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On a coincidence of mappings of compact spaces
in topological groups

by

G. S, Skordev (Sofia)

Abstract. Let X be a weak-solenoidal space of finite type and p, g: Y— X single-valued con-
tinuous mappings, If p is a Vietoris mapping and the number of coincidences
, A(p, @) = X (—=D¥trgeprt
is not zero, then there exists a point y ¢ ¥ such that p(») = g(y).

1. Let X and Y be metric compact spaces and p, g: X— Y continuous mappings.
The mappings p and ¢ have a coincidence if there exists a point x € X such that
p(x) = g(x). Tt is necessary to impose some conditions on the space X, Y and on
the mappings p and g, in order to be sure that the mappings p and ¢ have a coinci-
dence. For example, S. Lefschetz gave in [6] a sufficient condition for mappings p
and ¢ to have a coincidence in the case where X and Y are n-dimensional closed
manifolds with triangulation. This condition is given in the frame work of the homo-
logy and the cohomology of the spaces X and ¥, [6], Ch. 8, 29.12.

S. Eilenberg and D. Montgomery proposed in [2] another way to obtain a suf-
ficient condition for a coincidence of mappings p and ¢. In this case X and Y are
metric compact spaces, Y is an absolute neighbourhood retract and the mapping
p: X— Y is a Vietoris mapping, i.e. p(X) = ¥, and for every point y € ¥ the space
p~Xy) is connected and the homology groups of Alexandroffi-Cech H{p~'(»))
with rational coeflicients are zero for i1, S. Eilenberg and D. Montgomery gave
in [2] the following arguments. 1f the mapping p is a Vietoris mapping, then the
homomorphism

Px = {Pa}t HilX)—Hy(Y)
is an isomorphism, [1]; here the homomorphism. py is induced by the mapping p.
Let us consider the linear mapping

gt H(Y)~H(Y) .
The space H,(Y) is a finite-dimensional vector space over the rationals and, for

almost all k, has dimension zero (this follows because the space Y is a compact ANR
space).
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In this case we can consider the trace trg,py* of the linear mapping gq,p; *.
"The number of coincidence, A(p, g), of mappings p and g is

Alp, g) =Y (= Dtrgpe *

The following theorem is proved in [2]: If ¥ is a compact metric ANR space, p is
a Vietoris mapping and 4(p, g) # 0, then the mappings p and ¢ have a coincidence,
i.e., there exists a point x € X such that p(x) = ¢(x).

L. Gérniewicz gave a modern proof and a generalization of this theorem of
S. Eilenberg and D. Montgomery in [4]. A further generalization of this theorem is
proposed in [5].

Let us recall that the theorem of S. Eilenberg and D. Montgomery is closely
related to the problem of existence of fixed points for multi-valued mappings.

Let @ be an upper semi-continuous multi-valued mapping of a compact metric
space X in itself. Suppose also that the mapping & is acyclic. This means that the
set ®(x) is connected and the homology groups of Alexandroff-Cech H(®(x))
with rational coefficients are zero for i1 and for every point x & X.

The mapping @ has a fixed point if there exists a point x € X such that x € ¢ (x).
Let I'(P) be the graph of the mapping &, i.e.

'@ ={(r.0eXxX| ze d(»)}.
By p and ¢ we shall denote mappings
piq: T(@)-X,
such that p(y,z) =y and g(y,z) = z for (y,2)e I'(®). Then it follows that
®(y) = gp~'(y) for every point ye X.

The mapping p: I'($)-Y is a Vietoris mapping because & is an acyclic and
upper semi-continuous mapping.

The mapping @ has a fixed point if and only if the mappings p and ¢ have
a coincidence. ‘

We shall consider the following problem. Let ¥ be a metric compact space
and G — a compact, connected and finite dimensional topological group. Let
P, ¢: Y—G be continuous single valued mappings, and p — a Vietoris mapping.

