64 W. T, Ingram
THEOREM 3. If X is a compact metric continuum and H, is a subcollection of H such
that X can be mapped onto every member of H,, then Hy is countable.

Proof. This is a consequence of Theorem 2 of this paper and Theorem 3 of [5].

THEOREM 4. Uncountably many members of H are not a continuous image of the
pseudo-arc.
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The theory of Archimedean real closed fields
in logics with Ramsey quantifiers

by

J. Cowles (Princeton, N. T.)

Abstract. The theory of Archimedean real closed fields is shown to be complete, decidab‘le,
and model complete in a class of logics, due to Malitz and Magidor, which extend the logic with
the cardinal quantifier, “There exist infinitely many...”.

1t is assumed that the reader is familiar with the model theory of first order
logic as set forth in the book [{] of Chang and Keisler. In particular, the reader
should be acquainted with the definitions of completeness, model com'pleteness, .and
decidability in reference to first order logic and to certain of its extensions described
below. . .
Tt is well known that there is no first order theory of Archimedean real closed
fields as distinct from the theory of real closed fields. In fact, using the method of
eli}rﬂhation of quantifiers [6] or [2], it follows that the first orde}' t}'xeory of real closed
fields is complete, decidable, and model complete. The situation is'not altered Wh‘en
a new cardinal quantifier Q, with the Ko-interpretation [5], is added to th.e logic:
Add a formation rule to those of first order logic; if ¢ is a formula, then so is Oxq;
and 9 is a model of Qx¢ just in case there are infinitely many elements x in t.he
domain of 2 which satisfy ¢. In the case of real closed fields, the method Of.elilnln-
ation of quantifiers can be extended to the cardinal quantifier [3] or [7], showing that
the theory of these fields in the extended logic is complete, decidable, anc_l model
complete. Thus, as in the case of first order logic, there is no t}‘lem_'y of Archimedean
real closed fields in the logic with the quantifier “There exist infinitely many...”
which is distinct from the theory of all real closed fields. In contrast with the above,
the situation is different in logics, described below, due to Malitz and Magi.dor [41,
which are generaﬁzations of the logic with the cardinal quantifier. Th_ese logics have
enough expressive power to distinguish Archimedean from non-Archimedean fields.
Tt will be shown by the method of elimination of quantifiers that the theory of
Archimedean real closed fields in these logics of Malitz and Magidor is complete,
decidable, and model complete.
5 — Fundamenta Mathematicae T. CII
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Logics with Ramsey quantifiers. For each positive integer n the logic Q" is obtained
by adding a new quantifier Q" which binds » variables and a new formation rule to
those of first order logic: If ¢ is a formula and the variables x,, ..., x, are distinct,
then Q"% ... x,¢ is also a formula. The logic Q= is obtained from first order logic
by adding all the quantifiers Q" together with the corresponding formation rules.

The intended interpretation of Q"x; ... x, is, “There is an infinite set I such
that whenever the variables x,, ..., x, are interpreted by distinct elements ay, ..., a,
of 7, then ¢ holds”. Therefore, writing 2 F ¢ [¢] where « is an interpretation, in the
structure 2, of the free variables, which satisfies the formula ¢; for each positive
integer n a new clause must be added to the usual recursive definition of satisfaction
for first order logic: Ak Q"x, ... x,¢[a] just in case there is an infinite subset I of
the domain of A such that whenever ay, ..., a, are distinct elements of 7, then
Ak olayxy, .., dfx,, a]. Here the notation indicates how each of the variables
X1, .0y X, 18 to be interpreted in 2.

The logic Q" coincides with the logic with the cardinal quantifier, “There exist
infinitely many...”. It seems appropriate to refer to the logics Q”, for 2, as logics
with Ramsey quantifiers because of the similarity between their semantics and the
well-known statement of Ramsey’s theorem. (For a statement of Ramsey’s theorem,
see [1], p. 145.)

