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Abstract. Suppose that T is a tree with exactly k end points and there is no element in the
group G of permutations on k elements with order 7. We show that if the 7-like continuum admits
a period n homeomorphism then it contains an indecomposable continuum, We give a construction
for a period 27 homeomorphism for each positive integer 7 so that there is an element in G of order i.

1. The results in this paper stem from our attempt to answer the following
question: Does there exist an arc-like continuum which admits a period » homeo-
morphism? The answer is affirmative in case n = 2 or n = 4 and remains unknown
otherwise [1] (*). We prove a general result about 7 ~like continua which implies as
a special case that any arc-like continuum which admits a period » homeomorphism
n>2 has to contain an indecomposable continuum. For definitions see 3]

" Throughout this paper the term continuum is used to mean a compact connected
metric space. A mongtone decomposition of a continuum M is an upper semi-
continuous decomposition of M into continua. If M is a continuum and G is an
upper semi-continuous decomposition of M then G*/G denotes the decomposition
space. For theorems concerning upper semi-continuous decompositions the reader
should consult [4]. A tree is a locally connected continuum irreducible about a finite
set of points.

DEENITION. If M is a continuum, f is a homeomorphism of M onto itself,
and n is an integer greater than 1; then fis a period n homeomorphism means that n is
the smallest integer & such that f* is the identity.

DEFINITION. Suppose that M is a continuum and G is a monotone decompo-
sition of M. Then G is said to be a minimal monotone decomposition of M into a tree
if it is true that G*/G is a tree and if J is a monotone decomposition of M so that

J*/T is a tree then every element of .G is a subset of some element of J.

The following theorems are used in this paper; Theorems A and B are well
known, Theorem C is due to Mary Russell [5].

(*) Wayne Lewis has recently shown [Notices AMS, V. 26, No. 1 (Jan 1979), p. A124]
that for each prime p the pseudoarc admits a period p homeomorphism.
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THEOREM A.. If I is a tree then I has the fixed padint properry.

THEOREM B. If M is a continuum, G is an upper semi-continuous decomposition
of M and h is a homeomorphism of M onto itself then H = {h(g)} g € G} is an upper
semi-continuous decomposition of M.

TueoreM C. If T is a tree irreducible about k end points and M is a hereditarily
decomposable T-like continuum then there exists a minimal monotone decomposition G
of M into a tree so that G*|G is a tree irreducible about k or fewer end points.

II.

LemMA 1. Suppose M is a continuum, G is a minimal monotone decomposition
of M into a tree and h is a homeomorphism of M onto itself. Then if ge G
h(g) = {h(x)| x € g} is an element of G and h induces a homeomorphism h* of G*|G
onto itself where h*(g) = {h(x)| x € g} for each ge G. :

Proof. The collection H = {h(g)| g e G} is a monotone dccomposmon of M.
Further the decomposition space H*/H is a tree because (1)if g is not an end element
of G then h(g) separates H*/H and (2) H*/H is arcwise connected. Let ¢ & ¢ and
let I be an element of G which intersects h(g). Since G is minimal IS/ (g). Now A™*
is also a homeomorphism, so the collection ™! = {h"*(g)| g € G} is also a monot-
one decomposition of M into a tree. But ISk (g) so ™ *(I) S g; and since G is minimal
and A7*(I) is an element of H™* intersecting g then g< A~ (7). Thus g = A~ (I}
and so A(g) = I. So for each ge G, h(g) is an element of G. Similarly for each
g € G, h™!(g) is an element of G. Thus /* is 1-1, the continuity of &* follows from the
continuity of k. Therefore h* is a homeomorphism of G*/G onto itself.

Lemma 2 (Hamilton). Suppose that T is a tree irreducible about k end points,
M is a hereditarily decomposable T-like continuum, and h is a homeomorphism of M onto
itself. Then M has a fixed point.

" Proof. Let G be the collection to which the subcontintum I of M belongs if
and only if 2(Z) == I. Let J be a maximal monotonic subcollection of G and let
L =(1{jljeJ}. Then k(L) = L. Suppose that I is non-degenerate. Thus by
Corollaries 2.5 and 3.1 of [5] there exists a minimal monotonic decomposition W of L
into a tree. From Theorem A and Lemma 1 it follows that there is an clement g ¢ W
so that /i*(g) = g. ButthengyeJand gisa proper subset of L which is a contmdxu-
tion. Thus the lemma is proven.

