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Proof of Theorem 0.1. We consider the diagram of the previous proposition.
Since Td, € I2, |, by the very description of th, that we gave, the image of thy in
this diagram consists of integral elements. Since u: MU®(Y)—KU°(Y) is onto it is
clear that the image of ch,, in the diagram, consists of integral elements, which is
exactly what we want to prove.
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Retraceable homogeneous sets *
by

T. G. McLaughlin (Lubbock, Tex.)

Abstract. We show that every recursive partition {Py, Pa> of [N]* admits a retraceable infinite
homogeneous set X whose Turing jump is < 0”; this refines a result of Jockusch [1] by adding the
condition of retraceability (in fact, retraceability by a finite-one retracing function).

1. Introduction. This article is intended as a contribution to the “fine analysis”
of Ramsey’s Theorem in terms of recursion-theoretic notions. Previous analyses of
this sort ([3], [4]) led to Jockusch’s paper [1] which from one point of view can be
regarded as the last word on the subject. Further words can be said, however, if we
consider other “descriptive” notions in place of or in addition to classification within
the Kleene hierarchy. One such notion is that of retraceability: recall that an infinite
Sequence o, @y , dy, ... of natural numbers is said to be retraceable if (Yn) [a,<a,+11&
there is a partial recursive function p such that (Ym)[p(a,.) is defined and = 4,].
‘We shall replace IT S classification, in [1, Theorem 4.2], by the combination of re-
traceability and a fairly strong condition on jumps of Turing degrees. It remains an
open question (as far as we know) whether retraceability can be added to IT 9 re-
presentability, in Theorem 4.2 of [1]; a brief discussion of this question is included
at the end of the paper. Our terminology and notation, where not explicitly defined
or entirely standard, is in line with that of [1].

2. Recursive partitions and a theorem of Jockusch. If N =the natural numbers
and Yc N is infinite, then [X]? denotes the set {{x,y}| x€ X&yeX&x 5+ y}.
The classical theorem of Ramsey asserts that if [V 12 is divided into complementary
subsets P, and P, then there is an infinite set X< N such that either [X <P, or
[X]?SP,; such an X is called a homogencous set (or a set of indiscernibles) for the
partition Py, Py). One can ask about the degree of constructivity possible for X in
case Py and P, are recursive sets of pairs. This question, first dealt with by Specker [31,
has been answered in a definitive way relative to the Kleene hierarchy in Jockusch [1]
(which paper, in addition, contains instructive commentary on what is probably the
most elegant possible proof (due independently to various mathematicians) of the

* A version of the central result of this paper, Theorem 3, was independently proved by Gordon
Phillips, a student of Jockusch, Our inquiries have led us to conclude that Phillips does not presently
intend to publish his proof.
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classical Ramsey Theoreny). En this section, we shall give a proof of the “tree-theoretic”
form of [1, Proposition 4.6]; the tree construction used for this purpose will also yield
our prin.cipal theorem in § 3. Our proof will be longer and messier than t}1eycor-
requndmg argument in [1], for three reasons: (1) our style is inherently longer and
messier than that of Jockusch; (2) we wish to place detailed emphasis on tree étruc-
tureé fmd (3) an explicit verification of the classical Ramsey Theorem (for 1'ec;n‘si d
pa.rtltlons) is included in our proof. By a refracing tree, we mean a set .7 of order::{
pairs of natural numbers constituting a function, such that (i) 7" = 07 and (ii)
Vx)[x 6’59' =7 (x)<x]; here “p” denotes range while “gm dcn_:)tcs domain
A retr?clng tree J is called recursive (recursively enumerable) it 7 is 1‘ch11's‘ivc:
(recur?lvely enumerable) as a set of ordered pairs; J is strongly recursive if ll. is
recursive and 67 is a recursive subset of N. J is non-trivial if:’it has at’ least o S
infinite branch, where by a branch is meant a maximal subset 4 of 57~ SLl::il thl;
V) (V) (xed&yed) = (xeT ()vyed () ;
here J(x), for xeds, i {x 3 2(x 7

THx) = t)he least n suc;w 1tshta'fcie§ief11 as=tzi:;7 & 7@, Tf P} whero
) & (x) = F"(x). As usual, we denote by o the
Turing degree of a set « of natural numbers and by £ the Turing degree of a (;ot' !
number-theoretic function f; o ( [") denotes the jum}) of o (of £). If B is '11; infix flt)
set of numbers, p; denotes the function which enumerates /);Nin increas‘ing (;;dl::rc
. TreoreM 1 (Jockusch). Let (P, , P,> be a recursive partition of [N1*. Then the '.
exists a non-trivial recursive retracing tree I~ such that (YB[(f = an inj-init(" b d I'/e
f’f 7) = @X)[Xsp& X<P& X = an infinite homogeneous set for {P. Jr’(—,’)]j]l
Proof. We shall build a proof of the basic Ramsey Theorem into o;; ; f'

gf il.leorexg 1. Le:t <Py, P, be a given recursive partition of [N 1?. The tree ﬁ}') \;ioll
e binary-branching, and will be obtained as the union, |J 77, of a recursive se-

