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On closed graph theorems
in topological spaces and groups

by

Marek Wilhelm (Wroctaw)

Abstract. Let T, X be topological spaces and f+ T-X. Given a continuous pseudo-metric
i XX X—R*, we define a certain function p st Tx T— R* (Definition 4). The continuity properties
of the functions py at the points of the diagonal A(T) are strictly related to some closed graph
theorems concerning f. '

1. Introduction. Throughout the paper (unless explicitly stated) 7" is a topo-
logical space, X is a Tychonoff topological space, and fis a function on 7'to X (not
necessarily continuous). Furthermore, P is a <-directed family of continuous
pseudo-metrics for X generating its topology, and @ is the uniformity (with symmetric
members) for X generated by P. For instance, P may be a gage for X, or, if (X, p)
is a metric space, we may take P = {p}. For some basic topological notions the reader
is referred to the monographs of Kelley [3] or Engelking [2]. Given any p € P, we
define a function p, on T'xT to R* (Definition 4) and study its main properties
(Theorems 1 and 2). The continuity in the first variable of the functions Py at the
points of the diagonal A(T) is equivalent to the nearly-continuity of # (Theorem 3)
and, consequently, is related to some known closed graph theorems concerning f
(Theorem 4). The continuity in the second variable of the functions Py turns out to
be of no less interest — we prove a corresponding closed graph theorem (Theorem 5).
In some special cases the assertions of Theorems 4 and 5 are comparable; then
Theorem 5 requires weaker assumptions (Theorems 6 and 11). The most important
case of this kind arises where 7" and X are topological groups, fis a homomorphism,
and the members of P are left-invariant. Then every function p, is also a left-invariant
pseudo-metric (Theorem 10).

Under some hypotheses the homomorphism fis automatically nearly continuous,
which immediately produces classical closed graph theorems.

2. Functions pf. The letters ¢, u, v (respectively; x, y) will always stand for
elements of 7' (resp., X), and the letters U, V (resp., ¥) will stand for open sets in T'
(resp., X).

2 — Fundamenta Mathematicae T. CIV
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DermITIoN 1. For any p in P we define the corresponding function p’} on
Tx X to R+ by the formula:

PNt x) = sup infp(f (), %), 1eT, xeX.
Ust t'elU

PROPOSITION 1. For every peP, teT and x€ X,
@ p(t.f®) =0,
(i) Pf(lf, x)<p(f @, x),
(iif) p(, x) = infsupp(f (t,), x), where the infimum is taken over all nets {1,}

in T converging to L.

Proof. (i) and (ii). For any U= ¢ take ¢/ = &

(iii) Suppose that Ut and telimz,. There exists a f,eU, so that
Cinf p(f (), ¥)<p(f (to), ¥)<sup p(f (¢,),x). This implies the inequality <.
teU 0

If p%(t, x)<r, then, as easily seen, there is a net {t,} converging to ¢ with.
sup p(f(t,), x)<r. This yields the converse inequality.

Part (iii) of Proposition 1 was pointed out by Professor C. Ryll Nardzewski
DEFINITION 2. Given p € P, define the function f, on T to R* by

f(e) = infsup p(f (), f(D), 1teT.
Usat t'eU
The function f is p-continuous at a point t if and only if f,(f) = 0.
PROPOSITION 2. For every peP, teT and x€ X,
P(f @), X)<pFt, D +1,0).
Hence, if f is continuous at t, then
¥t x) =p(f(®),x) for allpeP and xeX.
Proof. The triéngle inequality implies
p(f (@), x)<p(f("), x)+su% p(F ), @)
t'e

Hence

for any Ust and t"eT.

p(f (. x)<inf p(£ (), x)+5up p(F )./ (1))
Now we get

p(F @, x)<pj(t, ) +sup p(£ ),/ 0)

for any Uat.

for any Us1t,

which in turn implies the asserted inequality.
PROPOSITION 3. For any pe P, teT and x,ye€ X,
() P}, )<pft, ) +p(x, 3),

@) |p f(t X)—p f(t, NI<p(x,y); the function _pf is uniformly contmuous in the
second variable.
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Proof. (i) The triangle inequality yields
Jnf p(f (), )<p(f ), 3)+p(x, »)

for any Ust and ¢ eT.

