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Metamathematical discussion of some affine geometries
by

L. W. Szczerba (Warszawa) and A. Tarski (Berkeley, Cal.)

Abstract. If in the usual axiom system of elementary Euclidean geometry we omit Euclid’s
axiom, we obtain the elementary absolute geometry, If we apply the sams procedure to an elemen-
tary affine geometry we shall arrive at a much more general geometry (called the elementary general
affine geometry). This geometry exhibits a great variety of models. Metamathematical properties of
elementary general affine geometry, and some its extensions, are studied.
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This paper contains a full exposition of joint results of the two authors presented
by Tarski at the International Congress for Logic, Methodology and Philosophy of
Science (Jerusalem 1964), and subsequently announced in print in Szczerba and
Tarski [13]. Xt is closely related to two earlier publications, Tarski [16] and Szmie-
lew [14]. In those articles certain geometrical theories are described and some of
their basic metamathematical properties are established.

The main subject of Tarski [16] is elementary n-dimensional metric Euclidean
geometry E,, where n is an arbitrary integer >2. In Szmielew [14] two related theories
are discussed, the elementary n-dimensional metric hyperbolic geometry H,, known
also as Bolyai~Lobdacevskian geometry, and the elementary n-dimensional metric
absolute geometry A,. When referring to these theories we shall usually omit the
words “elementary” and “metric”.’ The geometties E,, H,, A,, and indeed any
clementary metric geometries are treated as theories formalized within first order
predicate logic with just two non-logical constants (primitive notions): the ternary
predicate Bdenoting the betweenness relation between three points, and the quatern-
ary relation D denoting the equidistance relation between two pairs of points.

Axioms for E, are obtained by modifying an axiom system which provides an
adeq nate basis for the ordinary (non-elementary) - dimensional Euclidean geometry
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156 L. W. Szczerba and A. Tarski

The modification consists in replacing the continuity axiom (which, as is well-known,
cannot be expressed in first-order logic) by an infinite collection of axioms falling
under the so-called continuity schema — loosely speaking, by all the first-order
instances of the continuity axiom. The method of obtaining an axiomatization for H,
could be described analogously by referring to the ordinary hyperbolic geometry.
We can say more simply, however, that an axiom system for H, is obtained from
that of E, by replacing Euclid’s axiom by its negation.

If Euclid’s axiom is omitted altogether, we arrive at the axiom system of A,.
The main results established in Szmielew [14] and Tarski [16] for these theories are
the following: the class of all models of each theory is characterized in algebraic
terms; E, and H, are shown to be complete and consistent, while A, proves to be

incomplete, and indeed to have just two complete and consistent extensions, E,

and H,; each of the theories discussed is decidable, and none of them is finitely”

axiomatizable. .

In this paper we discuss analogous problems concerning certain affine geometres
closely related to E,, H,, and A,. Just as in Szmielew [14] and Tarski [16], the
detailed discussion will be restricted to the case n = 2. In the last section we shall
indicate how our result can be extended to higher dimensions.

With any metric geometry G formalized in the manner previously indicated we
associate the affine geometry AG determined by the following stipulations: the
language of AG is obtained from that of G by eliminating the symbol D, so that B
remains as the only non-logical constant; a sentence in the language of AG is
a theorem of AG iff it is a theorem of G. This approach to affine geometry is known
from the literature; see e.g. Whitehead [19] (where the term “descriptive” instead
of “affine” is used). It is essentially equivalent to the more familiar approach that
consists in constructing affine geometry as projective geometry in which a certain
line, the line “at infinity”, has been singled out.

We shall be interested in particular in the affine geometries AE,, AH,, and AA,.
The way in which these theories have been defined does not yield directly suitable
axiom systems for them. In the case of AE,, however, we easily obtain an adequate
axiomatization by proceding exactly as in the metric case, i.e., by replacing, in
a suitable axiom system of non-elementary affine geometry, the axiom of continuity
by the set of all its first-order instances. To obtain an axiomatization for AH,
and AR, we could try to follow the simple procedure applied in the metric case,
namely to modify the axiom system for AE, by negating Euclid’s axiom or by
omitting this axiom altogether. It turns out, however, that this method fails,
at least when applied to the special axiom system for AE, which will be adopted
in the present paper. Axiomatic theories obtained by this method prove to be proper
subtheories of AH, and AA,. Nevertheless, these theories deserve interest in their
own right; this applies especially to the theory obtained by deleting Euclid’s axiom
from the axiom system of AA,. The resulting theory, which will be referred to as
general affine geometry with continuity schema, or simply general affine geometry,
and denoted by GA,, distinguishes itself by the simple form and clear mathematical
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content of its axicms and by a great variety of interesting extensions. The study of
metamathemmatical properties of GA, and its extensions is the main topic of this .
paper.

Since the first report on the results presented in this paper there have been some
new developments in the metamathematical study of affine geometries which will
be referred to and partially applied in the subsequent discussion. In particular,
Szezerba has studied the models of a theory which is more general (and hence weaker)
than GA, and which should properly be called general affine geometry without
continuity schema. The main results of his study have been embodied in his doctoral
dissertation Szczerba [9], and reported (with short outlines of proofs) in Szczerba [11].
In this connection we have noticed that it is possible to simplify and shorten a part
of our paper (namely, the part devoted to the discussion of the representation problem
for GA, in Sections 2 and 3) if we disregard our original proofs, and use instead,
as far as it is feasible, the results of Szczerba. We have indeed decided to follow this.
way (realizing that as a consequence our present paper will not be self-contained).
Although the development in Szezerba [9] is much more detailed than in Szczerba [1 1],
we shall refer mainly to the latter paper, since it is more accessible to the reader.

We take this opportunity to express our sincere gratitude to Dr. Steven Givant

_ for his help in preparing this paper for publication.

§ 1. Preliminaries. Definition of general affine geometry GA,. In logical and
metamathematical notation we shall adhere, in general, to Henkin-Monk-Tarski [1]
introducing, however, a few changes. All the expressions written in logical symbols,
are treated not as expressions of a formal language but as metamathematical de-
signations of such expressions. As the symbols of quantifiers we shall use V and 3.
The set of formulas expressed in terms of the ternary relation B will be denoted
by L(B); similarly the set of all formulas expressed in terms of the constants 0, 1,
the operations +, -, and relation < will be denoted by L 0,1, +,,<)®.

We shall consistently employ bold italics (and other bold types) as meta-
mathematical constants to denote variables, individual constants, predicates, and
operation symbols occurring in a formal theory. In particular we assume that all \
the variables occurring in a formal language have been arranged in an infinite
sequence (without repetitions) <v, ..., v,, ...>. To simplify a little the notation we
introduce the abbreviations a = vy, b = vy, and so on (till the end of the alphabet).
Similarly @' = vy, ... and 4’ = vs,, ... etc. The corresponding lightface types will
be used as variables ranging over elements of relational structures, the relations
between such elements, and operations on such elements. We shall use symbols
Vo, Vy, ... and Vg, Vi, .. as metamathematical variables ranging over variables of
a formal language, and symbols @, ¥, I" and 4 as variables ranging over formulas.
of formal languages.

(*) Symbols +, +, < in L(0, 1, +, -, <) should be printed boldface. Bui for technical
reasons here and below will be printed lightface. We hope. it will create no misunderstanding.
1*
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By a universal formula we mean any formula of the form Vv, ..Vv,o
where n = 0,1,..., and & is a quantifier-free formula. Similarly, by a V3 -formula
we mean any formula of the form

‘ Vv, ... Vv, 3y, ... 3v, o
where 7,m = 0, 1, ... and & is a quantifier-free formula. We say that a theory T is
a V3-theory if there is a set of V3 -sentences S such that T is the set of logical con-
sequences of §; in other words, § is an axiom system of T.

The result of simultaneous substitution of n variables Vi, ..., v/ for n distinct
variables Vg,-.., v, in the formula ¢ will be denoted by

& V? T V,,, )
\ TR/
In some special, frequently occurring cases we introduce simplified notation:

X

instead of ¢ (v ) we shall write ®(v,), instead of @(3 z ) ~— ®(vyVvy), instead
oYy

0
of @ (iozl 51) — D(VoVyV,), .and finally instead of & joil\z’z :”3 simply
D(VoV1Vo¥3). If vy, ..o, vy, (With i<y <...<1i,) is a sequence of all the free variables
of formula &, then by [&], the closure of @, we shall mean the sentence

Vv, .. Vv, &.

Given any formula @ in which no variables different from the pairwise distinct
¥os ..y ¥, occur free, the meaning of the phrase “® is satisfied in ‘the relational
structure A when variables vy, ..., v, are correlated with elements vy, ..., v, of A
respectively”, in symbols : ‘

o - Q[vo v,,]’
Vg v Uy
is assumed to be understood. We also assume that it is known under what conditions
arelational structure 2 is a model of a sentence &, or a set of sentences S, or atheory T
(in symbols: A k &, Ak § and A k T), respectively. Given any relational structure 2,
by the elementary theory of %, in symbols T(20), we understand the set of all sen-

.tences having 2 as a model; the elementary theory T(#2) of a class & of relational
structures is the intersection of all theories T(2) with % e .

The models of the formulas in L(o, 1, +, -, <) are algebraic structures of the
form § = <F,0,1, +, -, <) where 0, and 1 are clements of F, + and - are binary
operations on F, and < is a binary relation on F, We shall refer to such algebraic
structures simply as algebras.

. When speaking of extensions of a theory T formalized in the language of affine
geometry (i.e., T=L(B)) we shall refer exclusively to theories formalized within the
same language. The models of such theories are the relational structures N = {4, B)
where 4 is a non-empty set and B a ternary relation between elements of A, ie.,
a subset of the Cartesian cube 4 x A x A. :

We say that three elements a, b, ¢ are collinear in 9 (in symbols L(abc)) if
B(abc)- or B(bca) or B(cab) holds. By the line passing through elements @ and b we
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mean the set
L(ab) = {c: L(abo)} .
Note that if @ = b then L(ab) = A. We shall also use the notions of closed segment
[a ¢] = {b: B(abc)},
open segment,
(a &) = [a cIN\{a, ¢}
and right-hand open segment,
[ ¢) = [a cN{c} .

