

On a coincidence of mappings of compact spaces in topological groups

by

G. S. Skordev (Sofia)

Abstract. Let X be a weak-solenoidal space of finite type and $p, q: Y \rightarrow X$ single-valued continuous mappings. If p is a Vietoris mapping and the number of coincidences

$$A(p, q) = \sum_{k} (-1)^{k} \operatorname{tr} q_{k} p_{k}^{-1}$$

is not zero, then there exists a point $y \in Y$ such that p(y) = q(y).

- 1. Let X and Y be metric compact spaces and p, q: $X \rightarrow Y$ continuous mappings. The mappings p and q have a coincidence if there exists a point $x \in X$ such that p(x) = q(x). It is necessary to impose some conditions on the space X, Y and on the mappings p and q, in order to be sure that the mappings p and q have a coincidence. For example, S. Lefschetz gave in [6] a sufficient condition for mappings p and q to have a coincidence in the case where X and Y are n-dimensional closed manifolds with triangulation. This condition is given in the frame work of the homology and the cohomology of the spaces X and Y, [6], Ch. 8, 29.12.
- S. Eilenberg and D. Montgomery proposed in [2] another way to obtain a sufficient condition for a coincidence of mappings p and q. In this case X and Y are metric compact spaces, Y is an absolute neighbourhood retract and the mapping $p: X \rightarrow Y$ is a Vietoris mapping, i.e. p(X) = Y, and for every point $y \in Y$ the space $p^{-1}(y)$ is connected and the homology groups of Alexandroff-Čech $H_i(p^{-1}(y))$ with rational coefficients are zero for $i \ge 1$. S. Eilenberg and D. Montgomery gave in [2] the following arguments. If the mapping p is a Vietoris mapping, then the homomorphism

$$p_* = \{p_n\}: H_*(X) \to H_*(Y)$$

is an isomorphism, [1]; here the homomorphism p_* is induced by the mapping p. Let us consider the linear mapping

$$q_k p_k^{-1} \colon H_k(Y) \to H_k(Y)$$
.

The space $H_k(Y)$ is a finite-dimensional vector space over the rationals and, for almost all k, has dimension zero (this follows because the space Y is a compact ANR space).

In this case we can consider the trace $\operatorname{tr} q_k p_k^{-1}$ of the linear mapping $q_k p_k^{-1}$. The number of coincidence, $\Lambda(p,q)$, of mappings p and q is

$$\Lambda(p,q) = \sum_{k=0}^{\infty} (-1)^{k} \operatorname{tr} q_{k} p_{k}^{-1}$$
.

The following theorem is proved in [2]: If Y is a compact metric ANR space, p is a Vietoris mapping and $\Lambda(p,q) \neq 0$, then the mappings p and q have a coincidence, i.e., there exists a point $x \in X$ such that p(x) = q(x).

L. Górniewicz gave a modern proof and a generalization of this theorem of S. Eilenberg and D. Montgomery in [4]. A further generalization of this theorem is proposed in [5].

Let us recall that the theorem of S. Eilenberg and D. Montgomery is closely related to the problem of existence of fixed points for multi-valued mappings.

Let Φ be an upper semi-continuous multi-valued mapping of a compact metric space X in itself. Suppose also that the mapping Φ is acyclic. This means that the set $\Phi(x)$ is connected and the homology groups of Alexandroff-Čech $H_i(\Phi(x))$ with rational coefficients are zero for $i \ge 1$ and for every point $x \in X$.

The mapping Φ has a fixed point if there exists a point $x \in X$ such that $x \in \Phi(x)$. Let $\Gamma(\Phi)$ be the graph of the mapping Φ , i.e.

$$\Gamma(\Phi) = \{(y, z) \in X \times X | z \in \Phi(y)\}.$$

By p and q we shall denote mappings

$$p, q: \Gamma(\Phi) \rightarrow X$$

such that p(y, z) = y and q(y, z) = z for $(y, z) \in \Gamma(\Phi)$. Then it follows that

$$\Phi(y) = qp^{-1}(y)$$
 for every point $y \in X$.

The mapping $p \colon \Gamma(\Phi) \to Y$ is a Vietoris mapping because Φ is an acyclic and upper semi-continuous mapping.

The mapping Φ has a fixed point if and only if the mappings p and q have a coincidence.

We shall consider the following problem. Let Y be a metric compact space and G — a compact, connected and finite dimensional topological group. Let $p,q: Y \rightarrow G$ be continuous single valued mappings, and p — a Vietoris mapping.

The space G is a metric compact space, because G is a compact, connected group, [8]. Therefore the homology groups $H_k(G)$ of Alexandroff-Čech with rational coefficients are finite dimensional-vector spaces over the field of rational numbers and for almost all k the space $H_k(G)$ is zero-dimensional, [9]. Then the number of coincidence.

$$\Lambda(p,q) = \sum (-1)^k \operatorname{tr} q_k p_k^{-1},$$

of the mappings p and q exists.

In the case where G is a locally connected topological space, G is an ANR space, because G is a Lie group, [7], Ch. 8. Then, if the number of coincidence is not zero, the mappings p and q have a coincidence, [2].

