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Generalized paths and pointed 1-movability
by

J6zef Krasinkiewicz and i’iotr Minc¢ (Warszawa)

Abstract. In this note we present a characterization of pointed 1-movability and give some of
its applications.

It is still unknown whether movable continua must be pointed movable. In
case of compacta the answer is negative. It is known that for contina this problem
reduces to the problem whether movability implies pointed 1-movability. Therefore
investigations of pointed 1-movability seem to be interesting and important. In
this note we generalize, in the spirit of shape theory, the notion of a path in a space.
Tt turns out that the “pathwise connectedness” in this new sense characterizes pointed
1-movability (see Theorem 3.1). Using this characterization one can easily prove
that, for instance, arcwise connected continua are pointed 1-movable (see Problem 11
from [1] and Problem 4 from [5]). This characterization clarifies also why pointed
1-movability is an invariant of continuous mappings of continua (see [7] and [11]).

1. Generalized paths. In this section we define a notion generalizing the notion
of a path in a space. We shall show that such “nice” spaces as tree-like continua are
“path-connected” in this new sense, but such “singular” ones as solencids and the
Case-Chamberlin curve are not. It will be clear from the definition that “path-
connectedness” in this new sense is also invariant under continuous mappings.

Let X = {X,,,‘f,,,,,} be an ANR-sequence, Where fo,: Xu—X,, 1<n<m. Let
X = limX and for ecach n>1 let f;: X— X, denote the projection. For x,y € X
let x, = f,(x) and y, = f,(y) be their nth coordinates. Let 7 = [0, 1] and I = {0, 1}.
Consider a sequence of paths (in the ordinary sense)

w = {wn}r‘f;l >
where @,: (I, 0, D= (X, Xy, ¥a) -

A.  is said to be an (X,, X)-approximative path from x toy if for each m=n
we have
w n"N"f;im ° w"l N %\

(all homotopies between paths are relatively I).
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B. wis said to be an X -approximative path from x to y if w is an (X,, X)-approxi-
mative p_ath from x to y for each n>1. @ will be also called an approximative path
Jrom x to y in X. ‘

C. The points x, y e X are said to be (X,, X)-joinable (or: X,-joinable in X)
provided that there exists an (X, X)-approximative path from x to y.

The following proposition can be proved using some standard techniques
employed in many papers on shape theory (comp. for instance [9] and [10]).

1.1. PROPOSITION. Let X' = {X}, fun} be another sequence associated with X,
Then we have:

() if for each n=1 there exists an (X,, X)-approximative path from x fto y,
then for each n>1 there exists an (X,, X")-approximative path from x to y,

(i) if there exists an X-approximative path. from x to y, then there exisis an
X '-approximative path from x to y.

The above proposition enables us to define the following notions independent
on the choice of a particular ANR-sequence associated with X.

D. The points x,y € X are said to be weakly joinable (in X) if for each n>1
there exists an (X, X)-approximative path from x to y (equivalently: if they are
(X,, X)-joinable for each nz1).

E. The points-x, y € X are said to be joinable (in X) if there exists an X -approxi-
mative path from x to y.

Note that if X.s joinable between x and y then it is weakly joinable between
these points.

Now we give three examples illustrating those notions.

1.2. ExaMPLE. Continua with trivial shape are joinable between any two points.

This is an immediate consequence of the fact that such continua can be presented
as inverse limits of absolute retracts (comp. [S]). Hence, in particular, tree-like
continua have this property.

A continuum X is said to be spreadable if there exist a continuum Y and a sur-
Jection f: Y— X such that for each map g: X—Z, where Z € ANR, we have g o f=0,
i.e. g o f is homotopic to a constant map.

Note that locally connected continua and continua with trivial shape are
spreadable (comp. [S]).

