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A reflection'phenomenon in descriptive set theory
by

John P. Burgess (Princeton N. J.)

Abstract. We show that properties of an analytic set E expressible by suitable “universal”
formulas are shared by (many of) the Borel “approximations” to E. E.g., any analytic equivalence
relation is an intersection of ¥, Borel equivalences. TFurther corollaries include a theorem of Solovay
on invariant prewellorderings and a theorem of Cenzer and Mauldin on extending plane analytic
sets with small cross-sections.

§ 1. Preliminaries. In this section we will state, after several preliminary defi-
nitions, a general principle to the effect that Borel “approximations” to an analytic
set E share many “universal” properties of E. This Reflection Principle will be
proved in § 2. Tn § 3 we will exhibit several recent results in descriptive set theory as
special cases of the Reflection Principle. We are grateful to R. D. Mauldin, Douglas
Miller, Jack Silver, and R. M. Solovay for helpful exchanges on the subject of this
paper.

Throughtout let ¥ = 2°*“, the countable product, indexed by pairs of natural
numbers, or copics of the two-point discrete space 2 = {0, 1}. Elements of Y are
(characteristic functions of) binary relations on the set @ of natural numbers. ¥ is
a Polish space (separable topological space admitting a complete metric) and indeed
a homeomorph of the Cantor middle-third set. Let Z< Y be the set of (characteristic
functions of) linear orders on . Being a G, subspace of ¥, Z is also Polish. Let WsZ
be the set of wellorders, and let Q: W—w, be the order-type function. (As is usual
in modern set theory, we are identifying an ordinal with the set of all smaller ordinals,
s0 the set e, of all countable ordinals is the least uncountable ordinal.) For <y,
let W* == Q~1[a], the set of wellorders of type <. Define three relations on Z by:

2Kz + 20,8 EW& Q(z2)€Q(zy)
Zg<zy > 20,1 EWE& Q(z0)<Q(zy) s
zoX¥zy & Z E WV (20,2, € W& Q(z)<02(z)) -
The last of these is analytic (£}) and the other two CA (I H.

Every analytic subset E of Z may be represented in the form {z e Z: o(t, 2},
where ¢ is a 5} formula of 2nd order arithmetic in two free variables, and fe Y
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is a parameter. Let us fix a reasonable enumeration {¢,: i € ®} of such formulas.
We can regard y e Y as coding a natural number and another element of ¥ by:

. the least i such that y(0,7) = 0 if such exists,
i0) = 0 otherwise,

1(y)e Y& 1(y)(m,n) = y(m+1,n).

Let U= {(y,2) & YXZ: 0,,)(t(3), 2)}. U is an analytic subset of Y'xZ. For ye ¥
the y-section U, = {zeZ: (y,2) e U} of U is an analytic subset of Z. Moreover
every analytic subset E of Z has form U, for some y. Such a y is called a U-index
for E. U is called a universal analytic set.

Moschovakis [11] has proved the following important Uniform Boundedness
Theorem:

There is a continuous function I': Y—~Z such that for all ye Y, if U, s W, then
T'(y)e W and z<I'(3) for all ze U,.

Now let X be an arbitrary Polish space, 4 = X analytic. A sifting function for Ain X
is a Borel measurable function f: X—Z such that 4 = X— F™L[W]. Such an f induces
the sequence (X—7/"'[W*: a<w,), and sequences induced in this way are called
covering sequences for 4 in X. If (4": a<w,) is a covering sequence for 4 in X,
then (i) each A is Borel, (ii) 4 = () 4 (iii) at limit ordinals A* = N A% and (iv) for

<oy a<i
any analytic 4’ X disjoint from 4, 4’ is disjoint from some A%

An analytic structure is a relational structure in the usual model-theoretic sense
of the special form U = (X, 4,, By, C,, Dy)apeaeo Where: (i) X is a Polish space,
(i) each 4, is an analytic subset of some finite Cartesian power X9 of X, (iii) each B,
is a Borel subset of some finite power of X, (iv) each C, is a Borel measurable function
from some finite power of X to X, and (iv) each D, e X. By a sifting sequence for
such an A we mean a sequence (f,: @ w) such that Ja is a sifting function for 4,,
inducing a covering sequence (42: a<a,). Such a sifting sequence induces a sequence
U*: a<w;) where A* = (X, 42, B,, Ce» Dy), and such sequences we call covering
sequences for .