In this paper we consider the question of existence of a coincidence of the mappings p and q without the assumption that G is a locally connected space. It is known that G is locally homeomorphic to the product of a finite-dimensional ball and the Cantor discontinuum, [8].

We shall prove the following theorem:

THEOREM 1. Let G be a compact, connected, finite-dimensional topological group and Y a metric compact space. Let $p, q: Y \rightarrow G$ be single-valued mappings and p-a Vietoris mapping. If the number of coincidence,

$$\Lambda(p,q) = \sum_{k=0}^{\infty} (-1)^k \operatorname{tr} q_k p_k^{-1},$$

is not zero, then there exists a point $y \in Y$ such that p(y) = q(y), i.e. the mappings p and q have a coincidence.

From this theorem follows Lefschetz's fixed point theorem of [9].

Actually we shall prove a more general theorem than Theorem 1. To formulate that theorem we need one definition,

The compact, connected space X is called a weak-solenoidal space if X is the limit of an inverse system

$$\{X_k, \pi(k+1, k) | k = 1, 2, ...\}$$

such that

- 1) X_k is a connected finite polyhedron.
- 2) $\pi(k+1, k)$: $X_{k+1} \to X_k$ is a finite sheet covering space.

An example of a weak-solenoidal space is the following. Let A be a compact, connected, finite-dimensional topological group and B a closed subgroup in A. Then the quotient space A/B is a weak-solenoidal space, [8].

Let us recall that the space Y is called a space of finite type if $\dim H_*(Y) < \infty$. We shall prove the following theorem:

THEOREM 1'. Let X be a weak-solenoidal space of finite type and $p, q: Y \rightarrow X$ single-valued continuous mappings. If p is a Vietoris mapping and the number of coincidence, $\Lambda(p, q)$, is not zero, then there exists a point $y \in Y$ such that p(y) = q(y), i.e., the mappings p and q have a coincidence.

The paper is divided into eight sections. In Section 1 we give a construction of P. S. Alexandroff: a realization of a given ε -mapping as an ε -translation. In Section 2 we give an embedding of a given inverse system in a Banach space with the construction given in Section 1. In Section 4 we consider the chain homomorphisms induced by the bonding mappings of this inverse system. In Section 5 we define the chain homomorphisms inducing in homology the inverse homomorphisms of the homomorphisms induced by projections of the space X on X_k . In Section 6 we recall a lemma of E. Begle from [1] and Section 8 contains the proof of Theorem 1'.

The author is grateful to L. Górniewicz and S. Nedev for useful and stimulating discussions.

2. Let H be a Banach space. We shall denote by ||x|| the norm of the element x in the space H. Let X be a compact subspace in the space H. The compact space X is said to be linearly independently imbedded (1.i.i.) in the space H if the points $\{x_0, ..., x_s\}$ are vertices of a s-dimensional simplex in the space H for every s and $x_i \in X$, i = 0, ..., s.

Suppose that the space X is 1.i.i. in the space H.

Let $f: X \to K$ be a mapping of the space X in the compact polyhedron K and let f be an ε -mapping, i.e., the diameter of the set $f^{-1}(y)$ is less than ε for every $y \in K$.

Suppose that τ is a triangulation of the polyhedron K such that

(1)
$$\operatorname{diam} f^{-1}(\operatorname{St}(a,\tau)) < \varepsilon$$
 for every vertex a

of the triangulation τ of K. Here $\operatorname{St}(a, \tau)$ is the open star of the vertex a in the triangulation τ . For $A \subset X$ we denote by diam A the diameter of the set A.

Let us denote by $\{e_1, \ldots, e_s\}$ all vertices of the triangulation τ and by V_k the set $f^{-1}(\operatorname{St}(e_k, \tau))$. The family of open sets $\omega = \{V_1, \ldots, V_k\}$ is an open covering of the space X and the diameter of every set V_i is less than ε , by (1).

Let a_k be a point in the set $f^{-1}(e_k)$ for k = 1, ..., s. Then we have

(2)
$$||a_k - a_l|| < 2\varepsilon \quad \text{if} \quad V_k \cap V_l \neq \emptyset .$$

Let us consider the points $\{a_1, ..., a_s\}$. If the space X is 1.i.i. in the space H, the points $\{a_1, ..., a_s\}$ are vertices of an (s-1)-dimensional simplex in H.

We denote by r a simplicial homeomorphism of the triangulation τ in the simplex with vertices $\{a_1,\ldots,a_s\}$ such that $r(e_k)=a_k$ for $k=1,\ldots,s$. By Z we shall denote the set r(K), and by \tilde{r} the mapping $rf\colon X\to Z$. By μ we denote the triangulation of the polyhedron Z, the image of the triangulation τ under the homeomorphism r.

By definition, $\tilde{r}(x) \in \operatorname{St}(a_k, \mu)$ for $x \in V_k$ (here $\operatorname{St}(a_k, \mu)$ is the open star of the vertex a_k in the triangulation μ).