Moreover, it is evident that

1.3. PROPOSITION. Contimous images of spreadable comtinua are spreaduble.

1.4. EXAMPLE. Spreadable continua are joinable between any two points.

Proof. Let X be a spreadable continuum and let x, y € X. We shall show that X
1s' Jomab‘le between x and y. Let Yand f: Y— X be as in the definition of spreadability.
Since f is a surjection, there exist X, ¥ € ¥ such that f (%) = x and f(J) = y. Let

X = lm{X,, fon}
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be a presentation of X as the limit of an ANR-sequence and let f,: X— X, denote
the projection.
Letp,: X,— X, be the universal covering projection. By our assumption we have

f,of=~0 for each nx1.

Now, by an analogous procedure as in ([5], § 4) one can construct a collection of
mappings: '
0, Y%, and f. XX,

such that for each 1<n<m the following diagram commutes:

2" -« ?nm /Xm
Nen m
NP4

Pn \\ Y/ Pm
Sued/ " N\gme S
v

X, 5 fm X,

Let %, = ¢,(%) and 5, = ¢,(7) forn>1. Let &,: (1, 0, D—(X,, X, 7.) be an arbitrary
path and let

Wy = Py © Dy -
Note that w,: (I, 0, 1)~+(X,, X,, ¥,), where x,, y, are the nth coordinates of x and ¥
resp., i.e., x, = f,(x) and y, = f(»). We shall show that

9 = {wn}::-'l

is an approximative path from x to y (in the system {Xys from})
Fix n>1 and let m>n be an arbitrary index. Since @, and Fom © &, have the
same endpoints and the space X, is simply connected we have ‘

@Byfom o By in X, (rel. ).
Since the diagram is commutative we conclude that
Wy = Py ° d')ugpn °fnm ° By = fum © P ® o =fnm ° Wy, -
This proves that ¢ is an approximative path, which completes the proof.
1.5. BXAMPLE. No solenoid is weakly joinable between any two points belonging
to different composants. ‘
Proof. We shall show this in the case of dyadic solenoid X. (The proof in the

general case is almost the same). Let x and y be two points of X from distinct com-

posants of X. )
We prove that X is not weakly joinable between these points.
Denote by S the unit circle in the complex plane, i.e. S = {zeC:.|z| = 1};

and let p: S—S be the map given by
0(2) = 2*.
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Represent X as the limit of the inverse sequence X = {X,,f,.}, where X, = §
.and Sum+1 = ¢ for each n>1. Suppose there is an (X, X)-approximative path
o = {w,} from x to y. Since (fy.)e is a monomorphism and f,, is a covering
projection it follows that  is an X-approximative path from x to y. Lifting
successively m; to X,, X, ... we obtain a path in X between x and y. It follows that x
and y belong to the same composant of X, a contradiction. S

Now we describe the above notions more geometrically treating X as a subset
of a space M e ANR(M).

Let o = {w,},-1 be a sequence of paths, where

o, (1,0, 1)=>(M, x, )
such that for each neighborhood U of X in M there is an index my such that

w,(I)=U for each nzny.

Let W be a neighborhood of X in M.

P
.A . o is said to be an (W, M, X)-approximative path from x to y if there exists
an index n, such that for each m,n>=n; we have ’

w,2, in W,

B'. o is said Fo be an.(M » X)-approximative path from x to y if for each neigh-
b.orho.od 14 of'X in M @ is an (V, M, X)-approximative path from x to y. In this
situation w will be also called an approximative path (of X) from x to y (in M).

C' The. points x,ye X are said to be (W, M, X)-joinable (or shortly:
WE;./lnj\l;le)’(;f M and X are fixed under considerations) provided that there exists
a (W, M, X)-approximative path from x to y. In this case we say al t X i

)~ . also that

(W, M, X)-joinable between x and y. ‘ ’ A
. For these notions one can establish a proposition similar to 1.1, where the
inverse sequences are replaced by. ANR-spaces containing X and the coordinates
of the inverse sel:quences are replaced by neighborhoods of X. Hence the notions
formlfla:ted at D’ and E' are independent on the choice of a particular ANR -space
co:_ltammlg X. F,urthermore, one can easily show that the notions formulated at
points D' and E’ below are equivalent to the corresponding notjons from D and E.

D'. Xis said to be weakly joinable between x if Xi .