The space G is a metric compact space, because G is a compact, connected
group, [8]. Therefore the homology groups H(G) of Alexandroff-Cech with rational
coefficients are finite dimensional-vector spaces over the field of rational numbers
and for almost all k the space Hy(G) is zero-dimensional, [9]. Then the number of
coincidence,

A, ) = ¥ (= Ditrgpit,
of the mappings p and g exists,

In the case where G is a locally connected topological space, G is an ANR space,
because G is_a Lie group, [7], Ch. 8. Then, if the number of coincidence is not ZEro,
the mappings p and ¢ have a coincidence, [2].
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In this paper we consider the question of existence of a coincidence of the
mappings p and ¢ without.the assumption that G is a locally connected space. It is
known that G is locally homeomorphic to the product of a finite-dimensional ball
and the Cantor discontinuum, [8].

‘We shall prove the following theorem:

TueOREM 1. Let G be a compact, connected, finite-dimensional topological group
and Y a metric compact space. Let p, q. Y~ G be single-valued mappings and p — a Vie-
toris mapping. If the number of coincidence, ‘

Ap, 9) = ¥ (~Drtrgpi?

is not zero, then there exists a point y e Y such that p(y) = q(y), i.e. the mappings p
and g have a coincidence.

From this theorem follows Lefschetz’s fixed point theorem of [9].

Actually we shall prove a more general theorem than Theorem 1. To formulate

" that theorem we need one definition, .

The compact, connected space X is called a weak-solenoidal space if X is the
limit of an inverse system

(X n(k+1,0) k =1,2,...}

such that

1) X, is a connected finite polyhedron.

2) n(k+1, k): X, — X, is a finite sheet covering space.

An example of a weak-solenoidal space is the following. Let 4 be a compact,
connected, finite-dimensional topological group and B a closed subgroup in 4.
Then the quotient space 4/B is a weak-solenoidal space, [8]. ’

Let us recall that the space Y is called a space of finite type if dim H,(Y) < co.

‘We shall prove the following theorem:

THEOREM 1. Let X be a weak-solenoidal space of finite type and p,q: Y—X
single-valued continuous mappings. If p is a Vietoris mapping and the number of co-
incidence, A(p, q), is not zero, then there exists a point y € Y such that p(y) = q(¥),
i.e., the mappings p and q have a coincidence.

The paper is divided into eight sections. In Section 1 we give a construction of
P. 8. Alexandrofl: a realization of a given e-mapping as an e-translation. In Sec-
tion 2 we give an embedding of a given inverse system in a Banach space with the
construction given in Section 1. In Section 4 we consider the chain homomorphisms
induced by the bonding mappings of this inverse system. In Section 5 we define the
chain homomorphisms inducing in homology the inverse homomorphisms of the
homomorphisms induced by projections of the space X on X;. In Section 6 we recall
a lemma of E. Begle from [1] and Section 8 contains the proof of Theorem 1'.

The author is grateful to L. Gérniewicz and S. Nedev for useful and stimulating
discussions.
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2. Let H be a Banach space. We shall denote by ||x|| the norm of the element x in
the space H. Let X be a compact subspace in the space H. The compact space X is
said to be linearly independently imbedded (l.i.i) in the space H if the points
{xg, ..., Xs} are vertices of a s-dimensional simplex in the space H for every s and
xeX, i=0,..,5

Suppose that -the space X is 1.ii. in the space H.

Let f: X—K be a mapping of the space X in the compact polyhedron K and
let £ be an e-mapping, i.e., the diameter of the set f~'(p) is less than ¢ for every
yek.

Suppose that 7 is a triangulation of the polyhedron K such that

6)) diam £~ *(St(a, 7)) <&

of the triangulation 7 of K. Here St(«, ) is the open star of the vertex @ in the -tri-
angulation 1. For 4= X we denote by diamA the diameter of the set A.

Let us denote by {ey, ..., ,} all vertices of the triangulation = and by ¥ the
set £ ~*(St(e,, 7)). The family of open sets @ = {V;, ..., V}} is an open covering of
the space X and the diameter of every set V; is less than ¢, by (1).