From (2) we have

$$||\tilde{r}(x) - a_k|| < 2\varepsilon.$$

It follows from (1) and (3) that

$$(4) ||x-\tilde{r}(x)|| < 3\varepsilon,$$

i.e., the mapping \tilde{r} is a 3ε -mapping of the space X in the space H.

3. Let X be a weak-solenoidal space, i.e., X is a compact space and X is the limit of the inverse system

$$\{X_k, \pi(k+1, k), k = 1, 2, ...\}$$

where

- 1) X_k is a finite connected polyhedron.
- 2) $\pi(k+1,k)$: $X_{k+1} \to X_k$ is a finite sheet covering map.

3) the projections $\pi_i: X \to X_i$ are 2^{-i} -mappings, i.e.

(5)
$$\operatorname{diam} \pi_i^{-1}(x) < 2^{-i} \quad \text{for every point } x \in X_i.$$

4) in the space X_i we choose a triangulation τ_i such that

(6)
$$\operatorname{diam} \pi_i^{-1}(\operatorname{St}(a, \tau_i)) < 2^{-i}$$
 for every vertex a

of the triangulation τ_i .

5) $\pi(i+1,i)$: $X_{i+1} \to X_i$ is a simplicial mapping of the triangulation τ_{i+1} on the triangulation $\tau_i^{(s_i)}$ for $s_i \ge 2$, i = 1, ...

Here $\tau_i^{(s_i)}$ is an s_i -barycentric subdivision of the triangulation τ_i .

The mappings π_i : $X \rightarrow X_i$ (the projections) and $\pi(i+1,i)$: $X_{i+1} \rightarrow X_i$ induce the homomorphisms of the homology groups

$$(\pi_i)_{*s}: H_s(X) \to H_s(X_i),$$

 $(\pi(i+1,i))_{*s}: H_s(X_{i+1}) \to H_s(X_i).$

We shall prove later (Section 4, Lemma 1) that the homomorphisms $(\pi(i+1,i))_{*s}$ are epimorphisms. If

$$H_{\nu}(X) = \lim \{H_{\nu}(X_i), (\pi(i+1, i))_{*\nu}\}$$

and

$$\dim H_s(X) < \infty$$
,

there exists an i_0 such that the homomorphisms $(\pi_i)_{*s}$ and $(\pi(i+1,i))_{*s}$ are isomorphisms for $i \ge i_0$.

We suppose that

6) the homomorphisms $(\pi_i)_{*s}$ and $(\pi(i+1,i))_{*s}$ are isomorphisms for i=1,...Let l_i be the number of points in the set $\pi(i+1,i)^{-1}(x)$ for $x \in X_i$.

Let us recall that the compact space X is 1.i.i. in the space H (by a theorem of K. Kuratowski every compact space can be 1.i.i. in some Banach space, [10]). Let us consider the mappings

$$\pi(i+1,i): X_{i+1} \rightarrow X_i$$
.

The mapping $\pi(i+1,i)$ is a locally trivial bundle. Therefore for every vertex a of the triangulation τ_i the mapping

$$\pi(i+1,i)|\pi(i+1,i)^{-1}(\operatorname{St}(a,\tau_i)): \pi(i+1,i)^{-1}(\operatorname{St}(a,\tau_i)) \to \operatorname{St}(a,\tau_i)$$

is a trivial bundle, and the mapping $\pi(i+1,i)$ is a simplicial isomorphism on the components of the set $\pi(i+1,i)^{-1}(\operatorname{St}(a,\tau_i))$. So the mapping $\pi(i+1,i)$ and the triangulation τ_i induce the triangulation τ'_{i+1} on the space X_{i+1} .

Let us consider the open coverings of the space X_{i+1}

$$s(\tau_{i+1}) = \{ \operatorname{St}(a, \tau_{i+1}) | a - a \text{ vertex of the triangulation } \tau_{i+1} \},$$

$$s(\tau'_{i+1}) = \{\operatorname{St}(b, \tau'_{i+1}) | b - a \text{ vertex of the triangulation } \tau'_{i+1} \}$$
.

If $s_i \ge 2$, the covering $s(\tau_{i+1})$ is a star refinement of the covering $s(\tau_{i+1}')$. Let the vertices of the triangulations τ_i and $\tau_i^{(s_i)}$ be

$$\{e_1^i, ..., e_{t_i}^i\}, \{e_1^i, ..., e_{t_i}^i, ..., e_k^i\}.$$

Then the triangulation τ'_{l+1} has the vertices $\{e_1^{l+1}, ..., e_k^{l+1}\}$, where $k = t_l I_l$ and $\pi(i+1,i)(e_n^{i+1}) = e_m^i$ for $v = ml_i - r$, $0 \le r < l$.

By V_a we shall denote the set $\pi_i^{-1}(\operatorname{St}(a, \tau_i))$ for a given vertex a of the triangulation τ_i . So we have a finite, open covering

$$\omega_i = \{V_a | a - a \text{ vertex of the triangulation } \tau_i\}$$

of the space X. It follows from (6) that

diam
$$V_a < 2^{-i}$$
 for every $V_a \in \omega_i$.