A ,ye Xif Xis (¥, M, X)-joinab]

between these points for each neighborhood ¥ of X in M. ( Jrioinable

E’. Xis said to be foimsze between X Xi ere e is s an (/ - -
. ye if th e €XIst i
. ‘ > (A’f, X) approx1

’ 1 _ 1y s .
thF -fIf o' = {o,} s a (W, 1‘24 » X )-3pprox1mative path ((M, X)-approximative
pe;l ) from x ) to ¥ and w* = {co,,} is a (W, M, X)-approximative path
((M, X)-approximative path) from y to z, ze X, then we define the product of o'
and w? by the formula: 2

o' x o’ = {w} *ol}.

e ©
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Clearly, o*x* is a (W, M, X)-approximative path ((M, X)-approximative
path) from x to z.

It is evident how to define an analogous product in the inverse sequences.

By this remark the relations of joinability and weak joinability are equivalence
relations in X. The classes of equivalent elements of X under these relations will b,
called approximative path components and weak approximative path components of X,
respectively.

1.6. PROPOSITION. If x and y are (weakly) joinable points of X and f: X—Y
is continious, then f(x) and f () are (weakly) joinable in Y. )

1t follows from 1.6 that the notions of weak approximative path component
and approximative path component behave under continuous mappings similarily
to the notion of path component (in the ordinary sense).

By a chain we mean a finite collection of sets (4, ..., 4,) satisfying the con-
dition:

A0 4; # B = |i—jI<] for each i,j=1,..,n.

The chain is an e-chain if max(diam4;: i =1, ey M) <E.
1.7. ExAMPLE. Let X be a continuum and let x, y be two points of X satisfying
the following condition: :
for each >0 there exists an g-chain (Ay, ..., Ay) of subcontinua of X scuh that
xed; and yE A,.
Then X is weakly joinable between x and y.
Proof. Consider X as a subset of the Hibert space H and let U a neighborhood
of X in H. We shall show that there is a (U, H, X)-approximative path from x to y.
Let?” = {Vy, Vas ..., Vi} be a collection of simply connected open subsets
of U which covers X. Let &0 be such that each subset of X of diameter less then ¢ is
contained in a member of ¥ .Take an e-chain (4y, .o» A, of subcontinua of X
with xe 4, and ye 4,. Let xo = X, X, = ¥ and for each 1<i<nlet x;6.4; N Ay
be an arbitrary point. For eachj =1,...,1 let V,(; be a member of ¥~ containing 4;.
For each such a j there is a (V. H, Aj)-approximative‘path a_)f from x;-4 10 Xj.
Clearly, o’ 15 a (U, H, X)-approximative path. Now taking the product
w = @' % @* % ... %0" we obtain a (U, H, X)-approximative path from x to y.
" The next propc;;ition explains relationship between arc-connectedness, pointed
1-movability and the notions we have defined.
1.8. PROPOSITION. Let X be a continuum and let x and y be two points of X.
Consider the following conditions:
(i) there is an arc in X between x and y,
(ii) there is a pointed 1-movable subcontinuum of X containing x and y,

(iii) x and y are joinable in X,
(iv) x and y are weakly joinable in X.
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Then the following implications dre satisfied:
(D)= (iD= (i) =(iv) ,
and none of them can be reversed.
Proof. Consider X as a subset of M ¢ ANR(M) and let ¥ be a subcontinuum
of X. The following condition is equivalent to pointed 1-movability of ¥
For each p, g € Y and for each neighborhood U of ¥ in M there is a neighbor-

hood U, of ¥ in M such that each path in U, with endpoinis at p and ¢ can be
shrunk inside U (rel. [) into any neighborhood of Y (see [7]).

This proves the second implication; the remaining ones are trivial. Obviously,

the first implication is not reversible. Now we give two examples showing an analo-
gous fact for the remaining ones, ‘

1.9. EXaMPLE. There exists a continuum X joinable between two points x,ye X
such that no pointed 1-movable subcontinuum of X contains these points.