DerNiTION 1.1, By general affine two-dimensional geometry with conrir?uz‘iy.
schema, or briefly general affine geometry (in symbols GA,) we mean the (first order)
theory based upon the following axioms A;-Ag, A%Y:

A, = [B(aba) -~ a =b] Identity axiom,

A, = [B(abc) A B(bed)A T1b = ¢~ B(abd)]  Transitivity axiom, .

A; = [B(abc) A B(abc') A Tla = b — B(acc) v B(ac'c)]  Connectivity axiom,

A, = [aB(abe) A Va = b]  Extension axiom,

As = [B(ab'c) AB(bc'b")—~3a'[B(ca'b) A B(ac'a')]]

I

I

Pasch’s axiom (see
Fig. 1.2),

a b’ ¢

al
b
Fig. 1.2

Ag = [B(paa’) A B(pbb") nB(pcc’) A B(abe'y A B(a'b'c”) A B(bea'") A

AB(b'c'a’) A B(ach') AB(a'c'b'") A 1 B(pab) A T1B(abp) A

A T1B(bpa) A T1B(pbc) A T1B(bep) A T1B(cpb) A —IB(p(.'.u) N '

A 1B(cap) A T1B(apc) - B(a'’b’c")]  Desargues’ axiom (see Fig. 1.3)
o

V4

a’
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A; = [Aabe[1B(abc) A 1B(bea) A "1 B(cab)]] Lower dimension axiom,
As = [34[{B(bgc) A [B(agp) v B(gpa) v B(pag)]} v
© Vv{B(cqa) A [B(bqp) v B(qpb) v B(pbg)]} v
v {B(agh) A [B(cqp) v B(gpe) v B(peg)}]]
Upper dimension axiom (see Fig. 1.4),

b

Fig. 1.4

A% = [ApVab(d A ¥~ B(pab)]- A pVad[P A¥Y—B(aph)]] where &, ¥ are
members of L(B) such that p, b do not occur free in @, and p, a do not occur free
in ¥. Elementary continuity axiom schema.

We begin with the representation problem, which we interpret here as the
problem of providing a simple algebraic characterization of the class of all models
of GA, . We first construct a special class of possible models for GA, by means of
the following procedure. Let § = (F, +,, <> be an ordered field; the elements 0
and I of F and the binary operation — on elements of F are defined in the usual

way. Consider the two-dimensional linear space over &, i.e., the set Fx F with two
operations:

PO, Y)Y = lx4x, y+y7
6,0z =LKxz,y:2>.

DEerFINITION 1.5. By the two-dimensional affine Cartesian space, or simply the
affine plane, over § we mean the relational system o (F) = {4y, By where
Ag = Fx Fand By is a ternary relation on Ay defined by the following stipulation:
for any points a, b, ce Ag,

By (abe) if, for some xe F, 0<x<] and b = [¢O1—=X)]®(cOX).

In referring fo A (F) we shall use ordinary geometrical terminology. In particular
we shall often refer to the set 4y as a plane and to its elements as points. We assume
that it is known which subsets of 4y are called lines, halflines, interiors of triangles,
polygons, etc. We obtain a natural topology on Ag by taking the family of all in-
teriors of triangles as the base for open sets. A set S< Ay is said to be convex if,
for any a, b, ¢ with a, c e S and Bg(abc) we have b e S. We shall also need the notion
of a weakly conves set: a set S is weakly convex if, for any four distinct points
a,b,c,de S, whenever the point p, in the intersection of the two distinct lines K
and L passing, respectively, through @, b and ¢, d, satisfies the condition By(apb),
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then p € S. The set S is called non-linear if it contains three points a, b, ¢ which are
non-collinear. In this paper, when referring to a convex set, we shall mean always
a set which is convex, open and non-linear.

Now let S be any subset of Ag. The relational structure formed by the set .S and
the relation By restricted to the points of S (i.e. the intersection of By and §'x §'x S),
will be denoted by U,(F, S) and will be called the S-restricted affine plane over §.
When applying these constructions, we often take for § the ordered field M of real
numbers,

We shall prove a representation theorem to the following effect: f“or any model
A = <A, BY of GA, there is a real-closed field § and a set § convex in A, (F) such
that 9 is isomorphic to. 2,(F, S).

§ 2. Construction of an ordered real-closed field. The first step 'in the proof of
the representation theorem is the construction .of a ﬁe:]d in an ar‘bltra.ry model of
weak general affine geometry (see Szezerba [11]). This CQI‘{StYHQthH is analogous‘
to the well-known construction of a field in models of Euclidean metric geometry,

ipti g 81).
or affine (descriptive) geometry (see e.g. Veblen [I
Let U = (4, B) be an arbitrary, but fixed, model of GA,. Assume further .t?at
g, €1, €o» €, are arbitrary, but again fixed, points of 4 satisfying the condition

{2.1) TL(ege e,) AB(ege en) A Tlep = € .
DEF!NITI%N 2.2. The line‘
L, = {a: L(aeye,)}

will be called the line at pseudo-infinity. -

As is well known, in what could be called the “projective approach’. to Eufzhde.an
geometry, two lines in this geometry are parallel iff they intersect the line at 111ﬁ}11ty
.at the same point. By analogy we can introduce the notion of pseudo-parallelism:

DEFINITION 2.3. abll,.,cd if there is a p such that p €L, and L(abp) and
L(cdp) (see Fig. 2.4).

Fig. 2.4

The parameters ¢, , €, being fixed, will usually be omitted. T hus we shall write
simply ab||cd instead of ab||. e,cd. We shall omit parameters in subsequent defi-
nitions.
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In Euclidean geometry the notion of congruence of vectors lying on a given

line may be defined by means of parallelism (see Fig. 2.5a). Here we introduce the .

notion of pseudo-congruence of vectors (see Fig. 2.5b) by means of pseudo-
parallelism:

a) b)

p q r s e & p q r s
Fig. 2.5

Boa

DzFINITION 2.6, pg = rs if there are a, b such that p,q,r,se [eo o)s
a,béL,, aé¢Lege,); apllbg, ar||bs and egye, ||ab.

Similarly, in analogy to the Euclidean relation of proportionality (see Fig. 2.7a)
where the pair of segments,{¢p, p) and {ey, > is proportional to the pair {e,, r>
and {e,, s, We may introduce the notion of pseudo-proportionality (see Fig. 2.7b):

a b)

b

e -pq r s
Fig. 2.7

DermaTioN 2.8. P(p,q,r,s) iff there are a, b such that P,q,r, 56 [egey),
a¢ L{egey), ap||bg, ar|lbs and L(eyab).

By means of pseudo-congruence and pseudo-proportionality we define two .

binary operations, + and +, and a binary relation < on the segment [eye,):

DEermiTION 2.9. For any points p, g € [eye,,)

(i) p+¢ is the unique point r such that eyp = gr,
(ii) p-q is the unique point r-such that P(e, pgr),
(iil) p<q iff B(e;pg).

We let
H.=<H,0,1,+,, <>

(where H = [ege,,), 0 = e, 1 = e,).

Metamathematical discussion of some affine geometries 163

Tn Szezerba, [9] and [11] various properties of $ have been established, such as
commutativity and associativity for +, associativity of-, distributivity of - over +.
It is proved that p<qif and only if p+x=¢ for some x. To get an algebra in which
the equation p+x = g is always solvable, we take the algebra ®y of differences
over Ho-

DeriNrTION 2,10, We set

(ﬁ‘!( = <HX'H’ <0=0>><1’0>: @, 0, <> '
where
ps &L, = ptr, g+,
s O ) =Lpr+qs,ps+qry,
p,p<lr,y i pts<gr:
We also agree to write
{pygymlrysy it pts=gqg+r.

From2.10 it follows that ~ is a congruence relation on the algebraic structure Gy.
Hence, as is well known from the general theory of algebraic structures (see Henkin—
Monk-Tarski [1] pp. 73 ff.), we can construct the corresponding quotient structure,
which we shall denote by Ty-

DEFINITION 2,11, §y = (Fy,0, 1, +,-, <> = G/~ .

The use of the same symbols for relations and operations in Hg and Fy will
not lead to any misunderstanding.

It has to be pointed out that the algebras §y and Ty both depend on the par-
ameters eg, €,, €y, €, . It has been proved, however, (see Szczerba [11]) that this de-
pendence is inessential: corresponding algebras defined for different sets of par-
ameters satisfying condition (2.1) are isomorphic. For this reason the fact that the
dependence is not explicitly shown in our symbolism will not create any confusion.

THEOREM 2.12. I7 N is a model of GA, then

(i) Ty is a fleld,

(i) {x: 0<x} is a subuniverse of .

(iii) Oy is isomorphic to the subalgebra of Ty induced by {x: 0<x}, ie., 1o
Fal{x: 0<x].

The proof, may be found in Szczerba [11].

Our next task is to prove that, under the assumption of Theorem 2.12, T is |
a real-closed field (see Theorem 2.19). In proving this, we shall use a method per-
mitting us to express various facts about $gy and Fy in the language of 2. The method
is provided by a sequence of Lemmas, 2.14 through 2.18, which establish connections
between formulas in the languages of 20, Hy and Fy-

In dealing with the set of formulas L(0,1, +, -, <) (the common language
of Hy and Fy) we find it convenient to single out the set L’ of those formulas in which
all the atomic subformulas are of the form

v, =0, v; =1, v; = v, V;FV =0, UV = U, VSV
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“Thus, for example, the formula x+y = y+x does not belong to L. As is well
known (see e. g. Robinson [6], Section 9.1) there is a well-determined, recursive unary
operation ¥ which correlates with every formula @ e L©,1, +, -, <) the formula
@ e L’ in such a way that ® and &' are logically equivalent and both formulas
have the same variables. The operator V and set L’ will be used in formulating the
next two definitions, 2.13 and 2.16.