Let 7 be a countable set of symbols with relation symbols 4, B,, and function
symbols C,, and individual constants Dy. A generdlized universal Jormula in voca-
bulary I'is an. infinitary sentence & of the special form:

/\ Vuo‘v’vl‘v’vl \/ Pran
meo "

ew

where each ¢, is an atomic or negation-atomic formula in vocabulary I, and:

(*) For each m, the number of # such that @ 18 atomic (rather than negation-

atomic) and involves one of the A, (rather than one of the B, or the logical symbo =)
is finite.

Note that any ordinary universal sentence ¢ of st order logic is a generalized
universal formula, or is logically equivalent to one. To see this, first put ¢ in prenex
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normal form (a string of universal quantifiers followed by a quantifier-free matrix).
Then put the matrix in conjunctive normal form (a conjunction of disjunctions of
atomic and negation-atomic formulas). Finally distribute universal quantification
over conjunction. '

We write A F & to indicate that the structure 2 is a model of the sentence @.

Recall that dce; is closed if for all a<w,, sup(x N 4) = a implies x e 4,
and unbounded if supd = w,, and CUB if both closed and unbounded. An inter-
section of countably many CUB sets is CUB.

At last we are ready to state our main result:

REFLECTION PRINCIPLE. Let U be an analytic structure, and ¢ a generalized
universal formula, such that 20 F @. Then:

(a) For any .covering sequence (U*: a<wm,) for A, {a<w,: A*k P} contains
a CUB set.

(b) There exists a covering sequence (W*: «<w;) for A such that for every a
P E @,

§ 2. Proof of the Reflection Principle.

Lemma 1. Let X be a Polish space, A, X analytic for r € w. Suppose that for
all ¥, new, ", is a sifting function for A, in X, inducing the coverin'g sequence
("A%: a<w,), Then there exist a CUB A< o, and for each r a sifting function f, for 4,
in X inducing a covering sequence (Ay: a<w,) such that:

(2) For all we A and all r,m,new:

AT = AR

(b) For all a<wy and all r,new:

« sup (zn4)
A% = g end)

Proof. Let us fix continuous @: Z?—Z and A: Z®—Z such that for x,yeZ
of order-types &, n respectively, @ (x, ) has order-type Cw+17; and for x,€Z,
iew, of order-types &, A((x;: iew)) has order-type EotE+Eat..

For Borel measurable g: Z—+Z and for ye Y, set:

S(9.7) = {g("(): xe X&r,meo& Inewf,()<*()} V(1@ 2 ()} -

Clearly ©(g, y) is always an analytic set. Indeed if we fix g, and.ﬁx a Borel 1155—
morphism F: Y~X, and fix I} formulas with parameters‘ defining th.e arlm ytic
sets =%, graph g, and {(r,n,, 2): "(F()) = z}, then using these f.oun; as we
can effectively find for any y e ¥ a X} formula with parameterg defining &(g, y).
This means that we may associate to g a Borel measurable function h = $(g) such
that for all ye ¥, h(y) is a U-index for &(g, ).

Notice tiat if ’g [I(/Ii?g W, then forany y e W, G(g, y).E w, fmd her}kce Th (.y) eI.W
where & = $(g) is as above. (For on these assumptions, "f()<*g(y) implies
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"f(x) € W, hence x ¢ 4,, hence for any me o, "f(x) e W and g("f(x)) € W.) Let
us now define functions g;, iew, and g on Z: C
gO(Z) =2z,
gi+1(2) = 0 (g42), Thy(z)) where h; = $(g,) and I' is Moschovakis’ function,
a(z) = A((g«(2): iew)).
Tt is evident that W = gy 1[W] = g~ *[W] for all i. Moreover for z e W we have
90(2)<91(D<gx(2)< ... and:

2(g(2) = sup Q(g2) -
iew
(This last is true because, setting {; = 2(¢94(2)), {4+, has form {iw+n;, whence
Lot Ci+lat.. = sgpci.) Note also that if y,ze W and y<g,(z) for some { (in

i B
particular if y=z) then for all j>i, g,(»)<g;+ 1(2), and hence g( ¥)=g (2). This means
that ©(g(z)) depends only on 2(z), and so we may define a function G': @, by:

G = 2(g(2)
1t is evident that a<G(a) for all a. Moreover if a<f<G (@), then G(f) = G(0).

for some/any z with Q(z) = «.