Let @, be a point in the set £ *(g,) for k =1, ..., 5. Then we have

@) llag—all<2e if VinV,#@.

for every vertex «

Let us consider the points {a, ..., a;}. If the space X is 1.ii. in the space H,
the points {a;,..., 4} are vertices of an (s—1)-dimensional simplex in H.

We denote by r a simplicial homeomorphism of the triangulation 7 in the
simplex with vertices {a,, ..., a;} such that r(e) = &, for k = 1, ...,5. By Z we
shall denote the set r(K), and by ¥ the mapping 7/ X—Z. By u we denote the
triangulation of the polyhedron Z, the image of the triangulation t under the homeo-
morphism r.

By definition, 7(x) & St(ay, p) for x € ¥, (here St(q,, ) is the open star of the
vertex a, in the triangulation p).

From (2) we have

€) IF()—all <2e.
1t follows from (1) and (3) that
@ llx—F(ll<3e,
ie., the mapping ¥ is a 3e-mapping of the space X in the space H.

3. Let X be a weak-solenoidal space, i.e., X is a compact space and X is the
limit of the inverse system

{X,mk+1,k),k=1,2, )
where .
1) X, is a finite connected polyhedron. :
2) n(k+1,k): Xy 1> X, is a finite sheet covering map.
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We can also assume that
3) the projections 7;: X—X, are 2"-mappings, ie.,

) diamm; *(x)<27"  for every point x € X, .

4) in the space X; we choose a triangulation 7, such that

(6) diamm; *(St(a, T))<27"  for every vertex «

of the triangulation 7.

5) m(i+1,0): Xjsy~X; is a simplicial mapping of the triangulation 7;,; on
the triangulation =¥ for 5,22, i =1, ... ,

Here <{® is an s-barycentric subdivision of the triangulation Tq.

The mappings m;: X->X; (the projections) and n(i+1,4): X;,,—~X; induce
the homomorphisms of the homology groups

(nl)*s: HS(X‘)_-)HS(XI) B
(m(+1, D)ast H(Xiy )~ HLX) .

We shall prove later (Section 4, Lemma 1) that the homomorphisms (7 (i+ 1, i))u,
are epimorphisms. If

H(X) = lUm {H,X), (m(+1, D)}
and
" dimH(X)<w ,

there exists an i, such that the homomorphisms (r,)s and (n(i+1, D))y, are iso-
morphisms for izi,.
We suppose that
6) the homomorphisms (m)y, and (n(i+1, i)). are isomorphisms for i = 1, ...
Let /, be the number of points in the set m(i+1,i)~*(x) for x e X;.
Let us recall that the compact space X is 1.11. in the space H (by a theorem of
K. Kuratowski every compact space can be 1.ii. in some Banach space, [10]).
Let us consider the mappings

n(i+1,0): Xip =X,

The mapping m(i-+1, ) is a locally trivial bundle. Therefore for every vertex a of
the triangulation 7, the mapping

R+ 1, DInG+1, )™ (St ): mli+1, )™ (St(, ©))~St(a, )

is a trivial bundle, and the mapping m(i+1,i) is a simplicial isomorphism on the
components of the set m(i+1,i) ¥(St(a, 7). So the mapping n(i+1,7) and the
triangulation 7, induce the triangulation 7}, on the space Xj.i.
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Let us consider the open coverings of the space X,
5(t;51) = {St(a, 1;41)|@—a vertex of the triangulation 7;,},
5(thyq) = {St(b, 7i4,)|b—a vertex of the triangulation zj,,} .
If 5,22, the covering s(z;4,) is a star refinement of the covering s(;..,).

Let the vertices of the triangulations t; and 7 be

{eh,...e}, {,....e, ... e}.
Then the triangulation i, has the vertices {ei"!, ..., ei"'}, where k = #,J; and
z(+1,0)(TY) = e, for v = ml,—r, 0<r<li,
By V, we shall denote the set n; *(St(a, 7)) for a given vertex ¢ of the triangu-
lation 7;. So we have a finite, open covering

w; = {V,| a—a vertex of the triangulation T}
of the space X. It follows from (6) that
diam ¥V,<27'  for every V,ew,.