Hence

riggp(f (), X)<p{(t, »)+p(x,y) for any Ust,

which gives the desired inequality.
Part (ii) follows immediately from (i).
PROPOSITION 4. For any p in P, the function P 7 is lower semicontinuous.
Proof. Let p f(t X)>r; we must prove that there are U3 fand ¥'2 x such that
(t’ x)>r for all ¥ € U and x' e Y. Let p}(t, x)>r'>r. By Definition 1, there is
a Ust such that p(f(#), x)>r' for all #'e U. The same argument shows that

P, x)=r" for ' € U. By Proposition 3, for any’eUand x' € ¥ = S(x,p, 7 —r)
(the sphere of p-radius r'—r about x),

PR, X2 PN ) —p (e, X)>F —( =1 = 1.
Let G(f) denote the graph of f; G(f) = {(r,f(8)): teT}.
PROPOSITION 5. 4 point (¢, x) is in G( f) if and only if for every p € P the func-
tion pf sarisfies pf(t, x) =0.

Proof. Since P is directed by <, every open set Y3 x contains an open sphere
S(x, p,r), where p e P and r>0. Hence, the point (¢, x) is in the closure of G(f)
if and only if

YV vV V 1 p(f(t’) x)<r
PeEP r>0 Ust t'elU
if and only if
Y VY pitx)<r.

peP r>0

DermviTioN 3. Let teT. The graph of f is closed at t if, for any xe X,
(¢, x) e G(f) implies (2, x) € G(f).

If f is continuous at #, then the graph of f is closed at .

Examrre 1. Let T, X and f be such that GW: T'x X. The graph of fis not
closed at any point ¢ of 7" (unless X is one-point). By Proposition 5, p§ = 0 for all p
in P. This shows, in particular, that the continuity of all the functions p’,‘ does not
imply the continuity of f.

From Proposition 5 we get

ProPOSITION 6. Let teT. Then

(i) The graph of f is closed at t if and only if for any x € X, Pi(t, %) = 0 for
all peP implies x = f(2). '

(i) If pJ(t, x) = p(f(£), x) for all p € P and x € X, then the graph of f is closed

at .
2%
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ExaMPLE 2. Let T = X = R, f(f) = 1/t for t # 0 and f(0) = 0. Let p be the
Euclidean metric for R, and P = {p}. Notice that pji(z,x) = p(f(?), x) for all
t, x € R. Nevertheless, f is not continudus at 0.

3. Functions p,. Given p € P, put pf (u, v) =p(flu), f) for u,ve {T; pfis a
pseudo-metric for T. The function fis continuous at a point #if and on'ly if for every
p in P the corresponding pseudo-metric pf. is continuous (jointly or in one of two
variables) at the point (¢, £). Now let us define functions which are the central
object of our interest. : .

DerINITION 4. For every p e P we define the corresponding function p, on
TxT to R by the formula

ppu,v) = Is}l.:lz“i'ril;ly"(u’, v),u,vel.
Evidently, p(u, v) = Pu, f(v) for all u, ve T. Let us list some propertie’s of t];e
functions p, which follow from the corresponding properties of the functions py.

THEOREM 1. For every peP and u,veT,

@ pylu,u) =0; if p(u,v) = 0 for all p in P and the graph of f is closed at u,
then f(u) = f (),
(i) p,(u, v) = inf{sup pf (u,, v): welimu,},

() po(u, v)<pf(u, 0)<pu, v)+f(W); if f is continuous at u, t{ su, v)
= pf(u,v) for all ve T (not conversely), :

(iV) ]pf(ts u) _pf(t¢ U)l <pf(u: U), .