© : :
quence {7 >%, of finite subtrees. The details of the construction are as follows
Stage 0. Set g, = {€0, 0>}. )
i l;Stage s+1. éssume that 77 is a finite retracing tree whose exact contents
nown to us (?le., we have a complete list of the pairs belonging to 7). Let
;11, w5 g be a listing of all those numbers # in 677, such that ¢ 0T FJr‘thcl‘
et My s Ty be those elements m (if any) of 07, such that card (7 'S"(m)) ~1.
(Unlike {ng, ..., n}, it is possible that {m,,...,m} = @) Now Eor : ‘l.
ement w of 67 ¢ and any number y, we define; 4 any el-
Y is s-acceptable for w < y>w & (VE)(V)) (ke TFm&jied () &

&k#j&k:y‘(j)):,({ ,
B v, k}eP, « { g
For 1<i<q, we define: yePy e {j,k}epy].
9, if @) y<s+1&y¢67,8{y,n}eP, &y is s-acceptable
By(n;) = {0 for nj]; .
Dy <s+H1 &y ¢dT, & ) : .
othermice. {y.n}eP &y is s-acceptable for n,]},
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and
[Q, if @y y<s+] &y ¢oT & {y,n}e P&y is s-acceptable
By(n) = for m;];
2 (W) y<s+1&y¢dT & {y,nteP,&yis s-acceptable for 7,1},
l otherwise.

Similarly, for 1<i<r we define:
@, if either @) [y>m &y, mp e T & {y,m}eP] or
Q@ [y<s+1 &y 0T & {y,m}eP &y is g-acceptable
B (m;) = for m;l;
1{(;1})) [y<s+1&y¢dT &{y,m}eP &yis s-acceptable for 7]},
otherwise
and
@, if either @Y [y>m &<y, mpeT & {y,m}eP,] ox
NEANy<s+1 &y 8T &y, meP, &y is s-acceptable
B,(m;) = for my];
I{(;Ly) [y<s+1&y¢dT & {y,m}eP, &yis s-acceptable for m,1},
otherwise.
Now let 1y, ..., g, be the listing of {1y, s g} O fmy, s m,} in increasing order
(.e., Ii<jgg+r = w<up. If B,(u;) = Byu) = @ for all i such that 1<ig<qg+r,
we set F 4,y = T, and proceed to Stage s+ 1. Otherwise, let jo = (u)1<j<q+r&
& B, (up) U By(uy) # O] and consider cases as follows.

Case L. B (u;,) # @. Letng = (un) (wjo<n<s+1&n¢dT &n is s-acceptable
for u;, & {n, U} € Py Define 71 = T, {{ng, ujey}; then go on to Stage s+2.

Case2. Bi(u;) =90 & By(u;,) #9. Letmg = (um) [ujb<m.<s+1 &m¢dT &m
is s-acceptable for u;, & {n,u;} € P;]. Define Ty, = T, {{mg, ujp}; then
proceed to Stage s+2.

That completes our description of Stage s+ 1, and with it our construction of
the sequence {J Di=o; it is clear from the construction that (7 i, is a fully
effective sequence of finite retracing trees such that (V5)[J, ST 54 1]. We define:
7 = |J J,. In order to verify that T, so defined, is a recursive tree, we need only

"
show (since & is r.e.) the existence of a recursive function ¢ with the property:
(V¥)[xedT <« xedT yyl (The existence of such a function 7 establishes, indeed,
that 7 is strongly recursive.) We establish the existence of © by induction. Clearly,
we may take t(0) = 0. Suppose ©(x) has been defined for all x< n, in such a way that

x<n = (.xeﬁéf‘ hd xeﬁﬂ’w,)) .