If the covering $s(\tau_{i+1})$ is a star refinement of the covering $s(\tau_{i+1})$, then ω_{i+1} is a star refinement of the covering ω_i for i=1,...

Let us consider the covering ω_i of the space X and let a_k^i be a point in the set $\pi_i^{-1}(e_k^i)$, for e_k^i a vertex of the triangulation τ_i . So we obtain a subset

$$E_i = \{a_1^i, ..., a_t^i\}$$

in the space X.

It follows from (2) that

$$||a_m^i - a_n^i|| < 2^{-i+1}$$

 e_m^i and e_n^i being vertices of a one dimensional simplex of the triangulation τ_i . Also

$$\pi_i(a_k^i) = e_k^i$$
 for $k = 1, \dots, t_i$.

The points of the set E_i are vertices of a (t_i-1) -dimensional simplex in the space H, because the space X is 1.i.i. in the space H.

Let us define a simplicial homeomorphism $k_i\colon X_i{\to} H$ by $k_i(e_s^i)=a_s^i$ for $s=1,\dots,t_i$.

Let $p_i = k_i \pi_i$: $X \rightarrow A_i$, here $A_i = k_i(X_i)$.

It follows from (4) that

(8)
$$||x-p_i(x)|| < 3 \cdot 2^{-i}$$
 for $x \in X$ and $i = 1, 2, ...$

Let us consider the mapping

$$p(i+1,i): A_{i+1} \rightarrow A_i$$

given by

$$p(i+1, i) = k_i \pi(i+1, i) k_{i+1}^{-1}$$

It follows that

(9)
$$||p(i+1,i)(y)-y|| < 9 \cdot 2^{-i-1}$$
 for $y \in A_{i+1}$.

We denote by μ_i the image of the triangulation τ_i under the simplicial homeomorphism k_i .

The mapping p(i+1, i) is a simplicial l_i -sheet covering map of the triangulation μ_{i+1} on the triangulation $\mu_i^{(s_i)}$. Here $\mu_i^{(s_i)}$ is an s_i -barycentric subdivision of the triangulation μ_i .

4. Let K be a finite simplicial complex with a given triangulation τ . We denote by

$$C_*(K, \tau) = \{C_s(K, \tau) | s = 0, 1, ...\}$$

the chain complex of the triangulation τ with rational coefficients.

The simplicial mapping p(i+1,i) induces the chain homomorphism

$$p(i+1,i)_* = \{p(i+1,i) | s = 0,1,...\}: C_*(A_{i+1},\mu_{i+1}) \to C_*(A_i,\mu_i^{(s_i)})$$

for i = 1, 2, ...

We denote by

$$\sigma(i+1,i)_* = {\sigma(i+1,i)_s | s = 0, 1, ...}$$

the chain homomorphism

$$\sigma(i+1,i)_*$$
; $C_*(A_i, \mu_i^{(s_i)}) \to C_*(A_{i+1}, \mu_{i+1})$

given by

$$\sigma(i+1,i)_s(\sigma^s) = \sum_{i=1}^{l_t} \sigma_i^s$$

where

$$\sigma^s = \{a_{i_0}^i, ..., a_{i_s}^i\}, \quad \sigma_i^s = \{a_{i_0}^{i+1}, ..., a_{i_s}^{i+1}\}$$

and

$$p(i+1,i)(a_{i_k}^{i+1}) = a_{i_k}^i.$$

Let us consider the homomorphism

$$\sigma(i+1,i)_{*s}: H_s(A_i) \rightarrow H_s(A_{i+1})$$

induced by the chain mapping $\sigma(i+1,i)_*$.

It follows that

(10)
$$p(i+1,i)_{*s}\sigma(i+1,i)_{*s} = l_i \cdot id;$$

here

$$p(i+1,i)_{*s}: H_s(A_{i+1}) \to H_s(A_i)$$

is the homomorphism induced by the chain mapping $p(i+1,i)_*$.

It follows from (10) that the homomorphism $p(i+1,i)_{*s}$ is an epimorphism for every i=1,2,... and s=0,1,...

^{4 -} Fundamenta Mathematicae T. CIV

Let us recall that

$$p(i+1,i) = k_i \pi(i+1,i) k_{i+1}^{-1}$$

where k_i , and k_{i+1}^{-1} are homeomorphisms. So we have

LEMMA 1. The homomorphisms $(\pi(i+1,i))_{*s}$ are epimorphisms for i=1,2,...and s = 0.1...

It follows from (10) that the homomorphism $\sigma(i+1,i)_{*s}$ is an isomorphism because $p(i+1,i)_{*s}$ is an isomorphism.

Let

$$\varrho(i+1,i)_* = \{\varrho(i+1,i)_s | s = 0,1,...\}$$

be a chain mapping such that

$$\rho(i+1,i)_s = l_i^{-1}\sigma(i+1,i)_s$$
.

If $\rho(i+1,i)_{*}$ is the homomorphism of the homology groups induced by the chain mapping $\rho(i+1,i)_*$, then

$$p(i+1,i)_{*s}\rho(i+1,i)_{*s} = id$$
.