DepNITION 2.13. Let H be the formula
H = [B(axe) A "1x = €]
and let H be the unique function mapping L(0, 1, +,+, <) into L(B) which satisfies
the following conditions:
@) H(v; = 0) = [v;,.5 = a],
(i) Hew; = 1) = [v45 = 2],
Gif) H(v; = v) = [v;45 = v;45],
A(iV) H(vié"j) = [H(vH-S)/\H(vj+8>/\B(a”i+8vj+8)]r
M H@+ =) = [H(”H-a)/\H(”j+s)/\H(”HB)/\
ATv vsv50,[ 1B (cv,d) A T1B(cvsd) A B(evgd) A B(cv,d) A
A B(avsve) A B(evyvs) A B(v;4.50406) A B(v;450507) A B(vg4.50407)]],
vi) H(v; v, = 1) = [H(v;0) A H(v;46) A H(i 4 5) ASv,05050,[ 1B (co d) A
A T1B(cvsd) A B(evgd) A B(cvyd) A B(avyws) A B(bv,vg) A B(v;., gv407) A
/\B(”j+s”5”6)/\B(”k+s”5”7)]],
(vi)) H(11@) = TH(®) for any P el’,
(viil) H(® v &) = [H(®) VH@)] for any &, ¥ elL’,.
(ix) H@v,®) = [Fv;, s H(v;,5) AH(®)] for any ¢ elL’,
) H(®) = H(®") for any ¢ L(0,1, +, -, NL' (cf. Definition 2.9).
In Lemmas 2.14, 2.17 and 2.18 we shall assume that ®eL(0,1, +, -, <)
and vy, ..., v;, is a sequence of variables without repetitions containing all free
variables of @. :
Lemma 2.14. Let vy, ..., v, be a sequence of elements of $Hy. Then
G d>[vi° v,-":l W AEH@) [u beduvgg.. vinw]
Vg e Uy €0€y €, U,
Proof. By an easy induction on formulas in L(0,1, +, -, <) according to
Definition 2.13.
From 2.14 we immediately get
COROLLARY 2.15. For any sentence ®eL(0,1, +, -, <) we have
Suk® iff mkH(cb)[“ b ”"].
€0 €1 €. €,

DermiTiON 2.16. Let F be the unique function mapping L(0,1, +,-, <)
into itself and satisfying the following conditions: (i)—(x):
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@) Flo, = 0) = [v3; = vay44],

(i) F(o, = 1) = [1y; = 03,41 +1],

(iif) F(v, = 1)) = [t vp501 = g0+,

(i) F(v;<0)) = [v3;+ 0241 <0504+ 03],

() Floy v = v) = {02405+ Vg1 = Vap0 1+ 02501050,

(vi) F(v;0) = v0) = [0 05+ 02001 0501 F 0201 = V2ia1"Voyt

0y V501 02,

(vii) F(-1#) = —1F(®) for any el
(vii) F(®v¥) = [F(®) vF(¥)] for any &, ¥ L/,

(ix) F@v,®) = [Hvydvy,4,F(P)] for any del,

x) F(#) = F(@") for any #eL(0,1, +,-, <N\L.
Just as in case of Lemma 2.14 we prove by induction:
LemMA 2.17. If {{Xg, Yodlas -s <> Yupl =D is a sequence of elements of Fu,

then

v, oy
» }: 0 n
Bu |_<x0 s Yool s e {Xys Yl

Lemmas 2.14 and 2.17 imply
LeMMA 2.18. I {Xo, YoP/as -3 Cons Yudl=y 8 @ sequence of elements of Ty,

] iff Sk F@) [;f)io;zlo+1 zzi..;zrnﬂ] .
n n

then

vy v,
(igﬂ }= ¢ [<x0’ yO)/’&‘ . <xn> yn>/ﬁ:|
i .
abc d vy,.802549 o Vai48 ”21‘"+9] .
€0 €1 € €y Xo Yo cee Xp In

Ak HF () [
THEOREM 2.19. If 9 is a model of GA,, then Fy is a real-closed field.
Proof. We first prove that Fy is a model of all the sentences of the form
F = [VuoVo (P AY = vg<vy) —~ Fo, Voo Vo (DAY = 2,<0; <0,)]

where @ and ¥ are any formulas in L(0, 1, +, -, <) such that v, and v, do not
oceur free in ®, while v, and v, do not occur free in ¥, The formula H(F®¥) is logically
cquivalent to

(I,’“’W_)' = I(V‘vg‘v'vl ol H (:4) A H(vw' ) AH(®) A H(‘I’)‘—)B(vovgvm)]
‘ ) 8 10 |

v
~JugYvaVoy "

‘H< 4) AH (”4) AH (@) A H(P)— B(v0509) A B(1g09710) A H(z‘*)] l .
. 8 Uy 9/]]

Since it is casy to show by means of ABHI) that
abc d ]

€p €1 €, €y ’

A E (FYY [
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it follows by 2.15 that F®¥ is true in $y. Since Hy is isomorphic to Fyl{x: 0<x}
(see 2.12(ii)), it is easy to see that F®¥ is true in o. We now prove that Fy is com-
mutative. Consider two sets:

= {x: x<0 or, for every u, v e Fy, if 0<u<x and 0<v<x, then uv = v-u},
Z = {z: there are u, v € Fy such that 0<u<z, 0<v<z, and v # v-u}.

We easily see that x<z whenever x € X and z € Z. Obviously the sets X and Z are
both definable; hence we conclude that there is a y such that

(1) x<y and y<z whenever xe X and ze Z.

Now since X wZ = Fy and X is non-empty; we get y—1e X. Clearly y+1
= (y—1)+2 € X. Hence there is a ' € X such that y<y'. From (1) it now follows
that the set Z is empty. Hence §y is a commutative field. Since in addition $y is
a model of all the elementary continuity axioms, this completes the proof (see
Tarski [15]).- '

LEMMA 2.20. For every model U of GA, there is an ordered, real-closed field §
and a set S, nonlinear and weakly convex in W(F) and such that A is Isomorph/c to
Wy(F, 5).

A proof is given in detail in Szczerba [9] (cf. Theorem 8, Szczerba [11]). Hele
we shall give a brief outline of the proof.

Let A = (A4, B) be a model of GA,. Consider the following relational structure

{Fyx Fy x Fy\{0, 0, 0>}, Ly
where
ag ay a,
Ly(Kag, ay, az), {bg, by, by), co, 1, ¢5) iff ‘bo by by =0.
i€o €1 C2

Let ag, a;, @y ~<by, by, b,y iff there is an x # 0 such that @, = x*b, (i = 0, 1, 2).
The relation ~ is a congruence relation on this relational structure. By the pI‘O_]eCtht:
plane over the field §, we mean

P(Fa) = (Fax Fyux Fy\{<0, 0, 07}, L/ ...

We define a mapping f of 4 into the projective plane which will help us in defining
Cartesian coordinates. We first put f(eo) = <(1,0,0%/., f(es) =<0, 1,0/
and f(e,) = <0,0,1)/.. Let ¢’ be any point with B(e'e,e,,) and ¢ # e,, we put
fe)=<0,1, =13/.. If e"e(epe,) n(eje) and e e(e;e,) N (ee,), we put
S =<1,0,1>/. and f(e") = (1,1, 1}/ (see Fig. 2.21). Next we define f for
the points in the segment (ge,):

F(p) =<1,4p, 0/, 0)/...

Becall that the elements of the field Fy are equivalence classes of pairs of points.
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\ Cu
» ‘
&y & [
Fig. 2.21

The mapping f is defined on the segment (eg¢,) by means of a projection with
the centre at a point e': for pe(eye,) we put

S(p) = (1,0,{p’, 03/=>/
where p’ € (egeq,) ~ L(e'p). Similarly, by a projection with the centre e, we
define the function /' for points in (e,e,)

8w

M~
LA

Fig. 2.22

To define the mapping f for an arbitrary point p we make the following construc-
tion. Let K and L be two distinct lines passing through the point & such that each
of thcm intersects two of the segments (eo€u), (¢o€,) and (ene,). Let g%, * and

* be the pomts of intersection for K and L, respectwely (sce Flg 2.22).
Let f(q ) = <q0141: q2>/~’ f(rK) = <r0:r1’ >/~> f(q ) <q0= q}aﬂZ)/n’ and
" = <G, 11, 15>~ We put f(a) = {do, ay; az)/ ~ iff

aoa1a2 aoalaz
L
‘Io f11 th = 42 ‘]1 qi =0.
K
: '011 ry o "1 ra

To obtain the Cartesian cooxchnates, we have to use a projective transformation
(sec Szezerba [9] and also [12]) mapping the line at pseudo-infinity into a line outside
the set /A4, the f-image of 4. For some models of general afﬁne geometry without
the continuity schema this requires an extension of the field %ar by means of the
method developed in Szczerba [10]. The extended field is elg)mentarlly equivalent
to Fy and therefore is real-closed. In the next section we shall prove Lemma 3.1,
which implies that in fact for models of general affine geometry with the continuity
schema there is no need to pass to an extension of the field Fy-
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Let us assume that @ is a universal sentence true in W,(R), the affine plane
overthe field of real numbers; here and in the subsequent discussion “8t” is used to
denote the (ordered) field of real numbers. For any real-closed field §, § is elementarily
equivalent to R, and hence @ is true in W (F).

Therefore, by Lemma 3.3, @ is true in any model of GA,.

LEMMA 2.23. If a universal sentence @ is true in Wy(R), then it is true in any model
of GA,. )

This lemma is a particular case of a general result stated below in Theorem 6.11.

Remark 2.24. In this section we have constructed a field and introduced the
Cartesian coordinates. Implicitly, this gives us a relation of equidistance which
depends essentially on the parameters g, e;, €y, €, For different sets of par-
ameters we get, in general, different equidistance relations. This shows, however,
that a (non-relativized) relation D of equidistance is not definable in terms of B alone.
It is interesting to note that essentially the same argument appears in certain investi-
gations in the foundations of geometry which apparently serve a directly opposite

goal’ namely, the establishment of metrical geometry as a part of affine geometry
(see e.g. Veblen [18]).

§ 3. Representation problems. Our next task is to prove that it is possible to
choose the field § mentioned in Lemma 2.20 in such a way that the set S will be
convex in W,(F).