The theory of Archimedean real closed fields. Recall that an ordered field is
a linearly ordered structure, satisfying the field axioms, such that multiplication, by
positive elements, and addition, by all elements, is compatible with the ordering. An
ordered field is an Archimedean field iff each member of the field is bounded above
by some positive integer. An ordered field is a real closed field just in case each
positive element has a square root and Weierstrass’ Nullstellensatz holds for
polynomials of a single variable with coefficients from the field, i.e., if p(x) is
such a polynomial, @ and b elements of the field such that a<b and p(a)<0
and p(b)>0, then for some ¢ between a and b, p(c) = 0.

Let L = {+,,—,0,1, <} be the language appropriate for ordered ficlds,
i.e., + and - are binary function symbols denoting addition and multiplication,
0 and 1 are constant symbols denoting the additive and multiplicative. units, — is
a unary function symbol denoting the additive inverse, and < is a binary relation
symbol for the ordering relation. It is well known that there is & set, denoted hereafter
by RCF, of first order sentences of the language L such that 90 k RCF iff 9C is a real
closed field; for example, Weirestrass’ Nullstellensatz for polynomials is translated
into first order logic by an infinite set of sentences: For each positive integer n

Vg ... VX,V Yy, Dri<yaaxo+x i+ 4x,y1<0A
/\xo+x1y2+...+x,,y’§>0—>32(y1<z/\z<y2/\xo+xlz+...+x,,z" = 0)].

PROPOSITION. There is a set, denoted hereqfter by ARCF, of Q*sentences of
the language L such thar Wk ARCF iff W is an Archimedean real closed field.
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Proof. Let ARCF be RCF U { ¢} where ¢ is -
AxQ*yz(0<yAy<xA0<zAz<xA|ly—z|>1)

and |y—z|>1 is the formula y~z>1vz—y>1. It is enough to show that every
ordered field is non-Archimedean just in case it is a model of ¢: If 2[ is a non-Archi-
medean ordered field, then there is an x in the domain of 9 such that every positive
integer is less than x. Let I be the set of all even positive integers; then Z is an infinite
set and if y and z are distinct elements of I, then [y—z|>1, 0<z<x, and O<y <z,
Therefore 20 E ¢. On the other hand, if 2 is an ordered field and A k ¢, then there
is an x in the domain of % and an infinite subset I of the domain of A such that if y
and z are distinct elements of I, then [y—z|{>1, O<y<ux, and 0<z<x. For each
positive integer » let I, = {ael| n—1<a<n}. Then for each positive integer n,
Card(I,)<1; for if a and b are in I, with a<b, then b—a>1 so that b>a+1. But
n—1<a, so that n<a+1<b which is contrary to b<n. Since Card(/; v ... V) <n
and I is infinite, for each n there is a ¢ in I—(I; U ... U I,). This ¢ must be larger
than 7, so that for each positive integer n there is a ¢ in I such that n<c<x.

COROLLARY. There is a set ARCF of Q<“-sentences such that %k ARCF
iff O is an Archimedean real closed field.

COROLLARY. For n>2 there is a set, also denoted by ARCF, of Q'-sentences
such that 0 & ARCF iff 9 is an Archimedean real closed field.

Proof. In ¢ replace Q%yz by Q'yrz; ...z, where y,z, 23, ..., &, are distinct
variables.

Tt follows from the proposition and its corollaries that for each nz2, the
Q"-theory, as well as the O~“-theory, of RCF is neither complete nor model com-
plete. The rest of the paper is devoted to showing that the above-mentioned theories
of ARCF are complete, model complete, and decidable. The starting point and key
to accomplishing this task is the following well-known theorem due to A. Tarski.
(For a proof see [6] or [2].)

TroreM (Tarski). Every first order formula @ of the language L is equivalent,
in all models of RCF, to a quantifier free formula s whose free variables form a subset
of those of . ;

The immediate goal is to prove the theorem whose statement is obtained from
the theorem of Tarski by replacing “first order” by “Q"” and “RCF™ by “ARCF”.

LEMMA. For each term t of the language L there is a polynomial p with integer
coefficients, in the variables x, , ..., X, which appear in t, such that for every model A of
ARCF and every interpretation & of the varigbles AWk p = t]d].