If the covering s(7;4) is a star refinement of the covering s(z;..,), then ;. is
a star refinement of the covering w,; for i =1, ...

Let us consider the covering w; of the space X and let af be a point in the set
7 Yeb), for e a vertex of the triangulation r,. So we obtain a subset

E = {d}, .. ai}

in the space X.

It follows from (2) that -
™ o ldn—all<27
e, and e! being vertices of a one dimensional simplex of the triangulation ;. Also

@) =e fork=1,..,1

The points of the set E; are vertices of a (f;~1)-dimensional simplex in the
space H, because the space X is 1.ii. in the space H.

Let us define a simplicial homeomorphism k;: X,—H by kel = a} for
s=1, t;.

Let p, =k, X—A,, here A; = k(X).
It follows from (4) that
®) lx—p()[<327" for xeXand i = 1,2,..
Let us consider the mapping
pl+1,1): Apy =4,
given by
pE+1,0) = kym(i4+1, DkSY .
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It follows that
) lpG+1,DN=yl1<9-27"1  for yed,,.

We denote by u; the image of the triangulation 7; under the simp]icial homeo-
morphism %;.
The mapping p(i+1, i) is a simplicial ,-sheet covering map of the triangu-

lation pt;4, on the triangulation u{*™, Here ,u,"’ is an §;-barycentric subdivision of the
triangulation p;.

4. Let X be a finite simplicial complex with a given triangulation z. We denote by
ClK,©) = {C(K,®)| 5=0,1,..}

the chain complex of the triangulation © with rational coefficients.
The simplicial mapping p(i+1,1) induces the chain homomorphism

pE+1,Dp = {pU+1,D] 5 =0,1,..}: Culdir1, pra1)—>Caol4y, pf)

fori=1,2,..
We denote by

T+, Dy = {oG+1,0] s=0,1,..}
the chain homomorphism

a(i+1, Dyt Coldy, )= Coldys 1, Biss)

given by
14
o(i+1,1),(0") = iZ o
=1
where
¢ = {a}o, .y af,} s {ag., 2 <oy ai+1}
and

pG+1,0) @) = dj,.
Let us consider the homomorphism
o(+1, 1) HA)+H4;iv)
induced by the chain mapping o(i+1, ).
It follows that

(10) ])(i—kl,i)*l\.ﬂ'(i'l"l:i)*s = ll.id ;
here ; .
p(i"*'15 i)’ks: }Is(Al+1)_>I-IS(Ai)

is the homomorphism induced by the chain mapping p(i+1, )y . . .
Tt follows from (10) that the homomorphism p(i+1, D)4 is an eplmorphlsm for
every i = 1,2,..and § =0,1,..

4 — Fundamenta Mathematicae T, CIV
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Let us recall that
pG+1,1) = km(+1, D3y

where k;, and k;}% are homeomorphisms. So we have

LemMa 1. The homomorphisms (m(i+1, i))us are epimorphisms for i =1,2, ..,
and § =0,1, ..

Tt follows from (10) that the homomorphism ¢ (i+1, i), is an isomorphism
because p(i+1,17)y, is an isomorphism.

Let ‘

0(i+1, 1) = {eG+1,1)) s=0,1,..}
be a chain mapping such that ’
Q(i'l"la i)s = li_ia(i’l'l: i)s .

If o(i+1, i)y is the homomorphism of the homology groups induced by the
chain mapping @(i+1, i), then-

p+1, ) 0@ +1,0)y =id.

5. Let M be a compact metric space and v;, i = 1, 2, ..., a fundamental system
of finite open covering of the space M such that

a) every element of the covering v; has a diameter less than 277,

b) the covering v, is a star refinement of the covering v, for i = 1,2, ...

The ordered (k+1)-tuple o* = (x,,..., %) of points of the space M is
called a k-dimensional Vietoris simplex of the space M. We denote by M(v)) the
simplicial complex of all v;-Vigtoris simplexes of the space M. If 4 is a subset of the
space M, then by M(v;) n A we shall denote the closed subcomplex M (v;) consisting
of all simplexes of M (v;) with vertices belonging to the set A.