Let A be the closure of the range of G, i.e. {a<w,: V<u G(f)<a}. For rew .

define f,: X—Z by fu(x) = g(°%.(x)). It is readily verified that 4 and the f, satisfy
the conclusions of the lemma, if we note that g (",(x))=<g (*/,(x)) forall r, m, n & 0. B
LEMMA 2. Let X be a Polish space, A,=X analytic for v € w. Suppose R<aw is
such that:
NEX-4)n N 4,=0.
r<R rZR
Then there exists for each r a sifting function f, for A,in X, inducing a covering sequence
(45 a<w,) such that for all a:
NEX-4)n N4 =9.
r<R rzR
Proof. Fix arbitrary sifting functions e, for 4, in X, inducing a covering sequence
(Ef: a<w,). For Borel measurable g: Z—Z and ye Y set:

(g, ¥) = {9(2): Ixe X(Vr<R(e.(x)<*9(») & Vr2R(z*e,(x)))} U
’ v {g@): z=<* g (0}
Much as in the proof of Lemma we can associate to every Borel measurable g a Borel
measural')le k =‘R(g) such that for all ye Y, k(y) is a U-index for T(yg, »).
Notice that if g [W]= W, then for any y € W, (g, y) < W and hence I'k(y) e W

where *k = R(g) is as above. (For on these assumptions, for any xe X if
e(x)<*g(y) for all r<R, then xe [} (X~4,), and hence for some r=R, x ¢ A,,

r<R

so that if z=<X*¢,(x) for this », then ze W and g(2) e W)

icm

A reflections phenomenon in descriptive set theory

131

Define functions Z-2Z by:
g O(Z) =Z,
g141(2) = @(gt(z), Tki(z)) where k; = R(g)),
g(2) = A((gf2): iew)).
Finally for r e w, define f,: X—Z byf; = ge,. Since, as is evident, g"l [W]= W,
each f, is a sifting function for 4, in X, inducing a covering sequence (47: a<a;).
Much as in the proof of Lemma 1, for ze W, (g (2)) depends only on Q(z),
and we may define a function G on countable ordinals by:

G(o) = Q(g(2))

Let 4 be the closure of the range of G. It is readily verified that:
(a) For all e 4d:

for some/any ze W with Q(z) = o.

NE-E)n NE=@.
rzR

r<Rk
(b) For all a<w, and all rew:
A: = E:up(and) .
From. (a) and (b) it is immediate that the f, satisfy the conclusion of the lemma. B

A special case. We will next prove the Reflection Principle in the following special
case 2 is an analytic structure of form (X, 4o)aew Without B’s, C’s, o1 D’s. @ is a gener-
alized universal sentence not containing the logical symbol = and of the special form:

(%) Vo Vo, Vo, ..\ @,

new
For convenience assume the ¢, are atomic for n<X and negation-atomic for #=N,
for some N<a. (It is part of the definition of generalized universality that only

finitely many ¢, are atomic.)
So suppose 2, @ are as above and A F P. We begin with a combinatorial defi-

nition. To each r e and cach partition @ of r into disjoint pieces {0, 1, ...,r—1}
= 0y U Q) U ..U Qg We associate a Borel subset X, of X7, viz.

Xg = {(x0, %15 w0 Xpoq): Vi, j<r(x = xp) < i,]
belong to the same piece @ of the partition Q}. Clearly
X" = {Xp: Q a partition of r}.
Now each A4, is a subset of some finite power X' @) of ¥. Fix arbitrary sifting

functions f, for 4, in X9, Let w¥ be an arbitrary element of W. For each a and
each partition Q of g(a) define a sifting function for 4, N Xp by:

_Jfix) ifxe Xy,
Joo®) = {w"‘ otherwise .