- 5. Let M be a compact metric space and v_i , i = 1, 2, ..., a fundamental system of finite open covering of the space M such that
 - a) every element of the covering v_i has a diameter less than 2^{-i} .
 - b) the covering v_{i+1} is a star refinement of the covering v_i for i = 1, 2, ...

The ordered (k+1)-tuple $\sigma^k = (x_0, ..., x_k)$ of points of the space M is called a k-dimensional Vietoris simplex of the space M. We denote by $M(v_i)$ the simplicial complex of all ν_i -Vietoris simplexes of the space M. If A is a subset of the space M, then by $M(v_i) \cap A$ we shall denote the closed subcomplex $M(v_i)$ consisting of all simplexes of $M(v_i)$ with vertices belonging to the set A.

We denote by $V_*(M, \nu_i)$ the chain complex with rational coefficients of the simplicial complex $M(v_i)$. By $|\sigma|$ we denote the closed simplicial complex of all v_i -Vietoris simplexes of the chain σ for a given $\sigma \in V_*(M, v_i)$.

Let

$$\tilde{V}_*(M) = \prod \{V_*(M, v_i) | i = 1, ... \}.$$

The elements of the group $\tilde{V}_{\star}(M)$ are called the Vietoris chains of the space M. Let $a = \{a_i | i = 1, ...\}$ be the Vietoris chain of the space M. The chain a is called a convergent Vietoris chain if the chain a_i is homologous to the chain a_{i-1} in $V_*(M, v_{i-1})$ for i = 2, 3, ...

By $V_*(M)$ we shall denote the linear space over the rationals with the basis consisting of all convergent Vietoris chain of the space M.

Let M and \overline{M} be compact metric spaces and

$$v = \{v_i | i = 1, 2, ...\}, \quad \bar{v} = \{\bar{v}_i | i = 1, 2, ...\}$$

fundamental systems of finite open covering satisfying a) and b) in M and \overline{M} .

Let $f: M \to \overline{M}$ be a continuous mapping. We shall define the chain mapping $f_*: V_*(M) \to V_*(\overline{M}).$

Let us consider the covering \bar{v}_i , $f^{-1}\bar{v}_i$ is an open finite covering of the space M. Let v_i be a covering which is a refinement of the covering $f^{-1}\bar{v}_i$ and $v_i \in v$. Then the image of the complex $M(v_{i_*})$ under the mapping f belongs to the complex $\overline{M}(\bar{v}_{i_*})$. So for

$$c = \{c_i | i = 1, ...\} \in V_*(M)$$

we have

$$f_*(c) = \{f(c_i) | i = 1, ...\}.$$

By $N(\omega)$ we shall denote the nerve of the covering ω for a given finite, open covering of the space M.

Let ω' , ω'' be a finite, open covering of the space M

$$\omega' = \{U'_1, ..., U'_s\}, \quad \omega'' = \{U''_1, ..., U''_t\}$$

and the covering ω' is a refinement of the covering ω'' . Then we have the simplicial mapping i: $N(\omega') \rightarrow N(\omega'')$ given by $i(U'_k) = U''_m$ for $U'_k \in \omega'$, and $U''_m \in \omega''$ such that $U_{\nu} \subset U_{m}^{\prime\prime}$.

The covering v_{i+1} is a star refinement of the covering v_i . Let us define the chain mapping

$$\zeta: \mathcal{V}_*(M, \nu_{i+1}) \rightarrow C_*(N(\nu_i))$$
.

Suppose $\sigma^k = (x_0, ..., x_k)$ is a v_{i+1} -Vietoris simplex of the space M. The vertex x_s belongs to some element V_s of the covering v_{t+1} . Let W_s be an element of the covering v. such that

$$W_s \supset \operatorname{St}(V_s, v_{i+1})$$
.

Then we put

$$\zeta(x_0, ..., x_k) = 0$$

if the simplex $(W_0, ..., W_s)$ degenerates and

$$\zeta(x_0,...,x_k)=(W_0,...,W_k)$$

otherwise.

Here $St(V_s, v_{i+1})$ is the star of the set V_s in the covering v_{i+1} . Also we have the chain mapping

$$\varphi: C_*(N(v_{i+1})) \rightarrow V_*(M, v_i)$$
.

This mapping is defined as follows. For a given vertex U of the simplicial complex $N(v_{l+1})$, $\varphi(U)$ is a point belonging to U.

We shall use the mapping φ in the following case:

$$\varphi: C_*(A_{i+1}, \mu_{i+1}) \to V_*(X, \omega_i)$$
.

In this case we put

$$\varphi(\operatorname{St}(e_k^{i+1}, \mu_{i+1})) = a_k^{i+1}$$
.

We also know that if $a \in \tilde{V}_*(M)$ and $\zeta(a)$ is a Čech chain, then $a \in V_*(X)$, [1].