() the fumciion p; is lower semicontinuous in the first variable.

Proof. Part (i) follows from Proposition 1(i) and Proposition 6(i); part (ii) from
Proposition 1(iii); part (iii) from Proposition 1(ii), Proposition 2 and Example 2;
part (iv) from Proposition 3(ii); and, finally, part (v) from Proposition 4.

Theorem 1(jii) shows that, if fis continuous, then p, = pf, and so p, is a pseudo-
metric for T (p €P). In genera], the functions p, need not be even symmetric.

ExaMpLE 3. Let T, X, p and P be as in Example 2. Put f(¢) = 0 for t % 0 and .

f(0) = 1. Then pg0, ) =0 for all ze R, but p,(r,0) = 1 for all £ 0.

However, it appears that if a function p is symmetric, then the triangle inequality
is automatically satisfied. )

THEOREM 2. Let D € P. If the function p is symmetric, then p; is a pseudometric.

Proof. Let t,u,veT and r>pg(u,v); it is sufficient to prove that p(u, 2)
<p,(t, v)+r. Choose any U 2 u. By Definition 4, there is a «' € U with pf (', v)<r.
By the symmetry assumption, Theorem 1(iv) and the choice of «/,

o P D) =t u)<ps(e, 0)+pf W, ) <py(t, ) +r .
By Definition 4 again, there exists a '’ € U such that
B, )<py(t,v)+r.

Since U containing u was arbitrary, this yields the desired inequality.
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Let us recall the definitions of nearly-openness and nearly-continuity, which are
convenient in the field of closed graph and open mapping theorems (cf. Kelley & Na-
mioka [4] or Schaefer [8]). A subset of a topological space is called nearly open if
it is in the interior of its closure; a function fis called nearly continuous (resp.;
nearly open) if the counter image (resp.; image) of any open set is nearly open.
Ptdk [6] introduced the following “localized” definition of nearly-continuity,

DEepINITION 5. Let e T The function f is nearly continuous at t if for every
open neighborhood ¥ of f(2), ¢ is in the interior of the closure of f~i(¥).

Clearly, f'is neatly continuous if and only if fis nearly continuous at every point,

DEFINITION 6. Let & 7. A function g on TxT to R is continuous in the first
(resp.; second) variable at (1, f) if the function g(-» ) (resp.; g(t,")) on T to R is
continuous at ¢,

The next two definitions concern the case where T'is a2 Tychonoff space and % is
a uniformity (with symmetric members) for T. Here, S(z, U) denotes the sphere
of the radius U about #; S(t, U) {ueT: (1, u)e U}. % denotes the uniformity
for X generated by P.

DEFINITION 7. The function f is uniformly nearly continuous if

V 3 3800 S(F @, Y)).
Ye¥ Ued teT
DeriviTION 8. A function gon I'xT'to R is uniformly continuous at the points
of the diagonal 4(T) if
v 3V Vv

lg(t, —g(u, v)|<e.
8>0 Ued teT wuwesS(t,U)

Evidently, the continuity of 1 (or uniform nearly-continuity of f) implies nearly-
continuity of f; uniform continuity of ¢ at.the points of 4(T) implies continuity
of g at the points of 4(T). There is a strict connection between the nearly-continuity
of f and the continuity of the corresponding functions p > described by the following

THEOREM 3. (i) Let t € T. The function f is nearly continuous at t if and only if for
every p € P the function p, is continvous in the first variable at the point (¢, ¥).

(i) Let T be a Tychonoff space and U a uniformity for T. The function fis uniformly
nearly continuous if and only if for every p € P the function p ¢ IS uniformly continuous
at the points of the diagonal A(T).