We denote by V,(M,v;) the chain complex with rational coefficients of the
simplicial complex M(v;). By [o] we denote the closed simplicial complex of all

v;-Vietoris simplexes of the chain ¢ for a given o e V, (M, v).
Let

V*(M) = H VM, v) i =1, e}

The elements of the group ¥,(M) are called the Vietoris chains of the space M.

Let @ = {a}f i =1,..} be the Vietoris chain of the space M. The chain ¢ is
called a convergent Vietoris chain if the chain a; is homologous to the chain a;-,
in VM, v, ) fori=2,3,..

By V(M) we shall denote the linear space over the rationals with the basis
consisting of all convergent Vietoris chain of the space M.

Let M and M be compact metric spaces and

v={li=1,2,.}, V={]i=1,2,.}

fundamental systems of finite open covering satisfying a) and b) in M and M.

'
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Let /1 M—M be a continuous mapping. We shall define the chain mapping
fat ViM)=Vi(M).
Let us consider the covering ¥;, f ™%, is an open, finite covering of the space M.
Let v,, be a covering which is a refinement of the covering f~¥; and v, € v. Then
the image of the complex M (v,;) under the mapping f belongs to the complex M (7,).
So for o :
c={g|i=1,..}e VM)

‘we have

A ={fledi=1,.}.

By N(w) we shall denote the nerve of the covering w for a given finite, open
covering of the space M.
Let o', @' be a finite, open covering of the space M

o ={U,.., U}, o ={T,.,0U0"%

and the covering ' is a refinement of the covering «’’. Then we have the simplicial
mapping i1 N(a')—N(w') given by i(Uy) = U,, for Uyeo’, and U, €w” such
that UpcU,, . ;
The covering v, ¢ is a star refinement of the covering v;. Let us define the chain
mapping
{0 VM, Vz+1)_’c*(N(Vi)) .

Suppose 6% = (xg, ..., x;) i5 @ v;4.4-Vietoris simplex of the space M. The vertex x;
belongs to some element ¥, of the covering vy..1. Let W, be an element of the
covering v; such that

. I’VNDSt(VS: Vi-l—]) ’
Then we put
C(an A xk) =0

if the simplex (W, ..., W,) degenerates and

E(xgy eens %) = (Wo, oo W)
otherwise.
Here St(V,, vi41) is the star of the set V; in the covering visi.
; Also we have the chain mapping

| 01 ClN ()~ VoM, )

This mapping is defined as follows. For a given vertex U of the simplicial complex
N(¥y), @(U) is a point belonging to U.
We shall use the mapping ¢ in the following case:

@1 Coldpgys b )= Va(X, ) .
In this case we put .
P(Stek™s pisn)) = att.
We also know that if ¢ e Pi(M) and {(¢) is a Cech chain, then ae Vi(X), [11.
an .


Artur


120 G. S. Skordev

6. We denote by f* the covering {p;" }(St(a, 1)) a is a vertex of the triangu-

lation u§}. If the triangulation g; is the merve of the covering w;, then u{™ is

a nerve of the covering ™. For a given vertex a of the triangulation ™ we have

P (St(a, 1) = U {pia(St8, pia )l p(+1, D) = a};
also :
St wisd) N SLG, pivy) = D
for
pG+1, () = p(i+1,)(®") and b #b".

It follows that the mapping p(i+1, i) is a canonical simplicial mapping of the

nerve of the covering o, , in the nerve of the covering w{®, i.¢., the image of the

set pi4(St(D, pt;4,)) under the mapping p(i-+1, i) is the set p; *(St(z, uf*)), where

p(i+1,9)(b) = a (here a is a vertex of the triangulation u{™, and b is a vertex of

the triangulation u;.,).
It follows that

(1n @y s @) =0(p7 (al), 27) 5
we use the following notation: for a.given set A4 in the space X, and a positive real §
0(4,8) = {xe X| sup(lx—yll | y € 4)<6}.