6. We denote by $\omega_i^{(s_i)}$ the covering $\{p_i^{-1}(\operatorname{St}(a, \mu_i^{(s_i)})) | a \text{ is a vertex of the triangulation } \mu_i^{(s_i)}\}$. If the triangulation μ_i is the nerve of the covering ω_i , then $\mu_i^{(s_i)}$ is a nerve of the covering $\omega_i^{(s_i)}$. For a given vertex a of the triangulation $\mu_i^{(s_i)}$ we have

$$p_i^{-1}(\operatorname{St}(a, \mu_i^{(si)})) = \bigcup \{p_{i+1}^{-1}(\operatorname{St}(b, \mu_{i+1})) | p(i+1, i)(b) = a\};$$

also

$$\operatorname{St}(b', \mu_{i+1}) \cap \operatorname{St}(b'', \mu_{i+1}) = \emptyset$$

for

$$p(i+1,i)(b') = p(i+1,i)(b'')$$
 and $b' \neq b''$.

It follows that the mapping p(i+1,i) is a canonical simplicial mapping of the nerve of the covering $\omega_{i+1}^{(s_i)}$, i.e., the image of the set $p_{i+1}^{-1}(\operatorname{St}(b,\mu_{i+1}))$ under the mapping p(i+1,i) is the set $p_i^{-1}(\operatorname{St}(a,\mu_i^{(s_i)}))$, where p(i+1,i)(b)=a (here a is a vertex of the triangulation $\mu_i^{(s_i)}$, and b is a vertex of the triangulation $\mu_{i+1}^{(s_i)}$.

It follows that

(11)
$$(a_{i_0}^i, \dots, a_{i_s}^i) \subset O(p_i^{-1}(a_{i_0}^i), 2^{-i+1});$$

we use the following notation: for a given set A in the space X, and a positive real δ

$$O(A, \delta) = \{x \in X | \sup(||x - y|| | y \in A) < \delta\}.$$

Let K be a finite simplicial complex with a triangulation τ , and let $\tau^{(k)}$ be the k-barycentric subdivision of τ .

We shall use the chain mapping

$$\chi(\tau, k)_* = \{\chi(\tau, k)_s | s = 0, 1, ...\}$$

"k-barycentric subdivision of chains"

$$\chi(\tau, k)_*: C_*(K, \tau) \to C_*(K, \tau^{(k)})$$
.

Let us consider the simplex $\delta_i^s = (a_{i_0}^i, ..., a_{i_s}^i)$. We denote by Δ_{i+1}^s the chain

$$\varrho(i+l, i+l-1)_s \chi(\mu_{i+-1}, s_{i+l-1})_s \dots \varrho(i+1, i)_s \chi(\mu_i, s_i)_s(\delta_i^s)$$

for l>1 and δ_i^s for l=0.

Let us put

$$\gamma_{i+l}^s = \varphi(\Delta_{i+l}^s)$$
 for $l = 0, 1, ...$

It follows that

$$\Delta_{i+1}^s \in C_s(A_{i+1}, \mu_{i+1})$$

and

$$\gamma_{i+1}^s \in V_s(X, \omega_{i+l-1})$$
.

It follows from (II) that

(12)
$$|\gamma_{i+l}^s| \subset O(p_i^{-1}(a_{i_0}^i), 2^{-i+1}).$$

Let us consider the chains

$$\gamma = \{\gamma_{i+1}^s | l = 0, 1, ...\}$$

and

$$\Delta = \{\Delta_{l+1}^s | l = 0, 1, ... \}.$$

We shall consider the chains Δ_{i+l}^s as chains of the nerves of the coverings ω_{i+l} . The chain γ_{i+l}^s is a ω_{i+l-1} -Vietoris chain of the space X. Also the image of the chain Δ_{i+l}^s under the chain mapping

$$\varphi: C_*(A_{i+1}, \mu_{i+1}) \to V_*(X, \omega_{i+1-1})$$

is the chain γ_{l+1}^s .

The chain γ is a convergent Vietoris chain of the space X. Indeed, we know that the mapping p(i+l,i+l-1) is a canonical simplicial mapping of the nerve of the covering ω_{i+l} in the nerve of the covering $\omega_{i+l-1}^{(s_i+l-1)}$.

Let $j(s_{l+l-1})$ be the canonical simplicial mapping of the nerve of the covering $\omega_{l+l-1}^{(s_l+l-1)}$ in the nerve of the covering ω_{l+l-1} .

It follows from (10) that

(13)
$$p(i+l, i+l-1)_s(\Delta_{i+l}^s) = \chi(\mu_{i+l-1}, s_{i+l-1})_s(\Delta_{i+l-1}^s).$$

We have from (13)

$$(14) \quad j(s_{l+l-1})p(i+l, i+l-1)_s(\Delta_{i+l}^s) = j(s_{l+l-1})\chi(\mu_{l+l-1}, s_{i+l-1})_s(\Delta_{i+l-1}^s) .$$

It is well known that the chain Δ_{i+l-1}^s is homologous to the chain

$$j(s_{i+l-1})\chi(\mu_{i+l-1}, s_{i+l-1})_s(\Delta_{i+l-1}^s)$$

in the simplicial complex $N(\omega_{i+l-1})$ (the nerve of the covering ω_{i+l-1}). Therefore γ is a convergent Victoris chain of the space X, [1].

