$$S[[X_1, ..., X_{r-1}]]/(X_1^{h_1}, ..., X_{r-1}^{h_{r-1}}) \xrightarrow{g} R/(u_r)$$

where $q(X_i)=X_i+(X_1^{h_1},\dots,X_{r-1}^{h_{r-1}}),\ i=1,\dots,r-1,\ q(X_r)=0,\ p_r$ is the natural projection and $\bar{g}(X_i)=\bar{u}_i=u_i+(u_r)$ for $i=1,\dots,r-1$. Observe that $\bar{R}=R/(u_r)$ is an $(h_1,\dots,h_{r-1},h_{r+1},\dots,h_n)$ -regular local ring with the same quotient field as R and with $r(\bar{R})=r-1$. Furthermore, $S(\bar{R})=\bar{R}/(\bar{u}_1,\dots,\bar{u}_{r-1})=R/(u_1,\dots,u_r)=S$ and $p'\bar{g}|_S=1$, where $p'=\bar{R}\to S$ denotes the natural projection. Consequently, applying the induction hypothesis, one knows that \bar{g} is an injection. Since $0=p_rg(\bar{a})=\bar{g}q(\bar{a})$, it follows that

$$0 = q(\bar{a}) = s_0(X_1, ..., X_{r-1}) + (X_1^{h_1}, ..., X_{r-1}^{h_{r-1}})$$

and further $s_0 = 0$ as $\deg_{X_i} s_0 < h_i$ for i = 1, ..., r-1. This implies $0 = g(\bar{a}) = g(\sum s_i \overline{X}_r^{i-1}) u_r$, whence $g(\sum s_i \overline{X}_r^{i-1}) \in (u_r)$ because u_r is an h-regular element in R. Therefore

$$\bar{g}q(\sum s_i \bar{X}_r^{i-1}) = p_r g(\sum s_i \bar{X}_r^{i-1}) = 0$$
,

i.e. $q(\sum s_i \bar{X}^{i-1}) = 0$, which gives, as above, $s_1 = 0$. Repeating this reasoning, one gets $s_0 = \dots = s_{h_r-1} = 0$. As a result, we obtain $\bar{a} = 0$ and thus the injectivity of g is proved. The theorem follows.

Now we formulate the notion of an h-regular sequence in homological terms. Recall for this purpose that a sequence $u_1, ..., u_n$ in a ring R is called p-ordered (see [8]) if $h(u_j) = \infty$ for j = 1, ..., p and $h(u_j) < \infty$ for j = p+1, ..., n. If $u_1, ..., u_n$ is a sequence in a ring R (not necessarily p-ordered for some p), let $E(u_1, ..., u_n)$ denote the Koszul complex of $u_1, ..., u_n$, i. e. the exterior algebra on the free R-module $RT_1 \oplus ... \oplus RT_n$ with the differential d given by $d(T_i) = u_i$ and grading defined by $\deg T_i = 1, i = 1, ..., n$. Moreover, if the sequence $u_1, ..., u_n$ is p-ordered, let $\operatorname{Eh}(u_1, ..., u_n)$ denote the graded differential R-algebra $E(u_1, ..., u_n) \otimes_R \Gamma(RS_{p+1} \oplus ... \oplus RS_n)$ where $\Gamma(RS_{p+1} \oplus ... \oplus RS_n)$ is the algebra with divided powers on the free R-module $RS_{p+1} \oplus ... \oplus RS_n$, $\deg(S_j) = 2$, and the differential d is given by $d(S_j) = u_j^{h_j-1}T_j$ with $h_j = h(u_j)$ (in the notation of [8] $E(u_1, ..., u_n) = R \langle T_1, ..., T_n, dT_i = u_i \rangle$, $\operatorname{Eh}(u_1, ..., u_n) = E(u_1, ..., u_n) \langle S_{p+1}, ..., S_n, dS_j = u_j^{h_j-1}T_j \rangle$; for details see [8]). From Proposition 2.5 in [8] applied to $A = A_0 = R$ we get the following

- 27. COROLLARY. If $u_1, ..., u_n$ is a p-ordered sequence in a local ring R, $u_i \in m$ and $Eh = Eh(u_i, ..., u_n)$, then the following conditions are equivalent:
 - (i) $u_1, ..., u_n$ is an h-regular sequence in R,
 - (ii) Eh is a free resolution of the cyclic R-module $R/(u_1, ..., u_n)$,
 - (iii) $H_1(Eh) = H_2(Eh) = 0$.

The next proposition is a generalization of [3], Prop. 1.