To make some formulations easier, we introduce the following abbreviation:

L = B(xyz)v B(yzx)v B(zxy) .
Lemma 3.1. If U is a model of GA,, then W is a model of the sentence
S = Jabcd Vpqrst[L(abp) A L(beq) AL(cdr) AL(das) AL(atc) AL(ptr) A

A L(stg) AL(psv) AL(qrv)—p = sv q = ¥].
(see Fig. 3.2)
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Proof. Let 2% = {4, B). By axiom Ay, there are in A4 three noncollinear points
a, b, ¢'. By Ay there is a point &’ different from b and such that B(a' ba), and a point d"
different from @ and such that B(d'ac’) (see Fig. 3.3). Thus, by axiom A, we get
a point ¢ such that B(c'bc) and B(d'ca’).

L a'
a
/
c! b c
a
Fig. 3.3

We now show that there is a line through the point ¢ disjoint with the lire
L(ab). Indeed, we shall prove that there is a point ¢’ such that B(c'ad’) and
L(ab) n L(cd”) = . Suppose that

X = {x: B(c'ax) and there is w such that B(baw) and L(cwx)},
Y = {y: B(cay) and there is w such that B(abw) .and L(cwy)} .

It is easy to see that both sets are definable in L(B). Since a € X and d’ € Y, neither

* set is emply. Moreover, by Lemma 2.23, if x € X and y € ¥ then B(axy). Therefore
we may use a suitable instance of elementary continuity axiom AY¥ to prove the
existence of a d”’ such that if x € X and y e Y then B(xd"’y). If d"' € ¥ then by means.
of Pasch’s axiom A, (see Fig. 3.4) there is an y € ¥ such that B(ayd") and y # d".
This is impossible, and therefore d” ¢ Y. Similarly d' ¢ X. By Lemma 2.23 it follows.
that the line L(d''¢) does not intersect the segment (ab), and thus we have

M B(cad’) and L(ab) nL(cd') =@ .
d//
Y
/
! b c
w
Wf

«~ Fig. 3.4
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Tet us consider the following property:
Z(d"'pgrstvy  iff  L(abp), L(bcq), L(cd"'r), L(d""as), L{aic) ,
L(ptr), L(gtsj, L(psv), L(grv), p # a and g # r
(see Fig. 3.5).

Fig. 3.5

(2) If Z(d'"'pgrstv), then there are p', ¢, r', &', t' such that Z(d"'p'q'#'s’t'v) and
B(at'c) and B(bq'c). :
To prove this, a number of cases must be discussed. We shall prove (2) for the case:
B(bcq) and B(rqv) and B(sq?)
(see Fig. 3.6). The proofs of the remaining cases are analogous.

d mn

# Y

Fig. 3.6

Let ¢’ be any point in the open segment (bc). By Pasch’s axiom, As, we get
a point ' such that B(rer’) and B(g'r'v). Similarly there is a point ¢ such that B(st'q")
and B(tct’). Bmploying the analytical method one quickly establishes L(p¢'r’) and
B(at'¢), from which (2) follows.
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Let us now consider the sets (see Fig. 3.7) i

X = {x: B(exd") and there are p, g, 1, 5, I, v, w such that
h Z(xpqrstv), L(cd"w) and B(bwv)} ,
Y = {y: B(cyd") and there are p, ¢, 7, 8, 1, v, W ‘such that
Z(ypqrstv), L(abw) and B(cwv)} .

Fig. 3.7
If we order the segment [¢d”] in the natural way from the point ¢ to the point d”,
then we can speak about a last element of the set &, In fact, X does not contain a last
element and Y does not contain a first one.

(3) For any x € X there is an x'e X such that B(axx" and x # x'.
(4) For any ye Y there is a y' € Y such that B(cy'y) and y' # ).

We show (3). Since x & X, we have B(cxd"), and there are p,g,r,s,6, 71,0
such that Z(xpgrstv) and a point w such that L{cwd") and B{bwv). By (2) we may
assume that B{atc) and B(bgc) (see Fig. 3.8). This implies that B(grv). Let v be any
point such that v s v’ and B(bov'). From Pasch’s axiom As it follows that there
is a point 7 for which B(wri") and B(gr'v'). Because B(rr'c), there is a point p’ such
that B(ap'p) and B(p'tr"). Since B(p'tr') and B(gr'v'), by As, there is an &' such that
B(gts') and B(p's'v"). By the weak convexity of 4 in y(Fy) there is a point x' # X
for which B(exx') and x' e X. We may prove (4) in a similar fashion.

By using Lemma 2.23, it is not difficult to show that x e X and y € Y implies
B(cxy). Thus by an appropriate instance of the elementary continuity axiom schema
there is a point d such that for any x e X and y & Y we have B(xdy). Again by means
of Lemma 2.23 the '|5oi11ts a, b, ¢, d, must satisfy the following condition:
Z(dpgrsiv) does nothold forany p, ¢, 7, 8 L V. Therefore 2 is a model of a sentence
S and the proof is complete. ‘

The intuitive meaning of sentence S can be expressed as follows: there is a line

‘in a projective plane over the field outside the universe of the model 2. Hence there

is 1o need to extend the field §y in the proof of Lemma 2.20.
By Lemma 3.1 and Szczerba [11], Theorem 5 we obtain:

2 — Fundamenta Mathematicae CV/3


Artur


172 L.W. Szczerba and A. Tarski

.

Fig. 3.8

THEOREM 3.9. If Wis a model of GA, then Ty is an ordered real-closed field
and there is a point set S comvex in Wy(§y) such that A is isomorphic to
W (Fars S)-

The converse of this theorem fails unless we restrict ourselves to fields § which
are isomorphic to the field of real numbers. This is seen from the following.

THEOREM 3.10. .(i) Every S-restricted affine space over R is a model of GA,
provided the point set S is convex in W,(R).

(ii) If a real-closed ordered field § is not isomorphic 1o R, then there is a set S
comvex in Wy(§F) and such that Wy(F, S) is not a model of GA,.

Proof. The proof of Theorem 3.10 (i) is straightforward. To prove part (i),
notice that in such a real-closed field § there is a non-empty subset ¥ of F which is
bounded from below but has no greatest lower bound. Now if § is the set of all
points « = {x;, x,> € Fx F where x; is a lower bound of ¥, then S is open and

convex, but the axiom AZW where
@ = t[B(pqr) A B( pas) A B(qat) A B(rst)],

¥ = Yt[B(pqr) A B(pas) A B(qbt)— " B(rs't)]
is false.

Theorems 3.9 and 3.10-do not yield a solution of the representation problenr
for GA,. A satisfactory solution would consist in providing a purely mathematical
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(and sufficiently simple) characterization of the class of those restricted affine spaces
over an arbitrary. real closed ordered field which are models of GA,. '
Remark 3.11. Let " and % be classes of relational systems. A, (F, S) where S 5
any point set convex in WA, (F), & being any real closed field in case o.f. A, and ly
is the field of real numbers in case of . By Theorems 3.9 ?md 3.10(ii), T'(.%’ )‘ is
a subtheory of GA,. An axiom system for T(2") may be provided by 1'epla01ng the
continuvity axiom schema by the sentence S (see 3,1) and the sequence of axioms

Ay = I[{L(”nvzvs)AB(i’ovxvz)A T, = 1, A 7oy = v,~HF(R)}]
for n = 2 and for all odd numbers », where
R* = ﬂ:"lv?<4‘vo-v2—»303(130+v3~v1+v§-v2 = 0)]
and for n>2
R' = [0, = 0 30,,+1(v0+v,,+1-v1+1:,7;+1-_vz+...+v’,:+1'v,, = 0)]

A(cf. Lemma 2.19 and Tarski [15]. In these two formulas the e?gpressm?s ?f _the.
form v (for arbitrary positive integers i, ) is defined by re;cur.slqn 0:’1]-1"; i—+1’1'
and v/*’ = v,-v]; in the first formula 4 is of course an abbreviation 1ot L
+1. In Prestel-Szczerba [7] it is shown that T(#) is not (recursively) axiomatl Ot:
Hence, in view of 3.10 (i), it clearly follows that T(&) is a proper extension
GAZ.’Remark 3.12. Consider the affine geometry GA}, formulated in sec':ond-lc;rfli;
language, whose axiom system is obtained from that of GA, by replacing a

axioms ASY by the non-elementary continuity axiom
VXY{da VxeX VyeY B(axy)—»AbVxeXVyeY B(xby)} .

*
From Theorems 3,9 and 3.10(i) we easily conclude that the class of models of GA121
is the class of relational systems isomorphic to 2, (9, S), where S ranges overf ag
sets convex in the real affine plane 20,(R). Thus, the (non-elementary) theory o ‘
coincides with GA}. ;

§ 4. Metamathematical properties of GA,. We now turn to the problen; otl'g (;01;1;
pleteness, decidability, and finite axiomatizability of GA,. Let % = {4, D
a model of GA,. By Theorem 3.9 we may assume that W = W, (F, S) for a certa
ordered, real—cfosed field % and a set S convex in Ao (F).

DerNITION 4.1, Let

At = Aab[B(axy) A B(xyb) A B(azu) AB(zub)]v }
v {Va[B(xya)— "1 B(zua)] A Vb[1b=yA B(ybu)—JeB(xbe) A B(zuo)l} .

Moreover, let

) xyzu
ab it ed iff mmr[abcd.
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Instead of 4} (vov,v,v5) we shall often write vovy |} v,0;.

The relation 1} is a hyperbolic type of parallelity of halflines. In Fig. 4.2 we
have ab {} cd'but neither ab 1} ¢’d’ nor ab |} ¢’d". As in the case of hype1bollc geo-
metry, one can prove that the relation 4} is reflexive, symmetric and transitive.

Lemma 4.3.
(i) ab 1} ab,
(ii) ab{} cd whenever cd 1} ab,
(iii) if ab 4} pq and cd4} pqg and p s g then ab} ed.
DerINITION 4.4. The collection of all non-trivial ‘pairs of points (i.e. ‘pairs

a, by where @ # b) may be partitioned into equivalence classes with respect to 4} .