DEFINITION, If k is a positive integer, then p(k) denotes the set to which i belongs
- if and only if 7 is an integer greater than one and the symmetric group of permuta-
tions on k& objects contains an element of order i. .

The following two lemmas follow easily from propertics of trees and homeo-
morphisms of trees.

Lemma 3. If I is an arc with end points p and g, and h is a period n lzomeomorphwm
on I, then n = 2, h(p) = q and h(g) =

-LEMMA 4. If T is a tree with exactly k end poiﬂ 18 and b is a period n Iwmeomo;phism
on T, then nep(k).
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THEOREM. Suppose that T'is a tree irreducible about k end points, M is a T-like
contimuum, n is an integer greater than 1 which is not in p(k), and h is a period n homeo-
morphism on M. Then M contains an indecomposable continuum.

Proof. Suppose that » is an integer greater than 1, n ¢ p(k), M is hereditarily
decomposable, and /1 is a period » homeomorphism on M. Let G be a minimal
monotone decomposition of M into a tree (Theorem C). Then by Lemma I 4 induces
a homeomorphism /* of G*/G onto itself. Now A" is the identity so A*(g) = g
for all g € G. But by Lemma 4 A* cannot be a period n homeomorphism. So there
exists an integer ¢ in p (k) which divides 1 such that /4* is a period 1 homeomorphism.
Therefore if g € G, H'(g) = g.1f g € G then by Lemma 2 there is a fixed point p,in g of
the homeomorphism 4'. Let W = {p| K (p) = p}, then W is closed. The set W cannot
be connected for if it were it would be a subcontinuum of M which intersects each
of the end continua of G and hence must be M. But if W = M then A’ is the identity
which is a contradiction.

Thus W is the union of two mutually exclusive closed point sets H and K. There
exists a subcontinuum 7 of M which is irreducible from H to K. Let Pe H n I and
QeKn I Now k(I) is a subcontinuum of M irreducible from A(P) to A'(Q),
B(P) =P and Q) = Q; so by unicoherence h*(I) = I. Let J be the minimal
monotone decomposition of / into an arc. Since 4 is a period n/t homeomorphism
then (h*)* is either the identity or it is a period » homeomorphism for some integer
r<nft. If E, and Ej are the end continua of J containing P and Q respectively then
(')*(Ep) = Ep and (h')*(Ep) = E,. So by Lemma 3 (4%)* is the identity. Thus
(h")*(g) = g for all g eJ. But then if g € J there is a fixed point P, of A* which lies
in g. So W intersects each element of J which contradicts the definition of I. Thus
the theorem is proven. :

II. Note that for the case of the arc we have k = 2, p(2) = {2} and thus if
n>2 and M is an arc-like continuum which admits a period n homeomorphism,
then M contains an indecomposable continuum. It should also be observed that
for each k=2, {2,3,..,k}cptk)cp(k+1) but also 6ep(5) and 30ep(10).

Using and extending the construction method used in [1], we obtain a class of
examples described in the following:

THEOREM. If k=2 and iep(k), then there exists a k-od like continuum which
admits a period 2i homeomorphism.”

Proof. Let M be the continuum constructed by joining a collection G of K
pseudoarcs at a common point 0. That is, the intersection of any two elements of G is
the intersection of all of the clements of G and is {0}. Since the pseudoarc is homo-
geneous, cach element g € G is chainable between 0 and some other point of g. Any
finite open cover of M can be refined by another open cover the nerve of which is
a k-od. Therefore M is k-od like.

If i € p(k) then there exists an order / permutation ¢ on k objects. The permu-
tation ¢ can be expressed as the product of disjoint cycles and i is the least common
multipie of the orders of the disjoint cycles. Let A4 denote a pseudoarc and choose
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a point a e A. For each g € G, let &, denote a homeomorphism of 4 onto g which
takes a to 0. Assume that ¢ permutes the elements of G and defines the homeomor-
phism ¢ induced by ¢ by '(b(x) = fiyghy (%) for all xe g and geG.