So we have the chain mapping

$$w_i^* = \{w_i^s | s = 0, 1, ...\},$$

where

$$w_i^s: C_s(A_i, \mu_i) \rightarrow V_s(X)$$

and

$$w_i^s(\delta_i^s) = \{\gamma_{i+1}^s | l = 0, 1, ...\}$$
.

This chain mapping induces the homomorphism

$$\tilde{w}_i^*$$
: $H_*(A_i) \rightarrow H_*(X)$.

It follows from (14) that the homomorphism w_i^* is the inverse homomorphism of the homomorphism p_{i*} , which is induced by the mapping p_i : $X \rightarrow A_i$.

7. Let us consider the sequence of coverings $\{\omega_i|\ i=1,2,...\}$ in the space X. We know that the covering ω_{i+1} is a star refinement of the covering ω_i .

We have the Vietoris mapping $p: Y \rightarrow X$ of the metric compact space Y onto the space X.

Let us recall one definition which belongs to E. Begle, [1].

Let $f: A \rightarrow B$ be a map of the compact metric space A onto the space B. The mapping f is called an n-Vietoris mapping if for every open covering ω of the space A and for every point $y \in B$ there exists an open and finite covering $\pi = \pi(\omega, y)$ of the space A, such that

- a) π is a refinement of the covering ω ,
- b) every k dimensional cycle in the complex $A(\pi) \cap f^{-1}(y)$ is homologous to zero in the complex $A(\omega) \cap f^{-1}(y)$ for $q \le k \le n$.

It is proved in [1], § 6 that if we consider a Vietoris homology with rational coefficients, then every Vietoris mapping is an n-Vietoris mapping for m = 0, 1, ...

Therefore the mapping $p: Y \rightarrow X$ is an *n*-Vietoris mapping for m = 0, 1, ...

8. Now we shall prove Theorem 1'. It is sufficient to prove that there exists a point z_i in the space Y such that

(15)
$$||p(z_i)-q(z_i)|| < 2^{-i+3}$$
 for every $i = 1, 2, ...$

Indeed, let us have a sequence $\{z_i|\ i=1,2,...\}$ in the space Y and let every point z_i of the sequence satisfy (15).

If the space Y is a metric compact space, we can suppose without loss of generality that this sequence is convergent. Let z_0 be the limit of the sequence $\{z_i|\ i=1,2,...\}$. It follows from (15) that $||p(z_0)-q(z_0)||<2^{-i+3}$.

Now we shall construct such a sequence.

Let us consider the covering ω_i of the space X, and the covering $q^{-1}(\omega_{i+1})$ of the space Y. The mapping p is an n-Vietoris mapping. Here $n = \dim X = \dim X_i$ for i = 1, 2, ... Lemma 2, § 4, [1] implies the following

LEMMA. There exists an integer l and a chain mapping T of (n+1)-skeleton of $V_*(X, \omega_{i+1})$ in $V_*(Y, q^{-1}(\omega_{i+1}))$ such that

- a) the chain $pT(\sigma^k)$ is a barycentric subdivision of the chain σ^k for every simplex σ^k , $0 \le k \le n+1$ in $V_*(X, \omega_{i+1})$,
 - b) $|pT(\sigma^k)|$ belongs to some element of the covering ω_{l+1} ,
- c) there exists a point $g(\sigma^k) \in X$ such that

(16)
$$\operatorname{St}(g(\sigma^k), \omega_i) \supset |\sigma^k|,$$

(17)
$$\operatorname{St}\left(p^{-1}(g(\sigma^{k})), q^{-1}(\omega_{i+1})\right) \supset |T(\sigma^{k})|.$$

Actually this lemma follows from the proof of Lemma 2, \S 4, [1]. By T we denote the same chain mapping constructed in the proof of Lemma 2, \S 4, [1].

We shall define a chain mapping

$$\alpha_* = \{\alpha_s | s = 0, 1, ...\}: C_*(A_i, \mu_i) \to C_*(A_i, \mu_i)$$

such that the Lefschetz number

$$\lambda(\alpha_*) = \sum_{i} (-1)^i \operatorname{tr} \alpha_i$$

of the chain mapping a* will be equal to the number of coincidence

$$\Lambda(p,q) = \sum_{i} (-1)^{i} \operatorname{tr} q_{i} p_{i}^{-1}$$

of the mappings p and q.

Let $\delta_i^s = (a_{i_0}^t, ..., a_{i_s}^t)$ be a simplex of the triangulation μ_i and

$$w_i^s(\delta_i^s) = \{y_{i+k}^s | k = 0, 1, ...\}.$$

We have

$$\gamma_{i+k}^s \in V_s(X, \omega_{i+k-1})$$

and

$$|\gamma_{i+k}^s| \subset O(p_i^{-1}(b_{i_0}^i), 2^{-i+1})$$
.

Then by definition

$$\alpha_s(\delta_i^s) = \zeta q T(\gamma_{i+l+1}^s)$$
.

It follows from Lemma 1, [1] that

$$\tilde{\alpha}_* = p_{i*} q_* p_*^{-1} p_{i*}^{-1} .$$

Here $\tilde{\alpha}_*$ is the homomorphism of the homology groups induced by the chain mapping α_* .