For convenience, we enrich each class by all trivial pairs. Any such enriched class
‘will be called a direction.

formula
V= VaVbEIchVe [B(axb) A B(ayd) A B(bye) A B(xyc) A

ATla= %A "1b = x> "1 B(dee)]

[T
</

Fig. 4.6

(see Fig. 4.6).

It is easy to see that if one non-degenerate pair<{x, y» € & satisfies the formula V,
then 3 is a vertex.

DerINITION 4.5. The direction 8 is & bertex if all pairs (x, 1> e § satisfy the

-Icm

e
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DEFINITION 4.7. We say that a point a is definable in a model 9 if there is a
formula @, with one free variable x, such that

x
= iff WUEP .
p=a i M

Analogously we shall understand the definability of directions, vertices etc.
LEMMA 4.8. Let A = W, (R, S), where S is a convex set in Wy(R). If in A there
are three different definable points a, b, ¢, such that By(abc), then the set of points
definable in U is dense in the segment [a, b].
Proof. Without loss of generality, we may assume thata = {x, 03, b = {(y, 0,
¢ =<0,0% and x>y>0. Assume, moreover, that two points p, = {u, 0> and
p, = v, 0) are definable in 2. Let a be definable by a formula P,, b by Py, ¢ by

. P, p, by P and p, by Q. Let

uv
: 1) == 2 f ut+v#0.
S, ) 2u+v or

The point

uv
g ={ 2 0,
Prow = {flu,v),0) = <2u+v’0>’ where‘ utv #

is definable by the formula
W= Haﬂbacﬂpﬂqﬂrasatﬂv['WL(abr)/\ ML (abv) A
A B(ras) /\L(rtp) AL(svp) AL(sqt) AL(rqe) A B(txv) A
/\B(PW) /\P (@) A Py(b) AP:(C) AP(p) A Q(GI)]

Fig. 4.9

(see Fig. 4.9). Thus, it will be sufficient to prove that the set D, containing aumbers x
and y and closed under the operatlon f, is dense in the segment [\ y]. The funcuon g
defined by
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is a one-to-one monotone mapping of the segment [x, y] onto the segment [0, 1].
This mapping transforms the operation f into the operation f’, where
f(uv) = $(u+v). Therefore D’, the image of D, is the set of diadic numbers of the
segment [0, 1]. Since D’ is dense in [0, 1] and ¢ is a monotone funiction, D is also
dense in [x, y]. This proves the lemma.

THEOREM 4.10. The theory GA, is incomplete and has in fact 2™ complete exten-
sions.

Proof. For any given real x>0 let .S, be the interior of the pentagon in 20,(RN)
with the vertices {2, —13, <0, —1), 0,1, {2,1> and {4+x,0>. By 3.10(i)
T(A(R, S,)) is an extension of GA, for any x>0. We show that T(2, (R, S,))
# T(U,(R, S,)) for any real x, y with 0<x<y<8. Let x>0,

(1) The point {1,0) is defined in W,(R, S,) by the formula

P10y = Ap3g[T1L(pgz) A V(zp) AV(pz) AV(2g) A V(g2)]
(see Fig. 4.11).

o @1
' {4+x, 0)
-1 (2,1
Fig. 4.1

(2) The point ¢2,0) is defined in Ay(R, S.) by the formula
Piz0y = 3Ap3q[Pe1,0y(P) A IV(2P) AV(P2) AV(zg) A V(gz)A T2 = p]
(see Fig. 4.12).
0, 2,1

<4+X; 0>
p=0.0> V

€0,- @y
Fig. 4.12

(3) The point {4, 0) is defined in A,(R, S,) by the formula

Paoy=3pIqAr3sAeTulPy o, (0 AP<;,0>(u) A T1L(tup) A V(up) A V(us) A V(tr) A
AV(ap) Apg Al utAtp 1t ur Atr 4 us A zs |} up A B(prs) A B(tuz)] .
(see Fig. 4.13).
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0, » ) Q.0
s
NG :
q ‘ (4+x,05
t=(1,00 u=42,0 4,05
Fig. 413

(4) The point {2+x/3,0> ‘is defined in A,(M, S,) by the formula
Peaiaps,oy = 3pFqArAsTeTuIo [Py 0y(0) AP 2,05(w) A Piaos®) A
A TIL(tur) AB(rus) AV(ur) AVu) AV(z) AVug) AV(pg A
Azul gpapg b ur nug it vrAgril sz
(sec Fig. 4.14).

0, D 2,1

r

q .
7 u=(2,05 = 0

t=<1,00 2=+, 00 vEAD

0,~1> 2,-1
Fig. -4.14

By 4.8 the set of definable points is dense in the segment [{2, 0), (4, 0>]. Hence
there is a number w such that the point <2+w 0> is definable and separates points
£2+4x/3,0)> and {2+y/3,0). Let Piasy,0p be a formula having v, as the only free
variable and defining the point (2+w, 0> in U, (R, S,). The sentence

3p3 qa'["(i,O)(l’) /\P(z+x;3,0)(4) /\P<2+w,o>(") AB(pgr)]

is true in (R, S,) but not W,(R, S,). This completes the proof.

THEOREM 4.15. The theory GA, and all of its subtheories are undecidable (in other
words, GA, is hereditarily undecidable).

Proof. We construct the restricted affine plane A = A,(R, S) by taking
for § the interior of the smallest convex set which contains the points

b= ((1+/3242, 1 —/3)2J2D, =0, -1},
e = {(1—/3)/2JZ, A +/3)2J2> ,

a=<1,0),
d=<(—~1,0),
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and ' f, = (yNm+1, N +1y for n=0,1,2,.. (see Fig. 4.16). By
Theorem 3.10(i) ¥ is a model of GA,. From Fig. 4.16 it is seen that in this model
the vertex a can be singled out as the unique accumulation point of the set of vertices.

fo

c :
Fig. 4.16 ;

On the other hand, b can be characterized as the only vertex adjacent t‘o a (i.e. such
that there are no vertices between a and ). Analogously ¢ can be defined as the only
vertex different from « and adjacent to b; the vertices 4, e, fy, f; are, in turn, defined
successively in a similar manner. It is obvious that 4, ..., f; are definable in 2 by
means of formulas in L(B). Hence we can define in  the. points ¢, = <0, 1//2,
e, = <1/22, 1/2/2}, e, = {1/4/2, 0y and e,, = <0, 0}, and therefore the algebra Hy
with the segment [eg, €,,) as its universe. The algebra $gq is isomorphic to the field R
restricted to its positive cone .R*. We define the set N of points eg, ey, €5, ..., by
stipulating that p e N if apd only if By(eypey), p # e, and the pair {e,; p> belongs
to a vertex. It is easy to check by analytical methods that Ha» téstricted to the set N,
is isomorphic to the standard model of the arithmetic of natural numbers. Thus the
theory .Q of Tarski-Mostowski-Robinson [17], p; 51 is relatively interpretable in
T() and therefore, by Theorem 8 of Tarski-Mostowski-Robinson [17j, T(2) is
_]geraditarily undecidable. Since GA, is a subtheory of T (), (,iA2 is also hereditﬁrily
undecidable. , ) ’ o

Theorems 4.10 and 4.15, when compared with the correspondiﬁg results for A, m
Szmielew [14] (Theorems 3:2-and 3.3 for n = 2, pp. 501f.), demonstrate that there
are fundamental metamathematical differences between the theories A, and GA,
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despite the fact that the axiom systeﬁis of these two theories have been constructed
by essentially the same method. )

"THEOREM 4.16. The theory GA, is not finitely axiomatizable.

Proof. In Tarski [16] a finitely axiomatizable theory Ej was introduced. Any
model of E; was shown to be (up to isomorphism) the Cartesian plane over an
ordered commutative field ¥ (in symbols €,(§)), i.e., an expansion of A, () obtained
by including a quaternary relation D&z) defined as follows: :

Dyfabed) . iff (ay~by) +(az—b3)* = (c;—dy)*+(c;—do)*

where ¢ = {ay, a5), b = {by, by), ¢ =<ey, ;) and d = {dy, d5). Let us consider
the theory E} which is-an extension of GA, obtained by enriching the axiom system
of GA, by all the axioms of E; . Since Ej is an extension of Ej, any model E; must
be isomorphic to €,(F) for a certain ordered, commutative field §. Consider the re-
duct ¥ of C,(§) by the relation Dg. The relational system 'is a model of GA,.
Therefore (cf. 3.1 and 2.19) § is a real-closed, ordered field, and hence €,(F) is
a model of elementary Euclidean geometry E; (see Tarski [16], Theorem 1). Since
any model of E, is clearly a model of E;, we may conclude that E, = Ej. It follows
that E; is a finite extension of GA,. Since E, is not finitely axiomatizable (see
Tarski [16], Theorem -4), neither is GA,.

Tt should be pointed out that we do not know any consistent extension of GA,
which is finitely axiomatizable; the problem whether such an extension exists is
open. ' * )

Some further metamathematical results, of more special character, will be
established in Section 6 (Theorems 6.12, 6.13, 6.14). :

§ 5. Uniformly definable extensions of GA,. Let & =(F,0,1,+,, <> be
any real-closed ordered field, and let SSFx F be a cornivex set in A,(F). Suppose
A = W, (F, S) is a model of GA,.

DEFNITION 5.1. Consider the algebras $y and Fo = {(Fa, 0,1, +,, <
defined in Section 2. Elements of $y are points of the segment [eo, €,) and elements
of Ty are equivalence classes of pairs of such points. Let f'be the function mapping &
onto §y and satisfying the conditions: '

NI ' .
f(x) = <<1+x’&0>". <0,0> >/z whenever x320,

) = <<o, oy <{-_ll : 0>> | whenever a<0.

Further, let g be a function mapping S.into Fy x Fy and such that , . .,

(e, ) =<F ), f())  forany {x,y)eS.
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Remark 5.2. It is easy to see that f is an isomorphism of & into Fy and g is
an isomorphism of 2 into W,(F).

DEFINITION 5.3. Let K be the quinary relation between points of § defined as
follows:

.