Proof. Let Y be the dyadic solenoid and let f: (0, 1]— Y be a map such that

S((0, 1]) is dense in Y. Let X be a subset of Ix ¥ given by
X={0xYu{{t,f@®): o<1},

Set x = (0, /(1)) and y = (1, £ (1)). Clearly, X is joinable between these points. The
remaining property of X follows from the following observations:

1) X is irreducible between x and y, 2) Y is a continuous image of X, 3) Yis
310‘: pointed 1-movable (comp. Ex. 1.4 and Prop. 1.5) and 4) pointed 1-movability
is an invariant of continuous maps.

1.10. EXAMPLE. There exists a continuum X weakly joinable between two points
x,y € X but not joinable between them.

Proof. Let X be defined as the union
o0
X= n Y)l E
n=0

where each Y, is a copy of the dyadic solenoid and the following conditions are
satisfied : )

D NinY={x}= ﬂOY,, for 7,721 and i # j,
a

@) YooY, ={x,y)} for iz1,
(3) diam¥, 0,
- n—re0

(4) all ys belong to a single composant of ¥, which does not contain x,
(5) x and y, belong to distinct composants of ¥; for each ix>1.

Set y = y,. The fact that X is weakly joinable between x and y follows from
arc-connectedness of composants of a solenoid and from Example 1.7. The idea of
the argumel?t that X is not joinable between x and y is as follows. If there existed
and approximative path of X from x to ¥, then pushing it stepwise away from
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Yy, Y3, ... we could obtain an approximative path of Y, from x to y. Such a defor-
mation is possible according to (1), (2) and (5). The complete argument is not very
difficult but the details are rather complicated and therefore we omit them.

2. The fundamental lemma. For the original and geometric definitions of mov-
ability and (pointed) n-movability the reader is referred to [2]. Let us briefly recall an
equivalent definition of pointed 1-movability expressed in the language of inverse
systems.

Suppose

where X, € ANR.

(X= xo) = m{)(m xn)sf;xm}’
Continuum X is pointed 1-movable provided the inverse sequence of fundamen-

tal groups {n(X,, x,), (fun)u} is & Mittag-Leffler sequence (ML-sequence), i.e., for
each #3>1 there is an index n,2=n such that

im(fio)e = im(fym)e  for each mzn, (see [7D.
It is known that this notion does not depend on a particular choice of an

ANR -sequence associated with X.
The following lemma establishes the fundamental result of this paper.

2.1. LEMma. Let X be a continuum. If X is not pointed 1-movable and
X = {X,,fon} is an ANR-sequence associated with X, then there exist an index
ny=1 and a subset A of X such that Cardd = ¢ and no two distinct points of A are

X, -joinable in X.
Proof. Let x, be a point of X and let x, € X, be the nth coordinate of xy, n1.

Since (X, xo) is not 1-movable, {n(X;, x,), (f )4} is not an ML-sequence (£, is
regarded as a map between pointed spaces). Hence there exists an index m,>>1 such

that the sequence {im(f)s bnmno does not stabilizes.
Restricting, if necessary, the system X to a subsystem we may assume that

ng = 1. Thus the above condition changes to the following

©
(1) {im(fi)a}ns1 is a decreasing sequence such that ﬂlim( Sime #1Im(fids
p=
for each iz1.

The relation of X,-joinability in the system X is an equivalence relation in X. Thus
there is a subset 4 of X with the following property

(@) for cach x e X there exists exactly one point @(x) € 4 such that x and a(x)
are X, ~joinable in X.

To complete the proof it suffices to show that

(*) Cardd = ¢.

Now we perform several auxiliary constructions leading to an argument for (¥).
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Since X, is an ANR-space, by the West theorem [15] there is a (compact)
polyhedron ¥, and two mappings a: X;—»X, f: X, X, such that B o acidy,
and « o fovidg, . Having this result it is easy to verify that without loss of generality
we may assume that X, is a polyhedron (precisely: replaceing fi, by a o f;, and X;
by X, we obtain an ANR -system associated with X in which the first space is a poly-
hedron and which satisfies conditions analogous to (1) and (2), where 4 and a(x) are
unaltered).