Therefore

(18)
$$\lambda(\tilde{\alpha}_*) = \Lambda(p, q)$$

and

$$\lambda(\alpha_*) = \Lambda(p,q).$$

We have $\Lambda(p,q) \neq 0$, and so $\lambda(\alpha_*) \neq 0$. Therefore there exists a simplex ξ_i^s of the triangulation μ_i such that

$$\xi_i^s \in |\alpha_s(\xi_i^s)|$$
.

Let
$$\xi_i^s = (c_{i_0}^i, ..., c_{i_s}^i)$$
. If

$$w_i^s(\xi_i^s) = \{ \eta_{i+k}^s | k = 0, 1, ... \},$$

then

(19)
$$|\eta_{i+l+1}^s| \subset O\left(p_i^{-1}(c_{i_0}^i), 2^{-i+1}\right).$$

Let $\beta^s = (x_0, ..., x_s)$ be a simplex of the chain η_{l+l+1}^s such that the simplex ξ_i^s belongs to the chain $\zeta q T(\beta^s)$. It follows from (19) that there exists a point y_0 in the set $p_l^{-1}(c_l^l)$ such that

$$||x_0-y_0|| < 2^{-i+1}$$

Therefore

(20)
$$||x_0 - c_{i_0}^i|| < 3 \cdot 2^{-i}.$$

Also, there exists a point $a(B) \in X$ such that

$$(21) |\beta^s| \subset \operatorname{St}(g(\beta^s), \omega_i),$$

(22)
$$|T(\beta^{s})| \subset St(p^{-1}(g(\beta^{s})), q^{-1}(\omega_{i+1})).$$

It follows from (21) that

$$||x_0 - q(\beta^s)|| < 2^{-i}$$
.

From (20) and the last inequality we obtain

(23)
$$||g(\beta^s) - c_{i_0}^i|| < 2^{-i+2}.$$

If $u = (u_0, ..., u_s)$ is a Vietoris simplex in $V_*(X, \omega_{l+1})$, then

$$\zeta(u) \in C_*(N(\omega_i)) = C_*(A_i, \mu_i)$$
.

Here the chain mapping ζ is defined as follows. The vertex u_k is in the set V_k of the covering ω_{i+1} . Let W_k be the element of the covering ω_i containing $\mathrm{St}(V_k, \omega_{i+1})$. Then

$$\zeta(u) = (W_0, ..., W_s)$$

when the simplex $(W_0, ..., W_s)$ is not degenerate and $\zeta(u) = 0$ otherwise.

Let $\gamma = (\gamma_0, ..., \gamma_s)$ be such a simplex of the chain $qT(\beta^s)$, that the image of the chain γ under the chain mapping ζ is the simplex $(c_{i_0}^i, ..., c_{i_s}^i)$.

Then

$$||\gamma_0 - c_{i_0}^i|| < 2^{-i}.$$

It follows from (22) that

$$\gamma_0 \in \operatorname{St}(qp^{-1}(g(\beta^s)), \omega_{i+1})$$
.

From (22) and (23) we infer that the distance between the point $g(\beta^s)$ and the set $qp^{-1}(g(\beta^s))$ is less than $11 \cdot 2^{-i-1}$. Therefore there exists a point

$$w_i \in qp^{-1}(g(\beta^s))$$

such that

$$||g(\beta^s) - w_i|| < 11 \cdot 2^{-i-1} < 2^{-i+3}$$

Let z_i be such a point in the set $p^{-1}(g(\beta^s))$ that $q(z_i) = w_i$. Then

$$||p(z_i)-q(z_i)||<2^{-i+3}$$

Theorem 1' is proved.

References

- [1] E. Begle, The Victoris mapping theorem for bicompact spaces, Ann. of Math. 51 (1950), pp. 534-543.
- [2] S. Eilenberg and D. Montgomery, Fixed point theorems for multi-valued transformations, *Amer. J. Math. 58 (1946), pp. 214-222.

- [3] M. Fort and M. Mac Cord, Approximation of maps of inverse limit space by induced maps, Fund. Math. 59 (1966), pp. 323-329.
- [4] L. Górniewicz, A Lefschetz-type fixed point theorem. Fund. Math. 88 (1975), pp. 103-115.
- [5] and G. Skordev, On coincidence of continuous mappings, Fund. Math. 101 (1978), pp. 171—180 (in russian).
- [6] S. Lefschetz, Algebraic Topology, AMS, New York 1942.
- [7] I. Pontriagin, Continuous Groups, Moskow 1973 (in russian).
- [8] E. Skljarenko, On the topological structure of locally compact groups and their quotient spaces,
 Mat. Sbornik 60 (1963), pp. 63-88 (in russian).
- [9] G. Skordev, Fixed points of mappings of compact connected groups, C. R. de l'Acad. Bulgare des Sci. 4 (1975), pp. 437-439 (in russian).
- [10] H. Toruńczyk, A short proof of Hausdorff's theorem on extending metrics, Fund. Math. 77 (1972), pp. 191-193.

Accepté par la Rédaction le 24, 1, 1977