K@gyer,y) I g@) = (Cxor Yodlm» 51 I/ -

We shall show that this relation is definable by means of a formula in L(B). (On
this and the next two pages we use the term ‘‘definable” in the sense of “parame-
trically definable”; an analogous remark applies to related terms such as “definition”,
“defined”, etc.) We start with the particular case where points e, = <0, 0D, ¢,
=<1,0), e, =<0, 1) and ¢’ = (1, —1) belong to §. Since S'is convex, the point
e =43,0> algso belongs to S.

First we shall prove that the relation X is definable for any point @ belonging
to the segment [e,, €,,). The definition is in fact a natural isomorphism from $Hy
into §, expressed in the language L(B) by means of Lemma 2.14. Let

K, =[c=v,Aa05 = v AH(; = 234+ D] v
Vie# v Av0 =033 A H(vg vatve = vy 0a+v,+0,)] .

For any a € [eq, e,,] Wwe have

9(@) = ((Xo» Yodlw» X1y RD[a) i ﬂwxl[" bre d g v vy vy ”“]—

€p €1 €x €y Xg Yo X1 Y1 4

The relation K is also definable for a from the segment [eye,] by the formulal

K, = 31:1431:15311153»173018]:1?(@,,3d) AB(v,v5€) A

Vg Vg Vy9 5y Yy -
/\K1< AHF(vy = 0AD;, = v3+v;-03)] .
Vi4 Vis Vig Vi7 Vi

oo

el

Fig. 5.4

{sce Fig. 5.4), i.c., for any aeleye,] we have

9(a@) = {xo, Yo/~ ) X YO &Y
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iff
a b c de vg vy vy vy
‘HFKZ[ Ve _10 11 V2]
€y €1 €y €, € Xpg Yo Xy V1 @

Similarly for ae[e,e,] the formula

Ky = 3”143”153”1631’173"13[3(‘“’18‘1) AB(v1,v,56) A
N

. i

Vg Ty Vg Vyq ¥

AK (8 T2 T10 P 2 ) A HF (v vptvs oy = LAD 03+ 1 = 03)

o
Vig V15 Vg6 Vy7 Vis

defines the relation A: for any a e [e,e,] we have
g(") = <<x0’ yD)/z B <x1a y1>/=>
iff
AF K, [

a b c de vg vy v Vg vlz]
ey e ey €, € Xg Yo X Py @ )

Now we may define the relation K for all points belonging to the, set T, the boundary
of the triangle ¢y, €w, €,. The set T is determined by the stipulation

a b c dx]

for every @ in A, aeT iff Ak T[
€ €1 €y €, d

where T is the formula B(axc)v B(axd)v B(cxd). For aeT the relation X is
defined by the formula .
K, = [B(avy26) AK,]v [B(av;;d) AK;]V [Blev2d) A K],
i.e., for any aeT we have
g(a) = KXo, Yodlxs X1 YOI =P
iff ,
a bc de vgvg vy vy u,z]
€ €1 €p €o € Xg Yo X1 V1 @ |

Ak K, [
Now we may extend the definition of the relation K to the entire set S (see Fig. 5.5).

co Xy

X3y

X30

€9 X3z €00

Fig. 5.5
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" The formula o
Ks = dv,,3v;s ... Jo33[T(v30) A T(v31) A T(v32) A T(v33) A
c [vg Vg Vyg Vyg ¥ Vg Vg Dy Vg Uiz
AR, (% % 10 P11 P2 g (V8 9 Pio Pix Viz)
Vis V35 Vig Y17 Vs Vig Vy9 Va0 Y21 V31
Vg Vg Vyp Vi P Vg Vg Do Uiy 0
I A 10 V11 Piz) g (P8 PO 10 Uiy Uyz)
Vyy Vp3 Vp4 V5 Vs V26 Va7 Vag V29 Y33
AL(013030031) AL(112032033) A 1L {03003 v32) A
AHF@Ev,30,,30,530,F0,60 005014015705+ 0150035 = 0A
A0 D14+ 5 05+ 0567016 = 0A
Ay by +03 0+ 05 03 = 0A
AD Vg U Uy, 0603 = OA
Ay 0y, +0, 035+ 036 = OA
ATy D+ 5+ 010 V6 = 0])]
defines the relation K, i.e., we have.
g(a) = <<X05y0>/z H <-‘~‘1,J’1>/z>
iff
eg € €y €, € Xo Yo Xy Y1 @

AEKs [a bc d e vy vy vyo' vy ”12].

In general, the points <0, 03, {1, 03, €0, 1> and <1, —1>"do not necessarily belong
to the set S, but since S is non-empty and open, there are s, ,u in F such that the points
ep = {5, U, € = 5+1, 1), €, = (s, u—1t) and ¢’ = {5+, u—1) do belong to S.
Since S is convex, the point e; = {s+1%7, u) also belongs to S. Letf(s) = {51, 53)/x,
F) = 1y, 5] and () = uy, 3)] . Obviously sy, 83, 1y, 12, 1y, U, belong to
H = [eg, €,,) = S. Setting . .

K = 3112031;2131;2231)23[K5<08 Y P10 wll)/\ ’
V20 V21 V22 V33 .
. AHF(v, = 13+ v5 0, AD; = v5+09-0,)| .
We easily obtain B ‘ s
LemMA 5.6. If W is a model of GA,, there are points ey, ey, €y, €y, €,
Sy, Sz, By, Loy Uy, U such that for any points a, x4, X1, Yo, ¥1 Wwe have:

9(@ = KXo, Yoo/, X1, Y0/ D
i .

v, U U, V3 O
AEEK [ o ¥y V2 U3 :1- 1":‘3 Vg Vg Uiy Vg2 ”14 Vy5 Vi Vg7 Vig V1o
€y €1 € €, € Xo Yo X1 Yy @ TSy Sy Iy Iy Uy Uy

We wish discuss some extensions of GA,. The most interesting examples of such

¥
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extensions are defined model-theoretically as the elementary theories of some
mathematically important classes of restricted affine spaces. We state below a fairly
general result concerning extensions of this kind. To formulate this conveniently,
we refer to the formalism of the elementary theories of .ordered fields, i.e., to the

language of the theory of ordered fields.

DEFINITION 5.7, Let @ and ¥ be formulas in L(0, 1, +, -, <> and let vg, ..., V,
be a sequence without repetitions of all variables occurring free in ¢ and v, Jv, P.
Given any ordered field. § = <F,0,1, +,", <), the formula ¥ and sequence
U, e» U, Of clements of F define a subset of FxF
w _ . Vo Vg Vo Vi
SU(”O! vees Un) - {<Xo, x1>' 8’ E l}’lxo Xy g .. Un:l} .
The formulas @ and ¥ are said to uniformly define a class Kg‘y of subsets of FxF
if the following condition holds: S'e K,;"P if and only if there are elements vg, ..., U,
of F such that
FEO ["9 "] and S = S¥(vg, > vy) -
Vg e Uy
‘We can express this condition equivalently in the following way: S'e Kg" if and only
if the structure (F;0,1, +,, €, §) is a model of the sentence

E* =3v, .. V(B AV, Yo, [S(vo0;) « ¥I}. -

The sentence K™ obviously belongs to L(0,1, +, -, <, §). If there are two for-
mulas &, ¥ which define a class X uniformly, we say that K is uniformly definable
in the elementary theory of fields. The class of all restricted affine planes Wy(F, S)
with Se K;W will be denoted by g"’. Throughout this section the formulas &, ¥,
and the sequence Vg, ..., V, in 5.6 will be.regarded as fixed. The same applies to
{V¥g, Vi ...y wich is assumed to be the (infinite) sequence of all distinct variables
not occurring free either in & or in Jv, v, ¥.

DEFINITION 5.8, Consider a unique function G mapping L(B) into
L(0,1, +,+, <) and satisfying the following condition:

0] G(B(”i"j”k)) = AVH0SVo AV STAV) g +V5i0 1 Vo = Vorei+

+V(2‘k+ 1 VoAV 42+ Va2 Vo = Vaipz+Var2 Vol

(i) G(1I) = T1G(I) for any I e L(B),

(iii) G(I'v4) = G(I")vG(4) for any I', 4 L(B),

(iv) G@v, ) = av;i.ﬂav'zﬁz[w("? . >AG(r)] for any I' € L(B).

Vairo Vairt

The following lemma is proved by induction:

LemMa 5.9. Let I'e L(B) and vy, ..., v, be any sequence of elements of &-
Then for any {Xp, Yoy s - {Xms Yup I8 S%' (Dgs +vs Uy) We have

%) V4 VUO e Uy
~t(;§s SE(”O: “T’ Un)) E Fl<x0’y0> » <xm,ym>]

.
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if and only if

5t G(f) [Vo A e e V’z,,,+2] .
Do oo Uy Xo Yo oo Xm Y
Thus, for any senteice 4 e L(B), we have /
A(F, Sz Vg, -..» v,)) F 4
if and only if
Vo o Yy
srew[re )

and hence ,
Lemma 5.10. For any sentence AeL(B), AeT(H§Y) if and only if

Vv, .. VY, [6-G (D] e T(F .

Since any two real-closed fields are elementarily equivalent, we get, as a simple
consequence of Lemma 5.10,

COROLLARY 5.11. For any iwo leal-closed fields § and §' and any two formulas
&, Pel(0,1, +,-, <), we have T(HFY) = T(AHG).

THEOREM 5.12. Let § be any real—closed field, and let every element of K{’;"' be
a convex set in U(F). Then the theory T(A" g:") satisfies the following conditions:

(i) T(H'EF) is a finite extension of GA,,

(i) T(H'SY) is not finitely axiomatizable,

(i) T(H2¥) is decidable. “

@iv) if, for any S’, S’ K‘w' the corresponding restricted affine spaces 2[2(15", S’
and W,(§F, S'') are Isomorphtc (or at least elementarily equivalent), then T(A'y P ¥y is
complete.

Proof. (i) Consider K" where R is the field of real numbers. Since 8 is a real
closed field (and therefore elementarily equivalent to ) and every element of K;’"'
is a convex set in 2,(F), then, by Corollary 5.11, it follows that any element of K"""
is a convex set in 2, (R). By Theorem 3.10 (i) all relational systems from the class Ao
are models of GA,, and so T(A'5¥) is an extension of GA,. By Coroliary 5.11
TS ) = T(AF), and therefore T( A'gY) is an extension of GA,. To prove that
T(A'SY) is a finite extension, we give expl1c1t1y a sentence S®¥ such thata model 2
of GA, is a model of §°¥ if and only if it is a model of Tg"):

s = TIH{HK(®) A VoV vsY 0,0V 0,430, ,K) ""HF(W)]}:H
(see Lemmas 2.18 and 5.6).