Proof. (i) The following successive conditions are equivalent:

S is nearly continuous at z;

YV ielntf~{s(f (), p, 9));

peP g>0

YV 3V y ,Elv,p(f(u’),f(t))<e;
VYV 3V pudh<s

peP s3>0 Uat nalU U'gn o
peP >0 Usnt ual

\4 Py is continuous in the first variable at (z, £).
pel .
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(ii) The following successive conditions are equivalent:
f is uniformly nearly continuous;

v Vv 3 vTS(r,U)cf‘l(S(f(z),p,s));

peP >0 Ue¥ te .
VvV 3'V V¥V Vv 3 vefs(f®,p:e);

peP >0 Ue% ueT veSU) Usv v'el’

VV 3 V plu,v<e
peP 2>0 Ue¥ (:‘4,,:)5:;]
VV 3V V plud<e(take VoVcU);

peP £>0 Ve# teT uveStV) )

V p; is uniformly continuous at the points of A(T).

peP

The property dual to that appearing in Theorem 3(i) — concerning the con-
tinuity in the second variable of the functions py — depends on the uniformity &
generated by the family P. ’

PROPOSITION 7. Let t € T. The function f has the property that for every p in P the
corresponding function p is continuous in the second variable at the point (¢, 9 if and
only if for every Ye®, t is in the interior of the set {ueT: tef~YS(fw), Y))}

The proof is similar to that of Theorem 3(i).

4. Closed graph theorems. A topological space T is called (Kelley [3T) metrically
topologically complete if there is a complete metric for T' generating the given
topology.

TrrEOREM 4 (cf. [9], [5] and [1]). Let (X, p) be ¢ complete metric space. Suppose
that at least one of the following three conditions is satisfied:

(a) T is metrically topologically complete,

(b) the graph of f is metrically topologically complete in its relative product
topology, )

(c) the counter image of any compact set is compact.

Then the following three conditions are equivalent:

(i) f is continuous, . ‘
(ii) the graph of f is closed and f is nearly continuous,

(iii) the graph of f is closed and the function p is continuous in the first variable
at every point of the diagonal A(T).

Proof. (i)<>(ii) Parts () and (b) are due to Weston [9] and Pettis [5]; in this
form they are given in [5] — the proof is based on a very interesting result of [9].
Part (c) is a special case of the recent result of Byczkowski and Pol [1], which asserts
the same for any space X topologically complete (in the sense. of Cech).

(ii)<>(iii) follows from Theorem 3(i).

Our central result, Theorem 5, shows that the dual statement — concerning the
continuity in the second variable of the function p, — is also true. It is worth noting
that Theorem 4 cannot be “localized” — the assumptions at a single point are not

icm

On closed graph theorems in topological spaces and groups 91

sufficient for the implications (il)=(i) or (iii)=(i). Let us also emphasize that in
Theorem 5 we need no assumptions like (a), (b) or (c) of Theorem 4; in particular.
T is an arbitrary topological space. |

THEOREM 5. Let (X, p) be a complete metric space. Let te T, The Junction f is
continuous at t if and only if the graph of f is closed at t and the function Dy is continuous
in the second variable at the point (2, 1).

During our participation in the Fourth Prague Topological Symposium we
became acquainted with the nondiscrete induction theorem due to Professor
V. Pték [7]. Let us formulate, as a lemma, a special case of that useful result, which
enables us to simplify our original proof of Theorem 5. Here, for any A< X and
r>0, §(4,r) denotes the open sphere of p-radius » about 4.

Lemma (cf. [7)). Let (X, p) be a complete metric space. Let Z (r), re(0, 1), be
closed subsets of X such that Z(r)cZ(r') for r<r'. Let Z(0) denote the intersection
of dll Z(»), re(0,1). If

Z(M<=S8(Z(r/2),r)  for each re(0,1),
then :
Z(N<=S(Z(0),2r)  for each re(0, 1).