LevmMa. Each atomic formula of the language L is equivalent, in all models of
ARCF, to a polynomial equality or inequality, i.e., to a formula of the form P = 0
or of the form p=>0 where p is a polynomial in several variables m‘th integer coefficients.
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LemMA. Each quantifier free formula of the lunguage L is equivalent, in all models
of ARCF, to a disjunction of formulas of the form

P1=0A0Ap, =0Aq>0A..Aq,>0

where the p; and q; are polynomials with integer coefficients.

As a consequence of these lemmas and Tarski’s theorem, only formulas of the
- form Q"% ... x,(0 v ... v 0,), where each @, is a conjunction of polynomial equalities
or inequalities, need be the focus of consideration. It would greatly simplify matters
if the quantifier Q" distributed over disjunctions, but unfortunately as the formula
Q*xy(x<yvy<x) illustrates, this is not necessarily the case. However, a modified
distributive law for Q" over disjunction is the content of the next lemmia.

Let &(n) be the symmetric group on the set {1, ...,n} and for cach integer
k=2 let k" be the set of functions from & (x) into the set {L, ..., k}. Tt 0 is a quantifier
free formula and o € & (1), then 07 is the formula obtained from 0 by replacing cach
of the variables x;, for ie{l, ..., n}, by x,.

Lemma (distributive law for Q" over disjunction). Each formula of the form
Q"xy . x,(01 v ... v 0), where each of the 0, is a conjunction of polynomial equalities
or inequalities, is equivalent, in all models of ARCF, fo

Vo Oy e x,(x < <X, A 050
Sekn . Te&(n)

Proof. If for some fe k",

Ak O'xy Xy <i<x,> N 05lal,
aeB(n)
then there is an infinite subset I of the domain 4 of 9( such that whenever Ay y eeny iy
are distinct elements of I,

WE g <o <,= A\ O3 ) [@y/X1s oy a)x,,, a] -
oce@(n) ,

Let ¢y, ..., ¢, be distinct elements 7 and let 7 and o be elements of &(n) such that
Cxty <o <Gy a0d @ = 71 Then & F 0, [cer/xy, oo, ComlXn» @15 SO

WEOFplenaays s CulX o al 5
so that Ak Gy, leq/xy, ..., %, al. Thus Ak Q" ... x,(0, v ...v0) [a].

Now suppose that W F Q" ... x,(0, v ... vO)[a]l. Then there is an infinite
subset J, of A4 such that whenever Ayy sty are distinet clements of Jus
WE O v..vOfa/x,, .., a)x,, al. Let {o, ..., 0,/} be an enumeration of &(n) and
for a set J, let [J]" denote the set of all subsets K of J such that Card (K) = n. For
each 7e {1, ..., n!}, define an infinite subset J; of Jy such that for each j, Jied;
and at the same time define a function g from &(n) into {1,..., k} by specifying the
value of g(o;) as follows: For ie {I,..,n} and je {1, .., k}, assuming that J,..,
has already been defined, let H} be the set of all those {ay, ., a) e/, (]" such
that if {a,,...,a,} = {c;, ..., ¢,} and €1 <<y, then W 07 [ey/xy, ..., ¢,/x,, d]
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Then Hi U ..U Hi = [J;—,]" because {e1, o, e e [Ji-11's[Jo]", and for some A,
W E Oulcoy/X 15 -ors Comf*a> @] Where @ = o7 50 that o £ 07cy/x, , ..., €/x,, a]. By
Ramsey’s theorem, there is an m, which is taken to be the value of g (o), and an
infinite subset, which is taken to be J;, of J;_, such that [7,]"s HL. Now let Ay sy by
be distinct elements of the infinite subset J,, of 4 such that a, <... <a,andlet ¢ = o,
be an element of &(n). Since J,<J;, then {a, .., a,} e []1]"§H,,i(,); so that
Ak Oglay /(s s @fx,, a]. Therefore

.Q[ E \/ Q"v\'l ‘x,,(..\-l <o <X, /e;\( )Of(,,)) [g] .