Let K be a finite simplicial complex with a triangulation t, and let t™® be the
k-barycentric subdivision of <.
‘We shall use the chain mapping

2 k) = {1, k)| s =0,1,..}
“k-barycentric subdivision of chains”
%(7, B)a: Co(K, 1)—Co(K, 1) .

Let us consider the simplex &} = (al,, ..., a}). We denote by 43, the chain

Q(i'l'la i+l“ I)EX(IJH -1 Si+l—1)s Q(i+1, i)sx(”lx Si)s(.af)
for I>1 and &5 for [ = 0.
Let us put
Yier = @(diy) for 1=0,1,..
It follows that
A€ Cl A, Hie)
and
Vi€ VX, @t+l~i) .
It follows from (II) that )

(12) |3’§+z| CO(Pi_I(a:D), 2_1“) .

e ®
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Let us consider the chains

y={lal 1=0,1,..}
and
d={di 1=0,1,..}.

We shall consider the chains 4], as chains of the nerves of the coverings w; ;.

" The chain y].; is & w4 ,-Vietoris chain of the space X. Also the image of the

chain 47, under the chain mapping

P CalA s b= Vil X, ©p4p—y)
is the chain 7},,.

The chain y is a convergent Vietoris chain of the space X. Indeed, we know
that the mapping p(i-+-/, i-+/~1) is a canonical simplicial mapping of the nerve
of the covering w,,, in the nerve of the covering w{%717V.

Let j($;.,.1~4) be the canonical simplicial mapping of the nerve of the covering
0®F7Y in the nerve of the covering @, ;4.

It follows from (10) that

(13) pU+L i+HT=D A1) = x(ei- 15 Sivi-1)sd5 12 0) -
We have from (13)
(4 JjGur-Dp U+ i T=D(A11) = 1= DX Mirr— 15 Sia- 1A 41-1) -

It is well known that the chain 4j.,., is homologous to the chain

FC i Wi 15 Sia2-1(di41-0)
in the simplicial complex N(w,..;- ) (the nerve of the covering w; ;). Therefore y is
a convergent Vietoris chain of the space X, [1].
So we have the chain mapping
wi = {w s=0,1,..},
where
wit C(dy, p)—=V(X)
and
wj(8]) = {7;-&-!] I=0,1,..}.
This chain mapping induces the homomorphism
Wit Hy(d)—Hy(X) .
1t follows from (14) that the homomorphism w;* is the inverse homomorphism
of the homomorphism p, which is induced by the mapping p;: X—A4;.

7. Let us consider the sequence of coverings {w,| i =1,2, } in the space X.
We know that the covering ;.. is a star refinement of the covering o;.
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We have the Vietoris mapping p: Y—X of the metric compact space Y onto
the space X.

Let us recall one definition which belongs to E. Begle, [1].

Let f: A—B be a map of the compact metric space 4 onto the space B. The
mapping fis called an n- Vietoris mapping if for every open covering o of the space 4
and for every point y e B there exists an open and finite covering = = w(w, y) of
the space 4, such that

a) m is a refinement of the covering o,

b) every k dimensional cycle in the complex A (%) N f ~1(y) is homologous to
zero in the complex A(w) N f~*(y) for g<k<n. |

It is proved in [1], § 6 that if we consider a Vietoris homology with rational
coefficients, then every Vietoris mapping is an n-Vietoris mapping for m = 0, 1, ...

Therefore the mapping p: Y—X is an n-Vietoris mapping for m =0, 1, ...

8. Now we shall prove Theorem 1'. It is sufficient to prove that there exists
a point z; in the space Y such that ‘

as () —q(z)ll<27*2

Indeed, let us have a sequence {z;| i = 1,2, ..} in the space ¥ and let every
point z; of the sequence satisfy (15).

If the space Y is a metric compact space, we can suppose without loss of gen-
erality that this sequence is convergent. Let z,be the limit of the sequence
{z] i=1,2,..}. It follows from (15) that ||p(zo)—q(zo)ll<2~"*3.