(ii) Suppose that T(#'§") is finitely axiomatizable (i.e. there is a sentence 4
such that k 4 if and only if 2 is a model of T(#§*). By Lemma 5.10 and
Corollary 5.11, & k [¢—G(4)] if and only if § is a real-closed field. Therefore the
theory of real-closed fields would be finitely axiomatizable, which contradicts a well-
known result (cf. Tarski [16] where a proof of the related Theorem 4 is given).
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(iii) By Lemma 5.10 a 4 € T(A#'§") if and only if [@#-G(4)] e T(‘S)‘ Since § is.
areal closed field, its theory is decidable (see Tarski[15]) ; therefore T ( %’ ¥} is decidable.

(iv) Obvious.

The theory T (o gl") can be called the (elementary) affine geometry of points.
sets in Kg*.

It may be noticed that the notion of uniform definability could be referred not
to a class of subsets S of Fx Fbut to a class of restricted spaces W,(F, S) with § now
ranging over a class of real-closed ordered fields (possibly over the class of all such
fields). In this way we could obtain a seemingly more general result, which, however,.
would not essentially improve Theorem 5.12 (cf. Corollary 5.11).

§ 6. Examples of extending GA,. By Theorem 5.12(i), the theory. T(#g%) is
axiomatizable, and an axiom system for this theory can be obtained by adjoining
finitely many sentences or, what amounts to the same, a single sentence y (A~ g_"’)
to the axiom system of GA,. The proof of Theorem 5.12 gives an effective construc-
tion of such a sentence dependent on the defining formulas ¢ and ¥; frequently,
however, a simpler sentence serving the same purpose can be obtained by some other
method.

We shall give below a few simple and interesting examples of classes A" satisfying
the hypothe51s of Theorem 5.12, and in each case we shall formulate an appropriate
sentence ¥ (A"). For convenience we may take R for §, and identify the corréspond-
ing classes %" and Ag”.

ExaMpLE 6.1. A"; contains the whole plane as the only member. The theo1y
T(A'y), the affine geometry of the plane, clearly coincides with AE,; as we know,
for x(# ;) we can take Euclid’s axiom in the form

E = Vtxyzu Jow[B(xut) A B(yuz) A “1x = u - B(xyv) A B(xzw) A B(vtw)] .
Obviously 2, satisfies the premiss of Theorem 5.12(iv) and therefore T(./i" ) is
complete.

EXAMPLE 6.2. J, consists of all interiors of halfplanes. For
the conjunction of the sentence

Axy Vzuvw 3¢[1x = yp A {B(xzv) A B(uvw) A 71z = v — [B(uzf) v B(wzt)] A

ATB(xyt) v B(yt9)v Bitxy)}]
and the negation of Euclid’s axiom, Again T(A,) is complete.
; EXAMPLE 6.3. 'y consists of all interiors of circles. Clearly T(3) coincides.

with the affine hyperbolic geometry AH2 It can be shown that for x(4;) we can.
take the conjunction of the following two sentences:

x(Ay) we can take

H{ = VYxydzuow V¢[T1x'= y - B(xzv) A Bluvw) A 71z = un
A{[T1B(uzt) A 1Bwzt)] v [ 1 B(xyt) A T1B(ptx) A 1B(txp)]} ,
= Vxpztuow[tx |} poaox At ptauz A\t ywawz P puaxv{} zw A xtq} zun
A B(tyw) A B(vyu)— B(xyz)] .
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Notice that Hj is the negation of the sentence formulated above in Example 6.2;
on the basis of GA; it is stronger than the negation of Euclid’s axiom. On the other
hand, H, is a special form of Pascal’s theorem involving six paﬁ*s of parallel
halflines.

It is important fo observe that, from a mathematical viewpoint, H, and AH,
are essentially the same theories since it is known that D is definable in H, in terms
of B (see Menger [5] and Royden [8]). Hence the axiom system consisting of
A-Ag, H,, H, and the (non-elementary) continuity axiom can be regarded as an
adequate axiom system for the ordinary (non-elementary) two-dimensional hyper-
bolic geometry.

Another consequence of this observation is that the metamathematical properties
of AH, resulting from Theorem 5.12 can also be derived directly from the corre-
sponding theorems on H, stated in Szmielew [14].

EXAMPLE 6.4, A, is the class consisting of the plane and of all interiors of
halfplanes and circles. As x(o,) we can take Pascal’s theorem in the special form
stated above in Example 6.3. On the other hand, let 7 be the class consisting of
the plane 'and of all interiors of circles; then T(") clearly coincides with AA, and
for y(2#",) we can take the conjunction of Pascal’s theorem and the negation of y (£',).
It might be interesting to find a simpler sentence for this purpose. Obviously neither
T(# ,) nor T (4% is complete; T(#",) has three complete and consistent extensions,
T ), T 2) and T(A,), while T(#%) has two such extensions, T(#",) and
T(A5).

EXAMPLE 6.5. Let n>3, let further 2, be the class of all interiors of convex
polygons with at most z vertices,and £, the class of all interiors of convex polygons
with exactly n vertices. For x(#,) we can take

Fvg oo 0, V0,01 0,00 30,0 3 { T = 0. A o A TI0g = 2, A[B(U 0o 0,53) V ...

. VB(” Vo n+3)]A[B(Un+lvn+zvn+3)VB(vn+2”n+3“u+1)V-B("n+3vn+1vn+2)]};

For n = 3 the class 2, coincides with 2,; if n>3, we take for x(#;) the conjunction
of x(#,) and the negation of x(#,-,). The classes 24 and 2} satisfy the premiss of
Theorem 5.12(iv), so the corresponding theories T(#}) and T(2,), the affine geometries
of triangles and quadrangles, are complete. On the other hand, all the theories
T(#,) with n=5 are incomplete and each of them has 2% complete and consistent
extensions (compare the proof of Theorem 4.10).

It may be mentioned that none of the classes discussed in Examples 35 satisfics
the following condition: together with any set S it should contain all the sets X such
that the space (R, §) and A,(N, X) are isomorphic. Hence each of the classes "
can be enlarged by some subsets of Rx R without affecting the corresponding theory
Tx).

There are interesting extensions of GA, which are not of the form discussed in
Theorem 5.12 but are obtained by direct enlargement of the axiom system. Again
we wish to give a few examples.
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EXAMPLE 6.6. In the axiom system of -GA, we include the negation of Euclid’s
axiom. Let Ty, be the resulting theory. Every model of T, is isomorphic to a re-
stricted affine space W,(§F, S) where S is different from the whole plane Fx F (and,
of course, § is a real closed field). The axiom system for T ;) has been constructed
by the same method as the axiom system for H, in Szmielew [14]; nevertheless, the-
two theories differ essentially in some of their metamathematical properties. Using
the methods employed in the proofs of Theorems 4.10, 4.15 and 4.16, we may prove
that T, is hereditarily undecidable, non-finitely axiomatizable, and has 2% complete
extensions.

In describing the remaining three examples we shall use E as an abbreviation
of the formula

Vitu Jow [B(xut) A B(yuz) A 1x = u — B(xyv) A B(xzw) A B(vtw)] .

As is easily seen, three points x, y, z of an affine space (i.e. a model of GA,), in case
they are not collinear, satisfy this formula if and only if the angle whose vertex is
x and whose sides pass, respectively, through y and z, is a “Euclidean angle” in the
sense that every point ¢ inside this angle lies between some points v and'w lying
on the two sides of this angle. Using the abbreviation E we can give to Euclid’s
axiom E the following simple form:

VxyzE(xyz) .
EXAMPLE 6.7. We supplement the axiom system of GA, by the sentence
Vxrsdyz[r = sA T1B(xrs) — B(rys) AB(rzs) A 71y = z A E(xyz)] .

Let T, be the theory based upon the extended axiom system. Using Theorem 3.10,
we easily show that every model of T,y is isomorphic to a restricted affine space
A,(§, S) in which the boundary of Sis rectilinear, i.e., is the closure of a union of
segments with distinct endpoints; conversely, every restricted affine space (over
a real-closed ordered field) with this property is a model of T, provided it is a model
of GA,. Again using the methods employed in the proofs of Theorems 4.10, 4.15
and 4.16, we may prove that the theory T,y is hereditarily undecidable, non-finitely
axiomatizable, and has 2% complete and consistent extensions.

EXAMPLE 6.8. We now enrich the axiom system of GA, by including the sentence
Vxys3z[1y = sA 1B (xys) — B(yzs) ATy = zAE(xyz)].

The resulting theory Ty, which is a subtheory of T, exhibits some interesting
model-theoretical properties. A necessary and sufficient condition for a restricted
affine space (R, S) to be a model of Ty is that (R, S) be isomorphic to a re-
stricted affine space (M, S*) where §” is the interior of a convex polygon, i.e.,
S’ e P, for some n>>3 (see Example 6.5). However, there is a model of T, in which
all the sentences y(,) for n = 3, 4, ... are false. Indeed, let us enrich the theory Tesy
by including the negations of all the sentences x(2,), n = 3,4, ... Since any finite
set of sentences x(#,) is consistent with T s, the resulting theory Ty, is consistent
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but has no models in the class % of all restricted affine spaces over R. Ty, is not
a finite extension of GA,. Using the method employed in the proof of Theorem 5.10,
we may prove that T, has 2™ complete and consistent extensions, and by a method
similar to that employed in the proof of Theorem 5.12, and we may conclude that
both T, and T, are not finitely axiomatizable. The problem of decidability
remains open for both theories. ‘

ExampLE 6.9, Finally consider the theory T(s, obtained by adding to the axioms
of GA, the sentence

Vxyz[E(xyz) — B(xyz) A B(yzx)].