SJekn

This lemma allows us to concentrate on formulas of the form
Q”-\'] e

where (0 is a conjunction of polynomial equalities or inequalities.

Let @ be a conjunction of polynomial equalities or inequalities. Let u, v, w,
and z be variables which do not appear in 0. Let ®(0), for 1 <i<4, be the following
first order formulas: ‘

&(0) is VzAxAoVylz<xax<vaw<y-0)],

&,(0) is VzAyAuVx[p<zAu<ya(x<u—0)],

@3(0) is AWV ATV y[z<worz<x Ax<vAVSWA W<y AY<Wwo0)],

X, (xy <..<x,—0)

and

©,0) is AwYzAyduVx[w<zoy<zau<urw<ua(x<usw<x—0)].

Let ¢ be a formula of Q¢ let o be a structure linearly ordered by <, and
suppose W F Q"x; ... x, ¢ [al. Denote by I(p [a]), a countably infinite subset I of
the domain of 2, together with an enumeration {¢;>{%q of I in either increasing
(with respect to <) or decreasing order, such that whenever y, ..., a, are distinct
elements of /, then A F g[a/x(, ..., a/x,, al. .

Lemma A. Let W be « model of ARCF; let 0 be a conjunction of polynomial
equalities or inequalities in which the variables u, v, w, and z do not appear, and let
0 =.0 be the formula x<y—0. If, for i€ {1, ..., 4}, A £ &,6) [al, then Ak Qxyld],
and ifi = 1, then 1(D[a]) can be taken to be a set unbounded from above and enumerated
in increasing order if i = 2, then I(0[aly can be taken to be a set unbounded from below
and enumerated in decreasing order; if i = 3, then I(0 [a]) can be taken to be a set
enumerated in increasing order and bounded above; and if i = 4, then 1(9 [a]) can be
taken to be a set enumerated in decreasing order and bounded below.

Proof. For example consider the cases when / = 1 and 7 = 4; the cases when
i=2and i/ =3 are similar.

When i = 1, the formula ®(0) is used to choose sequences {z;){%q, {U;>i20,
and {x;>iZ o First arbitrarily pick z, = 0. Then assuming z; has been chosen, pick x;
and v; so that '

WEz<xAx<oaVy<y—0)[zfz, x;/x, v;lv, d] .


Artur


70 1. Cowles

The formula &,(0) asserts that such an x; and v, exist. Finally, let z,,.; = v,+1.
Note that {x;>{2, is an increasing sequence which is not bounded above. Let x;
and x; be members of the sequence (xping with i<, Then x;<v; <z <Xy <X
and Uk Ox;/x, x;/y, al; so that Uk Q%xy0.

When i = 4, the formula ®,(0) is used to choose sequences {z,>/%o, {¥ Dm0,
and {u;>i%o: First choose w, so that

A I:‘VzEly':'lqu [w<zoy<zau<y aw<un(x<uAw<x=0]wo/w, al.

Then choose z, = wy+1; assuming z, has been chosen such that wy <z, pick y,
and u; so that

Ak y<zru<yaw<uAVx(x<uaw<—0){wo/w, zilz, iy, ufu, al.

Finally, let z,,, = u;. Note that {y;}{Z, is a decreasing sequence bounded below
by wy. Let p; and y; be members of the sequence ¢ yi>ito such that i<j. Then
Yi>up = 20> Y 2y;>we and WEO[yyy, yi/x, g]; so that 9 F Q%xy0.

LeMMA B. Let R be the ordered field of all real numbers; let 0 and 0 be as in the
previous lemma, and suppose Rk Qxy8[al. If 1(0]a]) can be chosen to be a set un-
bounded from above and enumerated in increasing order, then R = ®,(0)[al; if 1 (@a))
can be chosen to be a set unbounded from below and enumerated in decreasing order,
then R & &,(0)[al; if I(D [a]) can be chosen to be a set enumerated in increasing order
and bounded above, then R F ®5(0) [al; and if 1([a]) can be chosen to be a set enumer-
ated in decreasing order and bounded below, then R E @,(0)[al.

