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Abstract. The question of when a light-open mapping is the orbit of a group action is in general
unsolved. We give a partial answer for a large class of light-open mappings which implies, for
example, that if f: M=-N is any finite-to-one proper open map between separable connected manifolds
without boundary, then f is the orbit map of a group action if and only if flM-r-1(siBs) IS
a regular covering, where By is the set of points in M at which f fails to be a local homeomor-
phism. -

1. Introduction. It is well known that if a totally disconnected group G acts on
a space X, then the orbit map =: X=X/G is a light-open mapping. In [5], McAuley
asks how to determine when a given light-open mapping is the orbit map of a group
action. The question in general remains unsolved. Recently, however, Edmonds [3]
provided a solution for finite-to-one PL open maps between compact -normal
n-circuits . (pseudo-manifolds) using some interesting but elaborate techniques
involving dual cells. In this note we obtain a more general result using elementary
techniques and containing Edmonds result as a special case. Also, in [6], Mc Auley
shows that a special type of light-open mapping on S 2 js the orbit map of a group
action by using a characterization of light-open mappings in terms of coverings due
to McAuley and Robinson.

2. Definitions and results. A map (i.e. continuous function) f: X—¥ is an open
map (closed map) if and only if whenever H is an open (closed) set in X, f(H) is
open (closed) in f(X). The map is /ight if f7Y(f(x)) is totally disconnected for
each x e X. We will indicate an onto mapping with a double arrow: [ X=Y. A finite-
to-one open map is called a branched covering. A subset 4 of a space X is said to
separare X locally at a point x if and only if there is a neighborhood U of x such
that if ¥ is any connected open set containing x with ¥'< U, then V- A is not con-
nected. A subset P of a space X is thin if and only if the interior of P is empty and
there is no point in X at which P separates X locally. If f: X=>Y is a branched co-

* Part of these results are contained in the autor’s Ph.D. dissertation, S.U.N.Y. at
Binghamton, directed by Professor L. F. McAuley.
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vering, the set B, is the set of points in X where f fails to be a local homeomorphism.
The set B, is a closed subset of X (see [2], Remark 1.1). Furthermore, by slightly
.modifying the proof of Theorem 3.2 in [7], we have: ‘

TueoreM 2.1. If X is a locally compact metric space and [+ X=Y is a branched
covering, then By, f(By), and f~'(f(B))) all have empty interior.

It is well known and easy to prove that if X and Y are locally compact metric
spaces then a finite-to-one map f: X=>Y is a proper map (the invetse image of a com-
pact set is compact) if and only if fis a closed map. 1t is also easy to prove that if P is
a thin subset of a locally connected space X and R is any open connected subset of X,
then R—2 is connected. )

- DEFINITION 2.2. A branched covering f: X=-Y is called a special branched
covering if and only if 1) X and ¥ are both locally compact, locally connected, con-
nected, metric spaces; 2) f is a proper map: and 3) f~1(f(B,)) is thin.

1t easily follows from the above remarks that both B and f(B,) are thin subsets

of X'and ¥ respectively. Furthermore, X—f~1(f(B,)) is an open connected subset
of X and, since f is proper, Slx=r=1s, 18 & covering map.
We now state the main result of this paper.

THEOREM 2.3. Let [ X=>Y be a special branched covering. Then, f is the orbit

map of a group action if and only if flx-p-1rpy is a regular covering. )

Proof. Suppose first that f is the orbit map of a group action of G on X. Then,
there is an induced action of G on X—f71(f(By). That fx- -1y, is a regular
covering follows from Proposition 8.2 in [4].

Conversely, assumef[xwf_;(f(,,!,, is a regular covering. Then flx—-1¢s,y is the
orbit map of an action of K/H on X—f~"(f (B)) where H = fyln,(X—f~( F(B)))
and K= n(Y—f(B,)). Furthermore, K/H may be realized as a finite group of homeo-
morphisms: the deck transformations of X'—f7Y(f(B,)). Let ke K/H. We claim
that 4 is uniformly continuous on C—f ~*(f(B,)), where Cis any compact subset of X,
For if not, there exist sequences <a;» and ¢5;> of points in X—f"Yf(B) and g;>0
such that ¢,—x and b;—x for some xe X, butd(h(a,), h(b))=eo. Let {R,} be a nested
collection of open connected subsets of X containing x such that the diameter of
JF(R,)<1/n. Since fis proper, Y is locally compact, and each of h(R,) ——f‘i(‘f(B:,)),
ST (R)), and R,—f~Y(f(B,)) is connected, it follows that some subsequence of
</z(R,,—f“(f(B})))> converges to a connected subset L of £ ~( £ (x)). Since each
R,—f~Y(f(B))) contains a pair {4:,, by}, we conclude that the diameter of L>¢,.
This contradicts the fact that if is light. Hence, h ‘extends to a map of
cd(X—f- Y(F(B)))= X onto cl(X—f_l(f(Bf))) = X. One can employ a similar argu-
ment to show thgt k is one-to-one. Furthermore, since f'is proper, k is an open map
and, hence, a homeomorphism. Tt is easy to see that k covers the identity. To see that
the group of extension acts transitively on the fibres of X, let yeYand x; and x; be
clements of f~!(y). We can find sequences (u,>, {,> in X—f~'(f(B,)) such that
f ) =f,), u,—x; and v,~x,. Since K/H acts transitively on fibres of
X—f"(/(Bp), for each n there is an k, € K/H such that hy(u,) = v,. Since K/H is
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finite, there is an &' € K/H and a sequence ;> such that 4'(,,) = v,,. If k' is the

extension of #’, then k'(x;) = x,. Q.E.D.

COROLLARY 2.4. A proper branched covering f: M"=N", where M" and N" are
connected, separable, n-dimensional manifolds without boundary, is the orbit map of
a group action if and only if fly_;-spmyy 18 a regular covering.

Proof. Cernavskil [1] and Viisili [7] show that for such an f, dim /™ *( F (B)))
<n—2. Hence, f~(f(B,)) is thin.

COROLLARY 2.5. If f: X=> Y is any proper light-open mapping where X and Y are
connected, separable two dimensional manifolds without boundary, then f is the orbit
map of a group action if and only if flx—r-1ss is @ regular covering.

Proof. Tt follows from Theorem 5.1 in [8] that f will be a special branched
covering.

Added in proof. In branched covering and orbit maps, Michig. Math. J. 23 (1976),
pp. 289-301, Edmonds recently and independently generalized the results in {3].
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