Here x represents a “vector” (Xo, - Xq(-1)-
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Now let ¢, have form (1) Aam(r,0y» -+ » Vrara—1)) WheTe the negation sign 7 is

present if and only if 7N, and where of course 7, must equal g(a(n)). Let Q(n)
be the partition of r, with #, j in the same piece if and only if L,() = I(j). Set:

E, = {(x;: iew)eX®: (TD((ru0ys s Frutru=1)) € A} -

The fact that % k & translates, working through the above definitions, into the
assertion that:
(1) ﬂ(Xw—En)ﬁ nEn’_‘_Q'
. n<N nzN
By Lemma 2 there are sifting functions g, for the E, in X” inducing covering se-
quences (E%: a<w;) such that for all a:
2 N(X*-ED)n NE =9d.

n<N nzN
Bach g, induces a ranking function g¥ for Auuy N Xgem defined by fixing x* e X
and setting:

g ¥).if x€ Xgp Where x = (Xg, oo, X,,—1) 20d y = (y;: i€ )
and yr;y = x; and y; = x* for i¢range I,
if x é XQ(n) .

gn(x) =
w*

(Note that I,(i) = I,(j) implies x; = x; for x € Xp,-)

Thus for each relevant a and Q we have several sifting functions for 4, n Xj:
The original f,, inducing (d%q: ®<w,) plus all the g inducing (B}: x<wy)
for n with a(n) = a, Q(n) = Q. Applying Lemma 1 we obtain a CUB dcw; and
sifting functions 4,4 for 4, N X, inducing (Cyo: a<w,) such that:

(2) For all xe4 and all new:

Adny, 0 = Bu -
(b) For all « and all n:

o A
Cinr, oy = Aien ot = By

Finally we can define a sifting function h, for each A4, by setting:
ho(x) = hyg(x)  for the (unique) partition @ with xe Xj.
The 4, induce covering sequences (C;: a<w;) with Cj = J{C,qo: @ a partition
of o(d)}. '
. «_ . . . .
Settm'g W= (X, Asew> € = (X, Cieq, it is readily verified using (2), (a), (b),
and working backwards through the definitions, that 9* = €* for all o & 4, that

G” & @ for all o, and hence that * k & for all o & A. This i i i i
s . This is precisely what ired
by the Reflection Principle. W procisely What s equied

The general case. Still restricting our attention to % of form (X, 4,), we may
e})l(tellnd Fhe above argument to cover arbitrary generalized universal ¢ not involving
the logical symbol =. (Any such & is a conjunction of sentences of the special

icm
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form (#*) considercd above, and the extension of the arguments above to this case
is only notationally more awkward.) Next we may allow 2 to have Borel relations By,
simply by treating each such B, and its complement as 2 new analytic relation 4 with
the trivial sifting function:

o=l ¥

xed,

wk  if x¢ A

where w*, z* are arbitrary fixed elements of Wand Z = W respectively. (This f is
Borel measurable when 4 is Borel, and induces a covering sequence with all A” equal
to A itself.) Since identity is a Borel relation, we can now allow = to appear in .
Borel measurable functions C, can be handled by the usual model-theoretic trick
of treating an r-ary function as an (r-+1)-ary relation. Of course the presence of
distinguished clements D, can cause no difficulties. We leave the details of the
extension of our arguments to prove the Reflection Principle in its full generality to
the interested reader.

§ 3. Examples of the Reflection Phenomenon. The Reflection Principle has con-
sequences in several areas of descriptive set theory. We are confident that the illus-
trations presented in this section do not exhaust the interesting instances of the
phenomenon, (In particular we have not investigated applications of the analogous
of the Reflection Principle for higher levels of the projective hierarchy.)

Equivalence relations.

COROLLARY 1. Any analytic equivalence relation on a Polish space is an inter-
section of %, Borel equivalences. :

Proof. Let X be Polish, E an analytic equivalence relation on X, A = (X, E),
and @ the conjunction of the reflexivity, symmetry, and transitivity axioms. @ is
a universal 1st order sentence and 2 k @. Hence by Reflection:

(@) For any covering sequence (E%: a<w,)for E, 4 = {a<o,: E*is anequiv-
alence relation} is CUB in ;.