Proof. For example, consider the cases involving ®,(0) and ¢;(0); the cases
involving @, () and &,(f) are similar. Let 0 bep, = 0A ... Ap, =0A g, >0A ... Ag,>0
where the p; and the g; are polynomials in several variables with integer coefficients.

Suppose (8 [2]) is unbounded from below and enumerated in decreasing order.
Then, for every real number r there is a member b of I(0 [a]) such that b<r and the
set {ce I([@[aD)| c<b} = I, is infinite and unbounded from below. For each cel,
and each 7 and j, ® Fp; = O[¢/x, bfy, ] and Rk ¢,;>0[¢/x, bjy, a. Since the only
polynomial, with real coefficients, in one variable, and with infinitely many zeros,
is- the zero-polynomial; then R E Vaxp; = 0[b/y, a]. Since mon-zero polynomials
in one variable and with real coefficients have only finitely many zeros, by Weicr-
strass’ Nullstellensatz for polynomials, there exist real numbers d; such that d;<b
and

R EVx(x<u—q;>0)[dfu, bly, a] .
Let d = min{d;| 1<j<k}. Then

R & Vx(x<u—0)[dfu, bjy, .
Thus Rk &,(0) [a].
Now suppose I(D) [a] is enumerated in increasing order and bounded above.

Let 5 be the least upper bound of I(8)[4]). Then for every real number r which is
less than s, there is a member b of I(§[a]) such that the {ce I(B[a])| b<el =1,
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js infinite. For each cel, and each i and j, RMEp, = 0[b/x, c/y,a] and
Rk g;>0[bfx, [y, al. Then R EVy(p;, = 0)[bjx, q] and there exist real nume-
bers d; such that b<d;<s and

REVy@<yay<w-q;>0)[s/w, bjx, d;v, g] .
Let d = max{d;| 1<i<k}. Then
REVy@<yry<w-0)[s/w, bjx, dfv, a] .

Therefore R F $4(0) [a].

Once more, let 0 be a conjunction of polynomial equalities or inequalities.
Let u, v, and w be variables which do not appear in 0. Let Y(0) for 1<i<4, be the
following first order formulas:

PHO) is oV y[x<x, <. <x,~x, <0 A (0<y—=0)],

PhO) is TuVx[x,<...<x,<y—u<x, Alx<u—0)],

PR0) is IoVp[r<wAXy<WA .. AX,<WA

A <xy <o <X, X, <O<WA (<Y <w-0))],
and

wa) is 3qu|w<x,_/\.../\w<x,,/\w<y/\

Ay <<, <YW <Uu<xy A(w<x<u-0))|.

LemMA a. Let W be a model of ARCF; let 0 be a conjunction of polynomial
equalities or inequalities in which the variables u, v, and w do not appear, and, for
nz2, let 0" be the formula x<xp<..<x,<y—0. If AF Q"xx, ... x, P10 [a] and
I(P(6){4]) can be taken to be a set unbounded from above and enumerated in increasing
order, then W Q"*1xx, ... x,y0"[a] and 1(8"[a]) can be chosen o be a ser also un-
bounded from above and enumerated in increasing order; if WE Q"x, ... x,y¥3(0) [a]
and I(P5(0)[a]) can be taken fo be a set unbounded from below and emumerated in
decreasing order, then 9k Q" lxx, ...x,,y@"[g] and 1 (9"[g]) can be chosen io be
a set also unbounded from below and enumerdted in decreasing order; if there is an
element ¢ of the domain of U such thar WE Qxx, ... x, P3(0)[c/w, a] and
I(P5(0) [¢/w, a]) can be taken to a set enumerated in increasing order and bounded
above (by ¢), then A E Q" x5y . x,y0"[a) and 1(0"[al) can be chosen 1o be a set also
enumerated in increasing order and bounded above (by ¢); if there is an element ¢ in
the domain of 9 such that Wk Q"xy ... x,Wa(0) [c/w, a] and IP0) [¢/w, a)) can
be taken 1o be u set enumerated in decreasing order and bounded below (by c), then
Wk Q" xxy ... x,p0"[a] and I(@"[a] can be chosen io be a set also enumerated in
decreasing order and bounded below (by ¢).