Let 7 be a triangulation of X such that x, is a vertex of T. Let D be a maximal}
tree in T, where T™ denotes as usual the 1-skeleton of 7. Denote by (B, b) the
space obtained from (Xj, x,) pinching D to a point. Let

- g: (X, x)—~(B, b)
be the quotient map. :
Set

3 . G, =im(gefy,)s for nzl.

Since (g)4 is an isomorphism by (1) we have

o .
4) Gy, G,, ... is a decreasing sequence of subgroups of ©(B, b) such that N G, # G,
n=1

for each i>1.

There is a covering projection

P’l: (S;;l’ y'l)_).(’B3 b)
such that '

%) G, = im(p,)y for nx1
(see [13, p. 82, Th. 13]). From (3) it follows that G; = = (B, b), hence (5) implies that
(6) py; is a homeomorphism.

By (3), (5) and the lifting theorem [13, p. 76, Th. 5], there is a mapping
g}l: (X'II’ x")——)(i” yn)

such that

@) gofin=p,°8, for nxl.

By (4) and the lifting theorem there is a mapping

En,n-i- 1t ()7;14'1 » yn+1)"(?m In)
such that ’

(8) Dus1 =pn°ﬁn,n+1 for n=l.
It follows also_that

(®)  Myney Is a covering projection for n>1 (see [13, p. 79, Lemma 1.
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Let us prove that ‘
(10) gn nf;v,n-l-.l = Ell,l}“‘l Q ﬁn+1 fOl‘ nZI .
By (7) and (8) we have

Y =P Gy Suner = qoflu Dfn,n-l-l =4 °f1,u+1 = Put1 °In+y
=pPp° Eu,n-l-l o Gnty -

Thus the maps appearing in (8) are liftings to (¥,, »,) of the map y: (X4, Xp41)
—(B, b). Since they agree at x,., and X, is connected, condition (10) follows
from [13, p. 67, Th. 2]. Now we shall prove the following proposition

(11) if 4*€T and for each n>1 we have a map ¢, 4->¥, such that
gld* = p, o @, and @, = f, 4+ © 9,4, then there is an index ny such that for
m>n, the map f, .+, is 2 homeomorphism between @+ 1(49) and @,(4).

Let us note that ¢,|4"\D: 4D—p,(4"\D) is a homeomorphism because ¢ is
a homeomorphism between 4"\D and g(4"\D). Tt follows that

En,n+ 1 ] (pn+ I(Ak\D) : (/)n+ 1(Ak\D)_'(Pn(Ak\D)

is a homeomorphism. Let r be the number of components of the set A N D. Observe
that each such a component is mapped by @, in the fibre p;(b) (because ‘q(D) = {6).
Since the fibres are discrete, the set ¢,(4* N D) is finite and contains at most r points.
Since By 1 (@ns1(4* N DY) = @,(4* A D) there is an index me=1 such that for
each nng the set ¢,(4* N D) has the same number of points as the set (4" O D).
Now it is easily seen that the conclusion of (11) holds true.

For each n1 let ¥, be a subspace of ¥, defined as follows:

Y, =U{od": 4cT, p: £>%,, ql4" = p, 0, (4" n §,(X,) # B} .
It is easy to see that ¥, is a compact connected polyhedron with a CW complex
structure determined by the cells ¢(4¥). Let Y denote the 1-skeleton of Y, with
respect to this cell structure.

By (8) and (10) we infer that
(12) Hu,n-{‘ 1(Y'n+ I)C Yann(Xn)/ and Eu,n+ 1(Y7('1+)1)C ),1(11) .

Let In: (X'IH xll)_’(Yn’ yn) be deﬁned by gn and let hn,n+1 : (Yn+1: In+ 1)_')(Yn3 yn)
be the restriction of A, .. Furthermore, let £, = ly, and Ay, = hyppy ©
for 1<n<m. By (10) we obtain an inverse sequence of pointed connected polyhedra
{(Y,, ¥,)» hym}. Denote its limit by (Y, y,). Since, by (8), the diagram

(A,nﬂ X,,) ‘4“—L"L (Xma.xm)
T ogn “ldm

(Ym y}l) éﬂi‘ (meym)

° hm— 1m

commutes for each n<m, the maps g, induce the mapping

g: (X, x0)=(Y, ¥)
¢ — Fundamenta Mathematicae T. CIV %
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such that
a3 hyog=4g,°fn>

where f, and J, are the projections. The map g need not be surjective. But we have
the following property:

(14)  each point of ¥ can by joined by an arc to some point of g(X).