Now we shall construct such a sequence.

Let us consider the covering w; of the space X, and the covering ¢~ (w;..()
of the space Y. The mapping p is an n-Vietoris mapping. Here #n = dim X = dim X}
for i=1,2,.. Lemma 2, § 4, [1] implies the following

LEMMA. There exists an integer | and a chain mapping T of (n+1)-skeleton
of V(X 0;4)) in Vi(Y, g Nwry)) such that

a) the chain pT(c®) is a barycentric subdivision of the chain o* for every simplex a*,
0<k<n+] in VX, ©0;41),

b) [pT(c%)| belongs to some element of the covering w,,. I

c) there exists a point g(d*)e X such that '

(16) St(9(e"), @)>16*,
an St (P_l(g (o'k))s 9_1(®i+1))3[T(0k)] .

Actually this lemma follows from the proof of Lemma 2, § 4, [1]. By T" we denote
the same chain mapping constructed in the proof of Lemma 2, §4, [1].
‘We shall define a chain mapping

for every i = 1,2, ..,

o = {0l s=0,1, v}t Cu(4, 1)~ Cu( 4y, 1)
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such that the Lefschetz number

Ao) = 2 ("Ditmt
of the chain mapping o, will be equal to the number of coincidence
Alp,q) = ¥ (=D)'trgpi
of the mappings p and q.
Let 85 = (&), ..., al,) be a simplex of the triangulation p,; and
W§(5§) = {y;}-l*k' k = 0) 1: "'} M
We have
Pan € VX, Oppp-1)
and ‘
il =0 (p (Bh), 271 .
Then by definition
a8 = LaT(irra1) -
It follows from Lemma 1, [1] that

Ty = Pt*q*}’;lpt—*l .
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Here &, is the homomorphism of the homology groups induced by the chain

mapping .
Therefore
(18) Ady) = Alp, 9
and
Ay = 4, 9) -

‘We have A(p, q) # 0, and so A(ay) # 0. Therefore there exists a simplex & of

the triangulation y; such that
&ie ol
Let & = (cly, .o, cf,). If
wiED) = {nissl £ =0,1,.},
then
19 ]ﬂyi~|-1-+1|‘:0(Pf1(c§u)= 2-”1) .

Let B° = (xg, ..., X,) be a simplex of the chain #3474, such that the simplex &
belongs to the chain {gT'(8%). It follows from (19) that there exists a point y, in the

set pi(cl,) such that
”xo"yo”<2—i".H
Therefore

(20) o —chll<3-27.
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Also, there exists a point g(8)e X such that

21 1B1=St(g(B), @) »
2 IT(B) =St(p~ (g (), 4~ (@1+1)) -

It follows from (21) that

lxo—g (B)II<27".

From (20) and the last inequality we obtain
@3) - llg (B)—clyll <272

If u=(up,..,u) is a Vietoris simplex in Vy(X, w4 ), then

L) € Cu(N (@) = Caldy, ) -

Here the chain mapping { is defined as follows. The vertex 1, is in the set ¥}, of the

covering ;.. Let W, be the element of the covering w, containing St(¥y, @, ).
Then

(@) = (Wo, ., W)
when the simplex (W, ..., W) is not degenerate and {(u) = 0 otherwise.
Lety = (y0, ..., 75) be such a simplex of the chain ¢T'(8%), that the image of the
chain y under the chain mapping { is the simplex (c§u, s cg,). '
Then
@9 lIvo—ciall <27
It follows from (22) that

70 € St(ap™ (g (89), @iy) -
From (22) and (23) we infer thatf the distance between the point g(f*) and
the set gp~*(g(B")) is less than 11-27"~1, Therefore there exists a point

wieqpHg(f))
such that

llg(B)~will<11-27 "1 < 3,
Let z; be such a point in the set p™*(g(8%) that ¢(z,) = w,. Then

llp@E)-g(@)ll<27"2,
Theorem 1’ is proved.
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