(b) There is a covering sequence (E*: a<w) for E such that every E* is an
equivalence relation.

Thus /2 is an intersection of Borel equivalences E” H

Our original proof of Corollary 1 essentially involved proving (b) above. Later
Solovay gave a proof via (a) above, and we incorporated this proof into our thesis [1],
Chapter IT Silver suggested to us the project of extracting from the proof(s) of
Corollary 1 a general Reflection Principle.

The proof of Corollary 1 given above can be used to show that a CPCA. 6]
equivalence of the special form Vz(x,y,2) € D, where D is analytic and for each
fixed z {(x,): (x,»,2) e D} is an equivalence relation, can be represented as an
intersection of %, CA. (II7) equivalences. We leave this result as an exercise to the
interested reader.

Elsewhere [2] we have shown using a theorem of Silver,

5 — Pundamenta Mathematicae T. CIV

that:
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Any equivalence relation on a Polish space which is an intersection of ¥, CA,
equivalences has either <z, or else exactly 2™ equivalence classes. )
(Silver’s theorem is the case o = 0.) As remarked in [2] this, together wi
Cor.ollary 1 yields bounds on the number of classes in anal}Eti]c and’ sscgci;l;ezlgéil
eqlflvalc_nces, including the main result of our thesis [1]. In fact we get the followin
which rightly viewed (see [13]) is a generalization of a theorem of Morley on tli
number of isomorphism types of countable models of a first-order theory: ‘
COROLLARY 2. Let X be a Polish space, E an analytic (or special CPCA) equiv-
leence on X, A a PCA (Z3) subset of X. Then the number of E-equivalence class
in A is either <N, or else exactly 2%. “
Proo.f. If 4 is all of X, Corollary 2 is immediate from Corollary 1 and the result
from .[2] cited above. For A< X analytic, 4 is a continuous image under a map Sfof
a Polish space Y. Pulling back E by f yields an analytic (or special CPCA) equiv-
fﬂence-on (all of) Y, so again we have <, or = 2™ classes, Since any PC/g set
is a union of ¥; Borel (hence analytic) sets, we get Corollary 2 in its full generality. B

relatil;lza;s:; (:e.scriptive set theory. Let X be a Polish space, P< X a CA. set. A binary
relation X < d1s a CA prewellordering (PWO) of P if (i) R is reflexive, transitive,
connected, and wellfounded, and (i) R itself is CA (as a subset of X72) Whil;
= {(x,¥): ye X—-P v.(x, yeP&xRy)} is analytic. Every CA subset P of X
possesses a CA_PWO, for if f is any sifting function for X P, then we get a CA PWO
for P by defining xRy to hold if and only if x, ye P and:
least a(f (x) e W)<least a(f(3) e W),
ir;ezhzow;ﬁcse[g]l; [(;512521221 [11{1]ci itti.s sh;wn how the existence of CA PWO’s can be
Reduction rinciple for the class P of C P§
21;&4:41?251; tlfngth;e el)nst Ao', ByeP .with 4y<4, B, E‘i, Aoﬁs;?sztsfloi AI;,
dis-omi 10 = 9. We also getc the classical First Separation Theorem: Any two
j 5 tana. ytic subsets of .a Polish space X can be separated by a Borel set,
e Z DEOXEE lavee zliln equivalence relgt%on on X. A= X is E-invariant if whenever
i J; e ege yed. ReX*is E-ii?variant if whenever xRy, x'Ex, and
o unpm)lisjt)le.d T pfro?f of the Reflection Principle was in part inspired by
o oys unput proof of Corollary 3(a) below. A version of this proof appears
o esis [9], anfl we are grateful to him for explaining it to us. A different
proof o C9rollary 3(a) is given in our thesis [1]. For more on invariem; d “'cr?n*
set theory, including connections with early work of Vaught and others qe; ?[21;"[2’]"
COROLLARY 3. Let X be a Polish space, E an analytic equivalence r’cz;a/io‘r;‘orz X:

(a) (Solovay) Every E-invariant
CA PWO. nt CA subser PSX possesses un E~invariant

(b) (Burgess, [3] § 1) The class i {
E- .o
Reduction Principle of E-invariant CA. subsets of X satisfies the
(©) (Ryll-Nardzewski, see [7]) An ]
s Y two disjoint E-invari 7
of X can be separated by an E-invariant Borel ;:;"‘ ¢ Erimarimt malytic subsets
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Proof. (b) and (c) follow from (a) much as in the classical case (cf. Moscho-
vakis’-work cited above). To prove (a), let P< X be an E-invariant CAset, 4 = X—P,
9N = (X, A, E). Wis a model of the following sentence P

Vo, Vo, (v Evy & A(vg)—>A(0y)) -

By Reflection there is a sifting function f for 4 inducing a covering sequence
(A*: a<w,) and a covering sequence (E*: a<w,) for E such that for all «
(X, A% E% k &, i.e. A" is E"- and hence E-invariant. Define xRy to bold if x, ye P

and:
" least o (f(x) e W*)<least o (few?.

Then R is an E-invariant CA PWO for P as required. H

Separating analytic sets by Borel sets with special properties. Let X be a Polish
space. A property P of subsets of X is called a faithful separation (FS) property if
for any disjoint analytic 4, ESX?, if there exists any B< X? separating 4, E
(i.e. such that ASB, BN E = ©) such that every I-section B, = {x: (¥, x) € B}
of B has B, then there exists a Borel set with the same properties. Clearly if P is
an FS property, so is the property of being the complement of a set with property P.
9 is a CA-monotone property if there exists an analytic T< X® (product of countably
many copies of X) such that for any Ac X, A has P if and only if A°nT = @.
Such a T is called a test set for P. A CA-monotone property P is “monotone”
in the sense that whenever 4 has P and 4’4, then 4' has P.

CoroLLARY 4 (Cenzer & Mauldin [4]). Every CA-monotone property is FS.

Proof. Let X be a Polish space, and to avoid trivialities assume X uncountable.
Let B be a CA-monotone property of subsets of X, T X an analytic test set for P.
Let 4, E be disjoint analytic subsets of ¥? which can be separated by a set B all
of whose I-sections have $. Since 4= B and P is monotone, it follows all I-sections
of A4 have 9. Fix a Borel isomorphism F: X-X* and for n € w let F, = =, F, where
m,: X®—X is projection to the nth coordinate. Let S = F~*(T). Let

. Q[=(X3A:E3S:aneoa~
Let @ be:
VvOVul(ﬂg(vQ vV 73(”0=F,,(”1)))/\ VooV o; (14 (vo, 1)V T1E(vo, v0) -

Then 9 E &, and by Reflection any covering sequences for A, E, and S will yield
Borel A*24, E*2E, S*= such that (X, 4% E° % F,)E . It follows A% is a Borel
set separating 4, E all of whose I-sections have . M

Cenzer and Mauldin show that, inter alia, the properties of being:

(FS1) finite,

(FS2) scattered,

(FS3) totally bounded (closure cqmpact),

I


Artur


136 J.P. Burgess

(FS4) nowhere dense (NWD),
(FS5) of Jordan content 0 (for X = unit interval)
are CA-monotone, hence FS.
o (So, of course, are the complementary properties;
J. Saint-Raymond has shown that the property of being:
(FS6) o-compact
is also FS. His proof establishes the same result for:
(FS7) F,, ‘
(FS8) compact,
(FS9) closed.

ggsoi:;fa;t\nfhs:s;s eé:‘g gt)r.ee;:c;r:f; ‘Ete].) LPetlluz1 sketch a proof, using Reflection, of the
3 : a Polish space, and to avoid trivialities let
assume X uncountable. Let A,. E< X be disjoint analytic sets whicc:ihl:::s iﬁ::isv'i::tui
by a set all of Whose I-sections are closed. Let T'= {(x;: iew)e X*: (xl'c " %‘
::fv;rg_es ;Slxo in X}, a Borel set. Let F, F, be as in the proof of Coroilaryl I4,I :n(;
o (T). Then B = {(y, %): xe closure 4,} = {(y,x): z(z e S& Fy(2)
iew(y, F(2)) € A} is an analytic set separating A4, E, all of whose I ic
are closed. Let A = (X, B, E, S, F,)yea, and let & be:’ 7 " nscetions

VUOV”1( =18 (vy) VE(UOy Fo(’h)) v l\/ojg(“o , Fi(”1))) A

AV oY (1B (g, v) v TE (v, v,)) .