Proof. For example, consider the cases involving ¥3(0) and Wi(0); the cases
involving ¥5(0) and ¥3(0) are similar.

Suppose U F O"xx, ... x,Pi(0)[¢] and I = I(P"(0)[a]) is unbounded from
above and enumerated in increasing order. The formula Y4i(0) is used to choose
sequences (v,>i=, and {«;>i%,, the sequence {«;>;=; being a subsequence of the
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enumeration of I: First arbitrarily pick ¢ <...<a, eI Then, assuming a,,,(k>0)
has been chosen, for each subsequence s = {¢,j=; of length'n of {a,>]3¥, pick v, 80
that

Ak Vylr<n, <.<x,=x,<va@<y-0)]le;[x, e2fxs, ooy ¢4fx,, v, a] .

T.he formula ¥3(6) asserts that such a v, exists. Let v, be the largest such v, and
pick @, 41 Suchthata, iy € Fand @, pqy >max{vey,, 1+ a,,,,,k, Note that a2

is an 1ncteas1ng sequence which is not bounded above. Let {¢;>2! be a ‘;ubqequeme
of a2 with ¢, = a; (j=n) and s = {e)fay. Then ¢, 2d;y (>0, 20, S0 that

WE Oley/x, cafxzy ey €fX0s €yueelys al 5

thus A E Qxx, ... x,»0'[a]. :

Suppose U F Q"x;, ... x,y¥4(0) [c/w, a] and I = I(Wi(0)[c/w, a]) is enumerated
in decreasing order and bounded below by c¢. The formula ¥4(0) is used to choose
sequences {u;»iz; and {@;);2;, the sequence {a;>i2, being a subsequence of the
enumeration of I: First arbitrarily pick a,>...>a, e I. Then, assuming Gy, (k= 0)
has been chosen, for each subsequence s = <¢;D} of length n of {a;,>7¥, pick u, so

that
UFVx|w<xy A Aw<x, Aw<y A

Ay <X, <y w<U<X, A (w<x<u—0)|

[Cu/xh e Cz/xn: cl/y, C/W, le/ll, Q] .
Let ., be the smallest such u, and pick @,4;4; such that a,...,ef and
a,,+k+1<u,‘+1 Note that {a;»{Z, is a decreasing sequence bounded below by c.
Let {c;p}X1 be a subsequence of {apizy with ¢, = a,(jzn) and s = {¢;)}=;. Then
C< Gy Kljp <Uyy 1 S 50 that

Ak G[Cu-!'l/xs cn/x2> e Cz/xna cl/y: ,(,l] H
thus U & 0" xx, ... x,¥0[a].

Lemma b. Let 0 and 8" be as in the previous lemma and suppose
RE Q" xx, ... x,y0a] .

IFI (9”[(1 ) can be chosen to be a set unbounded from above and enumerated in increasing
order, then R k Qrxxy . x, Wy () [a] and I(¥}(0) lal) can be taken to a ser also un-
bounded from above and enumerated in increasing order; 3 i I [al) can be chosen to
a set unbounded from below and enumerated in decreasing or det, l/mn

R E Q"% ... %,yV3(0) [a]

and I(¥5(0) [ [a]) can be taken to be a set also unbounded Srom below and enumerczled
in decreasing order; if I (@"[a D) can be choseri to be a set enumerated in increasing order

The theory of Archimedean real closed fields 73

and bounded above, then there is a real number ¢ such that R k Qxx, ... x,¥3(0) [cfw, a]
and I(P5(0)[¢/w, al can be taken to be a set also enumerated in z'ncreasmg order and
bounded above; if 1(8"[al) can be chosen to be a set enumerated in decreasing order
and bounded below, then there is a real number ¢ such that R k 0x, ... x,yV(0) [¢/w, ]
and I(P4(0)[c/w, al) can be taken for set also enumerated in decreasing order and
bounded below.