Proof ([7]). Let x € Z(r). Since x € S(Z(+/2), r), there is an x, € Z(r/2) with
p(x, x;)<r. Since x; € S(Z(r/4), r/2), there is an x, € Z(r/4) with p(x,, x,)<r/2.
Since x, € S(Z(/8), r/4), there is an x; e Z(r/8) with Pp(x;, x3)<r/4. Continuing
this process, we obtain a p-Cauchy sequence {x,}; let y = lim x,. {Z(r/2")} is

n-roo

a decreasing sequence of closed sets and x, € Z(r/2"*1), so that y is in O(%Z(r/Z")
= Z(0). Now "
P, D)Spx, x0)+p (g, x)+p (%2, X3) +...<2r

Hence x is in S(Z(0), 2r).

Proof of Theorem 5. Put Z(r) = {x e X: p¥(t, x)<r/2} for re(0, 1). Pro-
position 3(ii) (or 4) implies that each Z(r) is closed. Since Z(0) = {x: p}f(t, x) = 0}
and the graph of f is closed at #, Proposition 6(i) shows that Z(0) = {f(5}. The
function p, is assumed to be continuous in the second variable at (¢, £), so that for
each re(0,1) there is an open U,ez such that for any ue U, p}‘(t, S @)
= p(t, w)y<r/2. Thus f(U)=Z(r) for each r. Given x € Z(r), we have p}(, x)<r,
and so, by the definition of p , there exists a t' € Uy, =f ~X(Z(r/2)) with p (£ (+)), ) <r;
x is in 8(Z(r/2), r). We may apply the lemma, which yields

SU)=ZBH<=S(f(),2r) for each re(0,1).

This proves the continuity of f at £

We do not know if the induction theorem can also be applied to obtain a simple
proof of Theorem 4.
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TaEOREM 6. Let T be a Tychonoff space and U a uniformity for T. Let (X, p)

be a complete metric space. The following three conditions are equivalent;
@) f is uniformly continuous;

(i) the graph of f is closed and f is uniformly nearly continuous;

(i) the graph of f is closed and the function p; is uniformly continuous at the
points of the diagonal A(T).

Proof. The equivalence of (ii) and (iif) is an immediate consequence of
Theorem 3.

(i)=(iii) follows from Theorem 1 (iii).

(iify=>() Since p, is uniformly continuous at the points of A(T), for each
r€(0,1) there is an open U"e% such that for any te T and ue U, = S(¢, U"),
Pz, wy<r/2. In consequence, the proof of Theorem 5 yields the uniform ‘conti-
nuity of f. )

In case T"is a metrizable space, Theorem 6 follows from the closed graph theorem
-of Pték [7] (the last result concerns more general objects than functions, namely
- relations). )

5. Some generalizations. Let us introduce, for brevity, the following

DEerFINITION 9. Let e T. The graph of f is p-complete at t (where p € P) if,
for any net {t,} convergent to ¢ and such that {f(s,)} is a p-Cauchy net,
lim pf(t,, ©) = 0. The graph of f'is P-complete at r if the above holds for every pseudo-

metric p in P, and P-complete if it is P-complete at any point of T.

If the graph of fis P-complete at #, then it is closed at z. The equivalence holds
provided that (X, p) is a complete metric space and P = {p}. The word “complete”
cannot be omitted:

PROPOSITION 8. Let (X, p) be a metric space. Suppose that, for any metrizable
space T, the graph of any function f: T— X is p-complete whenever it is closed. Then X is
complete.

Proof. Let X denote the completion of X; assume, to get a contradiction, that
there is a point x, in X\X. Consider the set T = X U {x,} with the metrizable
relative topology. Put f(x) = x for x e X and f(x,) = x; € X. The graph of the
function f on T to X is closed, but is not p-complete at x, € 7.