Let ze Y. Thus z = (21, 25, ...), where z; = h(2). Since T' is finite, by the
description of ¥, there is a simplex 4* e T and a sequence of mappings ¢,: 4~ 7,
such that g|d* = p, o ,, (4" N g,(X,) # @ and z, e, (49 for n=1,2,..
By (11) the set

M = m'{(Pn(Ak)a hmn}

is a continuous image of 4% containing z. Note also that M is a subset of ¥ meeting
g(X). This completes the proof of (14).

Note that the sets (¥$", y,) form an inverse sequence of connected 1-dimen-
sional polyhedra with the bonding maps being restrictions of the maps #,, . Denote
by (Y™, y,) the inverse limit of that se'quence.

By (3) and (7) we have

im(p, e gn)e = G, -
By (12) it follows that ‘

im(pn[(yna yn))# = Gn .
Since Y is the 1-skeleton of the CW complex Y, we infer that

im(p,,!(Y,(,l), yn))# = Gn .
Hence by (4), (8) and (12) we infer that
15 7™ is not pointed 1-movable.

Consider the sets C = hy'(y;) and C,= A5 (y) = p; (b) N ¥,. It is casy to
see that the maps #,,, restricted to C,, form an inverse sequence of finite sets with C
as its limit. Note that C,< YV, By the description of g and by (6) we infer that ¥{ is
the one-point union of a finite number of &rcles with y, being the centre, According
to. (9) the map #,, restricted to ¥{" is an immersion, i.c. a local embedding. It
follows that A, restricted to each component of Y{*\C, is an embedding. Obviously,
the same holds for the maps /,, . Therefore, the closure of each component of YN\C
ii an arc or a simple closed curve. Using this fact we now prové that

(16) ' CardC = ¢,

Suppose CardC<c. Since C is compact it follows that C is countable.

Consider a subcontinuum Z of ¥V, We shall show that Z is decomposable.
Otherwise, there is a composant E of Z missing- C. Thus E is a subset of a com-
ponent of Y*)\C, hence E is an arc or a simple closed curve. But E = Z, a con-

f
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tradiction. Therefore ¥ is hereditarily decomposable, and by [7] we infer that ¥
is pointed 1-movable, contrary to (15). This proves (16).

Let ¥ be the system {Y,, k,,}. Consider the following relation in ¥: x~y if
and only if x and y are ¥;-joinablein ¥. This is an equivalence relation. Let # denote
the set of the equivalence classes of that relation. By (13) it follows that if x, y e X
are X;-joinable in X, then g (x) and g(») are Y;-joinable in ¥. Hence conditions (14)
and (2) imply that each point of ¥is ¥;-joinable in ¥ to some point of g(4). Thus

17 ' Card F<Card4 .

Now we are ready to prove (#); i.e. that Card4 = ¢, which will complete the proof.
Suppose, to the contrary, that Card 4 <c. Then, by (17), we have Card & <c¢.
Since |J & = Y, by (16) we infer that there is an element Fe & such that

(18) Fn C = C, is uncountable.
Now we define a function
. Co—om(B, b)

as follows. Pick a point ¢, € Co. For y € C, let {w}} be a (¥, ¥)-approximative
path from ¢, to y. Observe that p, o w?} is a loop in (B, b). Define y(y) to be the
clement of n(B, b) with representative py o @}; Le. ¥ (¥) = [p; o 01l

Now we prove that

(19 Y@ #P(@) for z#y (y,zeCy).
There is an index m such that .
(20) hl2) # ho(3) -

Suppose /(z) = W(y). Hence p;ewi~p;owl. By (8) we have pyolyy, = pp-
Since % ahy,, 0wk and @} =2k, o 0, then
P © O3y 2P © Dy«
Since @Z(0) = hu(co) = w(0) and p, is a covering projection we infer that
Wil .