Then AE P and Reflection provides Borel B*=Bod, E'SFE such th at
24, 2 th

(X, an, Ea, S, F,,) F &, ThusB*isa B .
are closed. orel set separating 4, E, all of whose I-sections

That the property of being:
(FS10) 43 (simultaneously F, and Gy)
;ngs lic;llows gfom the next theorem, which was iinspired by a‘n effective versi
- Raymond’s theorem due to' A. Louveau, and by a classical 5011structi0111‘2;

Hausdorf. Recall that an ordinal is odd (even) if it is of form A+n

n an odd (resp. even) integer. 4 limit ordinal,

UNiFOoRM HAUSDORF DEVELO!
AU PMENT THEOREM. Let X b i y
;zizi 54, EcXx? dolSjOlnt analytic sets which can be separated byecz (;erp Z;Ifhf 51’;‘ce:
ions are A;. Then there exist a countable ordinal v and nce ‘0 iy
of Borel subsets of X?, such that: ¢ sequence By, n<
(0) Each I-section of each B,, n<v, is closed,
(1) B, = X2, ,
(2) B,.1SB,, for all n<v,
(3) An B,=B,.y, for all even 4<v, and E B.<
) S

B,y for a
4) B, ="DAB,,, Sor all limit ordinals n<v, res Jor all odd m <
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() B, = .

Thus B = U , (By+1—By) is a Borel set separating A, E, all of whose I-
7 <v,n0dd

sections are A3,

Proof. Fix a complete metric § on X and define a sequence of analytic sets
C,=X? n a countable ordinal, as follows:

(1) Cy = X2

For even 7, Cyoy = {(¥,X): Yneo Aze X(6(x,2)<27"& (y,2)€d 0 )}
for odd n, C,+, is similarly defined, with E in place of 4.

4H C, = N C, for countable limit ordinals.

n<i

Clearly this construction guarantees:

(0") Each I-section of each C, is closed,

2) Cps1SCy, for all 7,

(3) An C, =Cyyy, for all even 7, and E N Cy&Cyyy, for all odd 7.

We can readily “formalize” the above construction: let T be the subset of -
Q0%a 90 ¥y X¥OXO consisting of all (7, u, ¥, (xi;: i,j€w)) such that:

(@) ¢ is the characteristic function of a linear order < on o in which 0 occupies
the first place, and 1 the last, and in which every element i but the last has an
immediate successor Si.

(ii) u is the characteristic function of a subset e of @ containing all 7 which are
not immediate successors in <, and containing the immediate successor Siofiew
if and only if it does not contain 7. (So in case < is a wellorder, ¢ contains precisely
those i occupying even. positions in that order.)

(iif) Writing X for {xy: j€ w}, we have: Whenever i<k, then X, = X,. Whenever
% = Si and iee (resp. i ¢ €), then for every x € X, and neo there exists a z€ X;
with &(x, z)<27" and (y,2) € A (resp. (¥, 2) € E). i

A tedious but routine computation shows that T is analytic. A routine induction
shows that conditions (i)-(iii) imply that if < is a wellorder, i€ ® occupies the nth
place in that order, and x € X, then x € C,. Conversely, if 1, u satisfy (i), (i) above,
< is a wellorder, and 1 occupies the nth place in that order, and x € C,, then
a Lowenheim-Skolem—style argument produces an X = (Xu: J, kew)e X® such
that (t,u,y,x)eT and x € X.