We omit the easy proof of the following

PROPOSITION 9. Fix p € P. Let (X, B) denote the completion of the quotient metric

space associated with (X, p). For any teT let f(i) be the equivalence class of £ (1)
in X; f is a function on T to X. Then

(i) the graph of f is closed at a point 1 if and only if the graph of f is p-complete
at t,

(i) pf = pf and py = p;.
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The next three theorems are direct consequences of Theorems 4, 5, 6 (respect-

ively) %nd of Proposition 9 (for any p P, we apply those theorems to the function
f:T-X as in Proposition 9).

TaEOREM 7. Let T be a metrically topologically complete space. The following three
conditions are equivalent:
(i) f is continuous;
(i) the graph of f is P-complete and f is nearly continuous;
(iii) the graph of f is P-complete and for every p € P the Junction p, is continuous
in the first variable at any point of the diagonal A(T).

THEOREM 8. Let te T. The function f is continuous at t if and only if the graph
of fis P~complete at t and for every p e P the function p ¢ is continuous in the second
variable at the point (¢, f).

THEOREM 9. Let T be a Tychonoff space and U a uniformity for T. The following
three conditions are equivalent: .

@) f is uniformly continuous; .

(ii) the graph of f is P-complete and f is uniformly nearly continuous;

(ili) the graph of f is P-complete and for every p & P the function p 1S uniformly
continuous at the points of the diagonal A(T).

6. Case of topological groups. In this section T and X are Hausdorff topological
groups, the members of P are left-invariant, and f is a homomorphism.

THEOREM 10. For every pe P the function Dy is a left-invariant pseudo-metric
Sor T and

pylu, v) = sup inf pf (W, o)
Usu v'el
Vav veV

for all u,veT.

Proof. Let g denote the function on T'x T'to R* defined by the right side of the
asserted equality. For any Uswu and ¥V'3v we have

Py, O)inf pf (4, v) .
wel
veV
This yields the inequality p,2g. To prove the converse one, take any open set U

containing . Choose U’ au and V' 2 v so that V/V'~*U’'cU. Given o' € U’ and
eV, put w =uw ;U eV'V' U U and

I, v) = p(f ) f @) f W), f®) = pf W, v).
Hence
inf pf (', V)< inf pf (W', v)<g(u, v),
v

v'el we
v'eV’
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which implies the inequality p,<g. Since the function g is symmetric, so is p,.
By Theorem 3, p, is a pseudo-metric. Finally, p, is left-invariant:
sup inf pf (', ) = sup inf pf (', )
Ustu w'elU U'sy t~lu'eU’

sup inf pf (', tv)

U'su w'el”

sup inf pf(u",v) = pylu,v).

U'su u”el’

]

pyltu, tv)

1l

COROLLARY. The following four conditions dre equivalent:

@) f is nearly continuous at the identity e;

(i) for every p € P the function p, is continuous in the first (or second) variable

- at the point (e, e);

(iii) f is uniformly nearly continuous;

(iv) for every p e P the function p, is uniformly continuous at the points of the
diagonal A(T). ‘ ’

Now, taking into account Corollary, let us see what results from Theorems 4
and 5. Theorem 5 provides more information:

TreoreM 11 (Kelley {3], Problem R on p. 213). Let X be a metrizable topological
group which is complete relative to its left uniformity. The homomorphism f is con-
tinuous if and only if the graph of f is closed and f is nearly continuous.

Similarly, Theorem 8 gives a more accurate result than Theorem 7:

THEOREM 12. The homomorphism f is continuous if and only if the graph of f is
P-complete and f is nearly continuous.

Finally, let us recall some assumptions under which the homomorphism f is
automatically nearly continuous:

(1) T is of the second category and X has the Lindeldf covering property
(cf. Kelley [3], Problem R on p. 213),

(2) T'is of the second category and f'(T') is separable (cf. Weston [9], Theorem 3
on p. 345).

(3) Tis of the second category and T and X are linear topological spaces over
the field of rationals (cf. ibidem),

(4 T and X are locally convex spaces, T is barrelled and f is linear (cf.
Kelley & Namioka [4], Problem E on p. 106).
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