The homecmorphitm ¢ is pericd i. We will now define a period 2 homeomor-
phism r on M and the product ¢ will be the desired period 2/ homeomorphism,
From each cycle ¢ of ¢ choose an element g., of G which is operated on by c.
There may be only one cycle. On cach of the elements g,, » is a period two
homeomorphism which fixes only the point 0. On cach other element of G, r is
the identity.

" Now consider ¢r. If ¢ is a cycle of order j and x & g,, then (¢r)(x) = ¢r(x)

= r(x) and (pry*(x) = r¥(x) = x. The period of @r must therefore be an even
multiple of the order of each cycle of ¢, The smallest such integer is 2/. This completes
the proof.

References

[1] B. L. Brechner, Periadic homeomorphisms on chainable continua, Fund, Math. 64 (1969),
pp. 197-202.

[2] O.H. Hamilton, Fixed points under transformations of continua which are not connected im
kleinen, Trans. Amer. Math. Soc. 44 (1938), pp. 18-24.

[3] S.Marde§i¢ and J. Segal, ¢~ mappings onto polyhedra, Trans. Amer, Math, Soc, 109 (1963),
pp. 146-164.

[41 R. L. Mooxe, Foundations of point set theory, Amer. Math. Soc. Collog. Pub, X111, Revised
edition, Providence, R. I., 1962.

{51 M.J. Russell, melane decompositions of comtinua irveducible abour a finite set, Fund,
Math. 72 (1971), pp. 255-264.

Accepté par la Rédaction le 15. 11, 1976

icm

Eigentlich operierende Gruppen von Isometrien

by

P. Strantzalos (Athen)

Abstract. It is known that the group I(X) of isometries of a locally compact, connected, metric
space X is a locally compact (topological) group (Theorem of van Dantzig-van der Waerden) and
that the action (I(X), X} is proper. Both properties hold true also if X has a finite number of
(connected) components, but neither of them remains still true, in general, if X has infinitely many
components.

In this paper a necessary and sufficient condition is given in order to answer the question, when
a subgroup of I(X) is a locally compact group, which acts properly on X, allthough X may have
infinitely many components. In the proof of the corresponding result is the Theorem of
van Dantzig-van der Waerden not used, so that the main result is a sirict generalization of this

theorem.

As a corollary is shown, that the aforementioned two properues of I(X) are valid, if the space
Z(X) of the components of X is compact; this assertion does not hold (in general) in the absence of
the compactness of Z(X). Further, it is indicated how the theories of non-compact proper actions
on connected spaces and on spaces with infinitely many components are related.

Einleitung. Fragen iiber Gruppen von Isometrien lokal-kompakter, metrischer
Réume stehen in unmittelbarem Zusammenhang mit der Untersuchung der eigent-
lichen Transformationsgruppen [16; Kor. 5.2]. Es ist bekannt, daB die Gruppe der
Isometrien eines derartigen Raumes mit endlich vielen Zusammenhangskomponenten
cine lokal-kompakte (topologische) Gruppe ist, die eigentlich auf -diesem Raum
operiert [15; Lemma 2]. Durch Beispiele wird gezeigt, daB (im allgemeinen) weder
die Gruppe der Isometrien lokal-kompakt ist (vgl. 2.1) noch die lokal-kompakten
Untergruppen davon eigentlich auf dem Raum operieren, wenn dieser Raum unend-
Jich viele Zusammenhangskomponenten hat (vgl. 2.2). Die daraus resultierende
Frage nach der Untergruppen der Gruppe der Isometiien eines derartigen Raumes,
die cigentlich auf diesem Raum operieren (und damit notwendigerweise lokal-
-kompakt nach 1.3 sind), wird durch eine notwendige und hinreichende Bedingung
beantwortet (vgl. 2.4). Folgerung des entsprechenden Satzes, die den Satz von van
Dantzig~van der Waerden (echt) verallgemeinert, ist die nachfolgende Aussage:

1. Sei X ein lokal-kompalkter, metrischer Raum mit kompaktem Raum von
Zusammenhangskomponenten Z(X); dann ist die Gruppe der Isometrien 1(X) von X
eine lokal-kompakte topologische Gruppe, die eigentlich auf X operiert (vgl. 2.5); das
gilt im allgemeinen nicht mehr, wenn Z(X) nicht kompakt ist.
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