Every model of T s, is isomorphic to a restricted affine space (¥, S) in which (i) the
boundary of S is curvilinear, i.e., does notinclude any segment with distinct endpoihts,
and (ii) S does not include any two distinct halflinés of the space (%) which have
the same origin and do not lie on the same line. Conversely, every restricted affine
space (over a real-closed ordered field) which has this properties and is a model of GA,
is also a model of T(sy. The theory T¢s is hereditarily undecidable, non-finitely axio-
matizable, and has 2™ complete and consistent extensions. The proof of non-finite
axiomatizability does not differ essentially from that of Theorem 5.14. To prove
that T(s, is hereditarily undecidable and has 2™ complete extensions we must first
modify the proofs of Theorems 4.10 and 4.15 by taking models whose boundaries
are sums of circle segments instead of line segments. Then we employ the technique
developed at the beginning of Section 5 to define a counterpart of the notion of
vertex.

To conclude we state three results of a different character concerning extensions
of GA,. Let § = (F,0,1, +,-, <) be a real closed field; further, let

\ K = {{x, %500 xy, % € Faxi+ad<r?).
LEMMA 6.10. For any r e F, the systems U (§) and W,(F, Kg) are elemen(aril};
equivalent with respect to universal sentences. '
Proof. Let § be a real-closed field, which is an extension of § and has an el-
ement ' greater than all elements of §. Then
Wa(F, Kp) S U (F) = Wa(F', Kg) -

Both 912(8,1(.5_) and Uy(F', K§) are models of the theory T(#',) discussed in
Example 63 Smce the theory T(A',) is complete, Wn(§F, Kg) and W,(F', Kg) are
elementarily equivalent. Therefore (&, Kg) and W,(F) are elementarily equiv-
alent with respect to universal sentences.

THEOREM 6.11. If a universal sentence is true in some model of GA,, then it is
true in every model of GA;. In other words, GA, is complete with respect to universal
sentences. : '

A related result was stated in Tarski [16] (Theorem 7).

Proof. Le‘f A be a model of GA,. Then by Theorem 3.9 there is a field & and
a set S convex in W,(F) such that A = W,(F, ). Since §'is a non-empty open set,
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there is an element r of the field &, such that 2,(%, Kz) may be embedded in
W (F, S) SAy(F). Thus, by Lemma 6.10, An(F, S), i.e. A itself, is elementarily
equivalent to 2,(§) with respect to universal sentences. Since for any two real-closed
fields § and §’, the relational systems (%) and %,(F') are elementarily equivalent,
it follows that any two models of GA, are elementarily equivalent with respect to
universal sentences.

THEOREM 6.12. Let ¥ be a sentence of the form

LATZ AT \V - ' 2

where ® js a formula without quontifiers, and let m be any integer =k and =3.
Then the sentence ¥ is valid in GA, if and only if it is valid in the theory T(2.) of
Example 6.8.

Proof. Since T(2,) is an extension of GA,, it will suffice to prove that if Y is
1ot a theorem of GA, then it is not a theorem of T(2,,). Let U be a model of GA,
such that ¥ is false in 2. By Theorem 3.9 we may assume that 20 = W,(F, ) for
some real-closed field %, and a point set S convex in W,(F). Since the sentence is not
true in 9, we have EJv, 3o Vo ... Vo,.,719. Assuming, without loss
of generality, that vy,..., V) are pair-wise distinet, this means that there are
points Xy, ..., X € S such that

V; ... ¥
Ak Voo Vo, 10 Li xﬂ ‘

The set S is open and convex, and so itincludes a set P, the interior of a convex poly-
gon with m vertices, containing all the points x;, ..., Xg. Since A (F, P)= WL(HF, S),
we have

Vi Vi
Xy e X ’

Wo(F, P)E Voppy o V0,10 [

and therefore the sentence W is false in 2,(§, P). Thus ¥ is not a theorem of T(2,)-

Now T(2,) is decidable (sce Theorem 5.12(iii)), and so Theorem 6.12
implies

TuEOREM 6.13. The theory GA, is decidable with respect to the set of V3 -sentences
(in other words, the set of Y1 -sentences which are valid in GA, is recursive).

TuroreM 6.14. The theory GA, is not a Y3-theory.

Proof. Let § = <F,0,1, +,+, <) be a field of algebraic numbers, and
let « be any transcendental number. There is an increasing sequence o; of rational
numbers converging to a. Let ‘

Sy = {(xy, x>t Xy, ¥p€ FAx <} and  S§= [y, Xap: ¥y, Xy € FAXy <a} .

For any natural number i, %; = (¥, S) is a model of GA, (see Example 6.5);
on the other hand, U 2; = y(F, S) is not a model of GA, (cf. the proof of

ciew

Theorem 3.10(ii)). Thus by the Lo§-Suszko Theorem (see Los-Suszko [4]) GA, is
not a V3-theory. : ‘
31(
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§ 7. Multi-dimensional geometries GA,. In this scction we shall indicate how to

extend some of our results to the case of n-dimensional affine’ geometry for 733,
DermniTiON 7.1. To define conveniently the notion of n-dimensional general

affine geometry we introduce a sequence of abbreviations (¢f. Kordos [3]):

L, = B(V,V,V3)VB(¥,V3V,) v B(V3V,V,),

L, = 3v, L (Vo Vi o V)AL (Vo VY500
podne2d .

for n=1,where  \/ @, ., denotes the disjunction of all formulas Dy,

v s
{Hinezd neay
with i, ... 7,,> a permutation of {I,...,n+2}. It is easy to see that L, denoles
the notion of collinearity, L, the notion of coplanarity and, in general, L, the no-
tion of belonging to the same n-dimensional hyperplane.

DerinrTioN 7.2. By the n-dimensional general affine geometry GA, we mean

a theory formulated in the first order language L(B) and based upon the axioms
A;-Ay with the axioms A, and A4 replaced by

n
7= avi vn+l—an-—1 ]
A’é = vvl o vn+2Lu ‘

It should be pointed out that, as is well known, Desargues’ axiom A, follows
from the remaining ones in GA, for all n>2, and therefore it may be dropped from
the axiom systems of these theories altogether (sce e.g. Whitehead [19]).

It is easy to see that A} and A2 are equivalent to Ay and Ag, respectively.

The sentences Ay may easily be expressed in a V3 -form. Kordos [3] showed
that_ the sentences A7 cannot be expressed in such a form, He proved that any
V3 -sentence valid in-AE, is valid in AE, whenever 2<m<n (see Kordos [3]
Theorem 5), where by AE, we mean the n-dimensional Euclidean affine geometry.
an extension of GA, by Euclid’s axiom E (see Example 6.1). h

Dermvirion 7.3. Let % = {4, B) be a model of GA,, and suppose that
a,b,ced are non-collinear, i.e.,

Ak 1L, [Zl ZZ ‘0’3] ,

By the plane through a, b, ¢ we mean the set of all points of the model A, coplanar
with the points g, b and ¢, i.e., the set

P(abc) = {x: xed and AEL, [vl V2 Vs V4]}
a b ¢ x|{’
'E['HEOREM 7.4. If Wis a model of GA, and a,b,ce A are non-collinear, then N
restricted to P(abc) is a model of GA,.

Using this 'theorem, we can generalize Theorem 3.9 to arbitrary 12 (the notions
of an n-dimensional affine space over the field & and an »-dimensional $-restricted
‘affine space over § are assumed to be understood):

icm

Metamathematical discussion of some affine geometries 191

THEOREM 7.5. If 9 is a model of GA,, then there is an ordered, real-closed field §.

and a point set S convex in WAF) and such that U is isomorphic to W,(F, ).

Repeating (with obvious changes) the proof of Theorem 3.10, we get
THEOREM 7.6. (i) Every n-dimensional S-restricted affine space over R is a model

of GA, provided the point set S is convex in W, (R).

(i1) If the real-closed field §& is not isomorphic to R, then there is an n-dimensional

restricted affine space over the field § which is not a model of GA,.

{1]

2]
[31

(4]
{51

fel

[8]

9]

{101
[
2]

(13]

Similarly, modifying the proofs of other relevant theorems, we get
THEOREM 7.7. The theory GA, is

(i) undecidable,

(i)

(i) incomplete and, in fact, has 2¥° complete extensions, N

=

decidable with respect to Y3 -sentences,

(iv) complete with respect to universal sentences,
(V) not finitely axiomatizable,
(vi) not a Y3 -theory.
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Non-axiomatizability of real general affine geometry
by

Alexander Prestel (Konstanz) and Lestaw W. Szczerba (Warszawa)

Abstract. In Szczerba-Tarski [7] the question has been reised whether general affine geometry
is an elementary theory of affine plane over field of real numbers restricted to non-empty, open and
convex set. It is proved that the answer is negative because the first theory is given axiomatically
while the second is not recursively axiomatizable. '

There is a well known axiom-system of the arithmetic of real numbers containing
just one non-elementary axiom, the so called continuity axiom. It follows from the
considerations in Tarski [9] (see also Tarski, Mc Kinsey [L1]) that by replacing the
continuity axiom by the set of all of its first order instances we get an axiom system
of the elementary arithmetic of real numbers. The same procedure may be carried
out for real Fuclidean (see Tarski [10]), hyperbolicand absolute geometry (see Szmie-
lew [8]). In Szczerba-Tarski [6], the question was asked whether the same procedure
used in the case of general affine geometry provides an axiom system for elementary
real general affine geometry.

We shall prove that it is not true. In fact, elementary real general affine geometry
turns out to be non-axiomatizable. Nevertheless the procedure of replacing the con-
tinuity axiom by the continuity schema provides us with an axiomatizable subtheory
of elementary real general affine geometry which, in some sense, is as close as possible
to it. Namely the simplest sentence discriminating these theories is of type vayv.

The method of proof may be applied to the proof of some other non-axiomati-
zability results, e.g. we may prove by its means the non-axiomatizability of the
elementary theory of rational function fields over formaly real fields, and the already
known (sec Rautenberg [4]) non-axiomatizability of the elementary theory of
Archimedean ordered fields.

§ 1. Theorems on non-axiomatizability. Let .# be a class of structures of the
some signature (which will be regarded as fixed for the whole of this section). Let
T(.#) be the elementary theory of the class .
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