Proof. For example, consider the cases involving ¥5(6) and ¥3(f); the cases
involving ¥ (0) and W (0) are similar. Let 0 be p; = OA .. Apy=0Aq; >0A .. A g>0

- where the p; and g; are polynomials in several variables with integer coefficients.

Suppose I(0"[a]) = I is unbounded from below and enumerated in decreasing
order. Let ¢, <...<c, & I. Then the set {ceI| ¢<c;} = I is infinite and unbounded
from below. For each cel; and each i and j,

S{Fpl ==O[c/x, cl/x25'"=cn/y’ f‘l] and SR’:QJ'>0[C/X’ Cl/x2= ...,C,,/y, €]~
Then R k Vx(p; = 0)[¢s/x3, ..., ¢,/ ¥, ¢] and there exist real numbers d; such that
d;<c; and

R EVx(x<u—q;>0)[d)fu, C1lXns oes Cl Vs g] R

Let d = min{d}| 1<j<k}. Then
R & Vx(x<u—0)[dfu, ¢/%s5 e ¢y, al.

Thus R E Ox, ... x,y¥5(0)[a] and I(P3(6)[a]) can be taken to be I = I("[a]).

Now suppose I(8"[a]) = I is enumerated in increasing order and bounded above.
Let ¢ be the least upper bound of I and let a;<..<a,el Then the set
{aeI| a>a,} = I is infinite. For each ael; and each 7 and j,

ER I:pt = O[allx: L] an/xna a/yv g] and 9{ E qj>0[a1/x9 sees an/xn: a/y: g] .

Then R E Vx(p; = 0)[@y/%, ., @,/%,, a] and there exist real numbers d; such that
a,<d;<c and

REVy<y<w-rg;>0)[c/w, difv, ay/x, ..., @/x, a] .
Let d = max{d)] 1<i<k}. Then
N EVy(o<y<w—0)c/w, dv, ax, ..., &%, al ..

Therefore R E 0"xx; ... X, P3(0) [c/w, a] and I(¥3(0) [c/w, a]) can be taken to be
I = I(0"[a]).

Levma. Lez 0, 8%, and 0 (for n>2) be as in Lemmas A and a, and let A be a model
of ARCF. For n1 there are quantifier free formulas Yi(0) (1<i<4) whose free

variables form a subset of those of Q"*'xx; ... ,,yZ?"(Q"‘xy@1 for n = 1) such that
Ak Q" xx, ... x,y0"[a] and I(0'(al) car be taken 10 be a set unbounded from above

and enumerafed in increasing order iff WE YI(O)[al; UF Q" 1xxy ... %, y0a] and
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I(8"[a]) can be taken to be a set unbounded from below and enumerated in decreasing
order iff WE WL [al; Ak Q" xx, ... x,y0"[a] and I1(0'[a]) can be taken fo be a 'set
enumerated in inEreasing order and bounded above ff WEY3(0)[al; and

E Q" lxx, ... x,p0'[a] and I("[a]) can be taken to be a set enumerated in decreasing
order and bounded below iff U E ya(0)[al.

Proof. Let 9 be a model of ARCF. It can be assumed that 2[ is a substructure
of M, the field of all real numbers ([8], p. 241). Proceed by induction on n: For
n = 1 consider the case when i = 1; the cases when i = 2, 3, and 4 are similar. By
Lemma A, if 9 k &,(0)[a], then 2 F Qxy0*[a] and I(8*[4]) can be taken to be a set
unbounded from above and enumerated in incr easing order. If A F QAyf}l[z/] and
7 (91[a) is a set unbounded from above and enumerated in increasing order, then,
since 90 is a substructure of R, R F Oyl [a] and I(8"[a]) remains a set unbound(,d
from above and enumerated in increasing order. By Lemma B, R F @,(0)[4].
Tarski’s theorem, ¢,(0)[4] is equivalent, in all models of RCF, to a quantifier free
formula i(0). Hence R E y/1(6) [a], and so AF i [a].