In particular, wi(l) = w}(1) contrary to (20). This completes the proof of (19).
By (18) and (19) we conclude that #(B, b) is uncountable, a contradiction. This
completes the proof of the lemma. ‘

3. Main results. From Lemma 2.1 it follows that continua with countably many
weak approximative path components are pointed 1-movable. Thus by Prop-

‘osition 1.8 we have the following theorem.

3.1. THEOREM. Let X be a contimuum. Then the following are equivalent:
(@) X is pointed 1-movable,
(ii) each two points of X lie in a pointed 1-movable, subcontinuum of X,

6*
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(iii) X is joinable,

(iv) X has countably. many approximative path components,

(v) X is weakly joinable,

(vi) X has countably many weak approximative path components.

As an application of the above result we have

3.2. COROLLARY. Continua with countably many arc-components are pointed
1-movable. In particular, arcwise connected continua dare pointed 1-movable.

The second assertion settles Problem 4 from [5] (comp. Problem 11 from [1]).

A continuum X is said ta, be A-connected if every two points of X lie in a heredi-
tarily decomposable subcontié;mum of X. Since hereditarily decomposable continua
a pointed 1-movable [7], we have also

3.3, COROLLARY. A-connected continua are pointed 1-movable.

Combining the above theorem with the fact established in Example 1.4 we
obtain the following corollary which has been recently obtained by J. Dydak using
different methods.

3.4. COROLLARY. Spreadable continua are pointed 1-movable.

3.5. Remark. Note that this result for curves follows from [5] because, us can
be easily shown (comp. [5, § 41), spreadable curves coincide with continuous images
of tree-like continua.

The characterization of pointed 1-movability contained in Theorem 3.1 together
with Proposition 1.6 offer an alternative proof of the invariance of pointed 1-mov-
ability under continuous mappings of continua. For the original proofs of this result
see [7] and [11].

‘We still have much to learn on pointed 1-movability. In connection with
Corollaries 3.2 and 3.3 we have the following

ProBLEM 1. Given a not pointed 1-movable continuum X, can we map X onto
an (nondegenerate) indecomposable continuum?

A strengthened version of this question is the following

ProBLEM 2. Let X be a continuum which is not pointed 1-movable. Does there
exist an indecomposable not pointed 1-movable continuum ¥ being a continuous
image of X?

‘ Let us remark that in Problem 2 we can not insist ¥ to be a curve, i.e. 1-dimen~
sional continuum. In fact, in [4] it is given an example of a (2-dimensional) I -mov-
able and not pointed 1-movable continuum X,. According to [14], for curves the
notions of movability, 1-movability and pointed 1-movability coincide. By the

theorem presented below it now follows that the continuum. X, can not be mapped
onto any non-movable curve.

_ 3.6. THEOREM. Let f: X—Y be a continuous surjection from a 1-movable con-
tinuum X onto a curve Y. Then Y is movable,

Proof. By the Whyburn factorization theorem there exist a continuum Z and

icm
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two surjections g: X—Z and ht Z— Y such that g is monotone, 4 is 0-dimensional
and f= hog. By [3] it follows that Z is 1-movable. By the Hurewicz theorem
[8, p. 114, Th. 1] we infer that Z is a curve. By the quoted theorem from [14], Z is
pointed 1-movable, Since this notion invariantly behaves under continuous mappings,
Y is movable. This completes the proof.

Tn particular, Theorem 3,6 implies the following

3.7, COROLLARY. One-dimensional image of a movable continuum is movable.

This result settles Problem 1 from [5] (comp. also Problem 10 from [1]). Also,
it extends some results established in [6] and [12].

Tn connection with Remark 3.5 we have the following

PrOBLEM 3. Is every spreadable continuum: a continuous image of a continuum
with trivial shape?

We are indebted to dr J. Dydak for a simplification of Example 1.5.
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