28. Proposition. If $u_1, ..., u_n$ is an h-regular sequence in a ring R (not necessarily Noetherian) and $f: S \rightarrow R$ (S does not have to be Noetherian too) is a homomorphism of rings such that the composition $pf: S \rightarrow R \rightarrow R | (u_1, ..., u_n)$, where p is the natural projection, is injective, then the homomorphism of rings

$$g: T = S[X_1, ..., X_n]/(X_1^{h_1}, ..., X_n^{h_n}) \to R, \quad h_i = h(u_i),$$

defined by g(s) = f(s) for $s \in S$, $g(X_i) = u_i$ for i = 1, ..., n, is also injective. Moreover, if R, S are local (Noetherian) rings and $R/(u_1, ..., u_n)$ is a flat S-module ($R/(u_1, ..., u_n)$) is an S-module by $pf: S \rightarrow R/(u_1, ..., u_n)$), then R is a flat T-module.

Proof. The proof of the injectivity of g is a slight modification of the proof of the injectivity of the homomorphism g considered in the proof of Theorem 26 and we omit it. Assume that R, S are local rings and $R/(u_1, ..., u_n)$ is a flat S-module. In order to show that R is a flat T-module we use the criterion of flatness ([1], Chap. III, § 5, n° 2, Th. 1(iii)) applied to the ring T, the ideal $J = (\overline{X}_1, ..., \overline{X}_n) \subset T$ and the T-module R. We have to prove that:

- (i) R/SR is a flat T/J-module.
- (ii) $Tor_1^T(T/J, R) = 0$.
- (iii) For any finitely generated ideal I in T $I \otimes_T R$ is a T-module separate in J-adic topology.
- (i) is a consequence of the assumption because $R/SR = R/(u_1, ..., u_n)$ and T/J = S. For the equality $\operatorname{Tor}_1^T(T/J, R) = 0$ observe that by [7], Th. 4, $\operatorname{Eh}(\overline{X}_1, ..., \overline{X}_n)$ is a free resolution of the T-module S = T/J. Moreover, it is easy to see that $\operatorname{Eh}(\overline{X}_1, ..., \overline{X}_n) \otimes_T R = \operatorname{Eh}(u_1, ..., u_n)$. Hence

$$\operatorname{Tor}_{1}^{T}(T/J, R) = H_{1}(\operatorname{Eh}(\overline{X}_{1}, ..., \overline{X}_{n}) \otimes_{T} R) = H_{1}(\operatorname{Eh}(u_{1}, ..., u_{n})) = 0$$

in view of Corollary 27. It remains to show that, for each finitely generated ideal I in T, $I \otimes_T R$ is separate in J-adic topology, i.e. $\bigcap J^m(I \otimes_T R) = 0$. But

$$\bigcap_{m} J^{m}(I \otimes_{T} R) \subseteq \bigcap_{m} (I \otimes_{T} R) L^{m}$$

where $L = (u_1, ..., u_n)$ and $I \otimes_T R$ is regarded as a (right) R-module in a natural way. Since $I \otimes_T R$ is clearly a finitely generated R-module, the required result follows from [1], Chap. III, § 3, n° 2. This completes the proof of the proposition.

- 29. Remark. If R is a complete local ring, then the ring T in the above proposition can be replaced by $S[[X_1, ..., X_n]]/(X_1^{h_1}, ..., X_n^{h_n})$.
- 30. COROLLARY. If R is a local ring containing a field k and $u_1, ..., u_n$ is an h-regular sequence in R with $h(u_i) = h_i$, then for each h-regular sequence $f_1, ..., f_m$ in T (with S = k) such that $f_j(0) = 0$ for all $j, f_1(u_1, ..., u_n), ..., f_m(u_1, ..., u_n)$ is an h-regular sequence in R and $h(f_j(u_1, ..., u_n)) = h(f_j)$ for j = 1, ..., m. In particular, if $u_1, ..., u_n$ is a regular sequence in R, then for each regular sequence $f_1, ..., f_m$ of polynomials from $k[X_1, ..., X_n]$ such that $f_j(0) = 0, f_1(u_1, ..., u_n), ..., f_m(u_1, ..., u_n)$ is a regular sequence in R.

Proof. This is a consequence of Proposition 5 and Proposition 28.

31. COROLLARY (from the proof). Let R and R' be local rings with the maximal ideals m and m', respectively. If $f: R \rightarrow R'$ is a homomorphism of rings such that $f(m) \subset m'$ and J is an ideal in R, then R' is a flat R-module whenever R' | f(J)R' is a flat R | J-module and $Tor_1^R(R | J, R') = 0$.

References

- [1] Bourbaki, Algbère commutative, Chap. 1-2, 3-4, Hermann, Paris 1961.
- [2] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), pp. 54-106.
- [3] R. Hartshorne, A property of A-sequences, Bull. Soc. Math. France 94 (1966), pp. 61-66.
- [4] B. Iversen, Generic local structure in commutative algebra, Lecture Notes in Math. 310 (1973).
- [5] T. Józefiak, Tate resolution for commutative graded algebras over a local ring, Fund. Math. 74 (1972), pp. 209-231.
- [6] M. Nagata, Local rings, Interscience Publishers, New York-London 1962.
- [7] J. Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), pp. 14-27.
- [8] A. Tyc, On h-regular graded algebras, Fund. Math. 86 (1974), pp. 41-52.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Accepté par la Rédaction le 14. 2. 1977