Now assume that the lemma holds for all n<k; consider the case when i = 3;
the cases when 7 = 1, 2, and 4 are similar. By Lemma a, if there is an element ¢ of
the domain of ¥ such that A F Q%x, ... x, ¥5(0) [¢/w, a] and I(!I’ (0) [c/w a]) is
a set enumerated in increasing order and bounded above, then 91 & QF* iy, xkyﬁ [a}
and I(0%[a] [a]) can be taken to be a set also enumerated in increasing order and bounded
above. If o F 0**1xx, ... x,30"[a] and I(8"[a]) is a set enumerated in increasing order
and bounded above, then R F 0¥ txx, ... x,,yf')"‘[g] and I (D”‘[g]) remains a set enumer-
ated in increasing order and bounded above. By Lemma b, there is a real number »
such that Rk Q%xx, ... x,W5(0) [r/w, al and IO [rjw, a]) can be taken to be
a set enumerated in increasing order and bounded above. By Tarski’s theorem ¥5(0)
is equivalent, in all models of RCF, to a quantifier free formula . By the distributive
law for Q* over disjunction, there are conjunctions ¢ (1 <j<h) of polynomial equali-
ties or inequalities such that Q%xx, ... x,\ is equivalent, in all models of ARCF, to

OFxx, ...

XX <Hp < <))
1<j<h

Hence, for some j,

R E Qxx, ... X <x,y < <X 0))

and- furthermore, since I{[x<x,<...<x—¢;l[r/w, a]) = I can be taken to be
a subset of I(y[r/w, a]) = ICP50) [rfw, ap, I'is a Set enumerated in increasing
order and bounded above. By the induction hypothesis, there is a quantifier free
formula & such that | k Q*xx, ... x,) [rfw, a] and I [#/w, a]) is a set enumerated
in increasing order and bounded above iff “for some JA :

RE Ofxx, ... (X <Xy < <X ) [rfw, al

and I is a set enumerated in increasing order and bounded above iff R k o [r/w, g].
By Tarski’s theorem there is a quantifier free formula y%(6) equivalent, in all models
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of RCF, to Jwa. Therefore R k y&(6) [a]. Then A E V5(6) [a]; 2 ¥ Awe [a]; for some ¢
in the domain of %, Ak oc/w, al. Then for some j,

Ak OFxx, ... XX <X, <o <X @)
and J is a set enumerated in increasing order and bounded above; so that
Ak QFxxy .. xpil [efw, al] and I(y[c/w, a]) is enumerated in increasing order and
bounded above.

THEOREM. For each nz2 every Q"-formula ¢ of the language L is equivalent,
in all models of ARCF, ro a quaniifier free formula s whose free varzables form a subset
of those of .

Proof. Proceed by induction on the formation of the formula ¢. If ¢ is atomic
or of one of the forms 6 A7 or 7o, then it follows easily from the induction hy-
pothesis that ¢ is equivalent to a quantifier free formula. If ¢ is of the form Jxs, then
the induction hypothesis together with Tarski’s theorem assures us that such a
exists. Consider the case when ¢ is of the form Q"x; ... x,¢: By the induction hy-
pothesis o can be taken to be a quantifier free formula, and by the distributive law
for Q" over disjunction, only those o need be considered which are of the form
xy<...<x,—0 where 0 is a conjunction of polynomial equalities or inequalities.
Let 2% be a model of ARCF. If %k \/ yi~'(6) [4], then, by the lemma,

15i<4

WE Q" X3y <o <= [a]. I WE Qg . 2,y <<, .—0)[al, then, since
every infinite subset of the domain of 2 contains e1thel an increasing or a decreasing
infinite sequence which is either bounded or not bounded, by the lemma,

WAE N/ Ym0 al.
15is4

COROLLARY. Every Q<“~formula ¢ of the language L is equivalent, in all models
of ARCEF, fo a quantifier free formula |y whose free variables form a subset of those of @.

It follows from the theorem and its corollary that for n>2, the Q-theory as
well as the Q<“-theory of Archimedean real closed fields is both complete and
model complete. From the theorem and its corollary, together with the constructive
nature of their proofs, it follows that for n>2, the Q"-theory as well as the Q ““-theory
of Archimedean real closed fields is decidable.
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