Now we claim that the analytic set T' = {t:3u,y, x((t,u,y,x)€ T)} contains
only characteristic functions of wellorders. For say (¢, u, ¥, X) €T and suppose, with
other notation as above, that we have a descending sequence .1, < <ip<1 in <.
Without loss of generality we may assume i, € e if and only if r is even. Set k, = Si,.
Now the I-sections 4,, E, of 4, E can be separated by a 49 set. So let us fix open G,
and closed F,, r €, such that ) G, = UF,, and this set separates Ay, E,.

r

Since @ # X,, and i, € ¢, there exists x, € X;, with (¥, Xo) € 4, by (iii) above.
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Hence X, € () G,. Pick 1, € so that the open 8-disc Dy of radius 27" about x,, is
r

contained in G,. Since x, € X;, and Is € e, there exists x; & Xy, with §(xo, x,)<27" ‘

and (y,x,)eF. Hence x,&Dyn N(X—F). Pick n;>ny so that the open

6—di§c D, of radius 2”™ about x; is contained in Dy N (X—Fy). Tterating, we
obtain a sequence x,, r €, converging to a point ze (Y G, N N (X—F) = @
H

r r

a contradiction which establishes our claim that 7" contains only characteristic
functions of wellorders. |

Now by the Boundedness Theorem, there is a countable ordinal v strictly greater
than the order type of any wellorder whose characteristic function is in 7". In view
olf our remarks immediately following the definition (i)-(iii) of 1" above, it follows
that: \

55 C, =0.

Now (0")-(5") may all be expressed by generalized universal sentences with sym-
bols for 4, E, and the. {J,,, n<v. For (0') we also need symbols for an auxiliary Borel
set S and some auxiliary Borel measurable functions F,, as in our remarks on
(FS9) above. Hence Reﬂe.ction ‘supplies Borel B,2C, and 4’24, E'2 E satisfying
these same conditions. In connection with (3), notice that 4’ n B,<.B,.., implies

A n B =B,,, and similarly for E. Thus the B, satisf i
the proof. M , satisfy all of (0)«(5), completing

" bg;;l:ris [6] introduces a general method which can be used to show the properties
(FS11) countable,
(FS12) meager (Ist category),
(FS13) of Lebesgue measure O (for X = unit interval),
(FS14) o-bounded (a subset of a o-compact set)

are FS (as well as: nonmeager, positive measure, etc.). For (FS11) this is a classical
theorem of Lusin [8]; for (FS12) it is implicit in Vaught [13]. (FS13), (FS 14‘) an‘d
othe'r exa1_np1es are new in [6]. We are grateful to Prof. Kechris for mak’ing this :NOI’k
of his available to us in advance of publication, and for bringing to our attention tl
work of S. Raymond and Louveau mentioned above., e
_We may mention one further group of FS properties. Let E be a CA. equivalence
relation on a Polish space X. The following properties of subsets of X ar; FS:

(FS15) (E a CA equivalence) Being a subset of an E-equivalence class

(FS16) (E a CA equivalence) Containing r i
epresentat 0
aty Brosivalonce clmey g representatives of only countably

The former is CA.-monotone; FS for the latter is implicit
( e; T 18 implicit in Silver’ i
work on CA equivalences. If instead we take E analytic, the follf)\(,\zzgugi:h;g)'

(FS17) (E an analytic equivalence) Containing no pair of E-equivalent elements

icm
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(FS18) (E an analytic equivalence) Having countable intersection (possibly
empty) with every E-equivalence class.
Again (FS17) is CA-monotone. We will not enter into the proof for (FS18)

here.

If P is a property of subsets of a Polish space X, by B, we mean the property
of being a union of countably many sets each having property B. If  is the property
of being finite (NWD, closed, compact, totally bounded), then %, is the property
of being countable (resp. meager, F,, o-compact, o-bounded). If B is (FS15)
or (FS17), B, is (FS16) or (FS 18) respectively. These examples suggest the question:
Is 9, always FS when $p is ? Affirmative examples, in addition to those just mentioned,
are provided by a remarkable result recently announced by A. Louveau, which
implies that the properties of being Gy, of being Fisq, of being Gigsq, &c. are all FS.
One fairly simple case is open: For X = 2 consider the property % of containing
no two elements of comparable Turing degree. This 9 is CA-monotone, hence FS.

Is B, FS?
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