Let 5o = (us) fs>max {n+1, max{t(x)| x<n}}]. Now, at the beginning of Stage so +1
we can tell effectively whether n-+1 is so-acceptable for some number y<n+1 such
that card (7 5 *( y))<1. If no such y exists then, in view of our choice of 5o, n-+ 1 will
never enter 89 unless it is already in 87 4,. Suppose, on the other hand, that such
numbers y<n+1 do exist, and that n+1¢ 8T 4; let y; be the least such y. By our
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ch01ce- (.)f S and by the minimality constraints on the choices of j, and n, (or
at positive stages of the construction, we see that there must be a ‘ﬁr‘;t stageg‘>s. -1’1-1 i)
say 1o, such that at stage ¢ we have j, = y, & n+1 = n, or m, according as C;sc? 1 ,
Case 2 applies. It follows that we can define either t(n+1) = so+1 or t(n+1) = r(’l:
moreover, we can effectively decide which of these two definitions is needéd ‘I-[;n .
by md}u?twnf T exists as required, and so J is a recursive tree. To show t};at a Ci:
E;Tt;wml, it suﬁi.c§:5 (!Jy Konig’s Lemrr%a, since 7 is binary-bmnching) to verify
or every pos;twe integer k there exists a J -segment of length k. (As will b
;een, ;hls verlﬁcatl‘on amounts, in effect, to a proof of the basic Raméey Theorm‘z
f(c;; th el ,S fﬁg.())foabvt)ous;ybthere 1&:. a_j -segment of length 1 (namely, 77,). Suppose,
o the sake o T}Iie of Z c;)Ptladlc‘tlon, that 7 -segments of length k fail to exist
o .SuCh ;1 (;] 7 holds for some s, since J~ is binary-branching. Let
e o] 0 {x, 21}1 ! ;t}koi: iil: }Jtnammu?lllengtéx of{a branch of J7,,. Now,
: -0} e Py nite or {x| x>0& {x,0}eP,} is infinite;
ilfa;lcc:etl::g e]:usts an infinite set .So of numbers x such that x>0} & (‘vz’}z:) [1‘>1’l:£1:;t?s’
e ;_1(01)3 Cc:)l; (L]l1 IIlt fotlllows easily, in view of our definition of the sequence (7 >,
e g"EB) snoias ? a gast one number x>0. Let x, = the least positive member
o tmh at.x " zl.jaccepfao};le}fi rP; a:lg that there do {not e;ist infinitely many x> x,
Xo Whenever #>max{x, s,}. Then, for all but finitel
gllzltiyt;c;exoi,s v&;e Ei:/;bg, }(3} :J;L}Eoghefreforeh.folilows, from{ the construction of .7}:
that " 1 w0 or which x,>0& {x,,0} e P,; moreover
:?lil)r;g:iytﬁin{yxx >0 ;1 z;re t-acceptable for x; whenever 7>max {x} , so}? Were we etlo’
oy and;}, Oeur zc, a I;ar:ftllel. argﬂL_lent would apply with. interchange of the
fhat Tty m;y x>zn<; 1151?naisc :e l.;:asj; ](O)fcontainil at least one number z such
z' = (uz)[z € 7 ;*(0) & infinitely many x>e z erez tw e o )
. L -acceptable for z whenever
- (1)1’121;(11{5w ,0 iﬁ]{n‘:;e;:;l;ow re%)eat_t?c’entire f:oregoing argument with z’ in place
ity ity Xas g uts1on : T ¢ (') contains at least one number z such, that
yields: there exists an elI;net;:CZC ec?f:[ ?JI: f:ichz tIVhten;"/"fzr) .
Since a number of Z°*-hei e et T = Kool £ 750C) £ B
a contradiction. We :)rsllc):lﬁglg?ﬁaf?"/:'l tOP?a_ ?so- o Of'leng'th et
o ot . g v conl is non-trivial. Let 8 be an infinite branch of 7,
indisveesibies for <P Pm e subset X of B, .recursive in B, such that X = & set of
Py 1(, zi. For an arbitrarily given number n, we designate p”(x)
A {pplr+ ), Py(r)} € Py; otherwise, py(n) is designated a P.-rtumb
1 55 (s pp(n) is a Py -number}, X, = f— X,. Si i o ceonestye
partition, both X, and X, ar rsive i g . H‘mé PP is & recursive
1 2 are recursive in . Moreover, it is evident from the con-

M h of X, 1S a se qaisce: vles for (P, P Ci ne
struction of 24 at eac f X $as 0. 1472
1s 2 < >. Sll'l ¢ O

Theoﬁ; nl:e;raceab]l: I;mmogene‘ous sets for recursive partitions.
} , we shall require the following le ich is si
tree-form version of [2, Theoiem 2.1%: ® fomme, Which s si

For our proof of
mply the relativized
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Lemma 2 (Soare, Jockusch). Let I be a non-trivial recursive retracing tree such
that only finitely many branchings occur at each node (i.e., T ~(x) is finite for each
xeo7). Then I has at least one infinite branch f§ such that ﬁ~'~ <Q’~'.

Jockusch observed in [1] that if (P, Pp) is any recursive partition of [V]
then there exists an infinite homogeneous set X for (P,,P,> satisfying the re-
lation .Z(‘s(}f'. Tn the next theorem, we shall strengthen this observation to read:
X can be chosen so that X¢<0~ and X is retraceable. The proof of Theorem 3 is
based on an analysis of our foregoing proof of Theorem 1; here again, Jockusch’s
notion ([1]) of a P,-mumber (P,-number) is the key to the argument.

TusoreM 3. Ler {P,, P,> be a recursive partition of [N Then there exists an
infinite homogeneous set X for (Py, Pyy such that X s reiraceable and )ﬂ(‘éQ”*’.
Moreover, it can be required that X admit a finite-one retracing function [ such that
every infinite set retraced by fis a homogeneous set for (P, Py).

Proof. Let 7 be the retracing tree constructed, for (P, P2,
Theorem 1. If x € 87 and 7 (x) # x, we shall say that 7 (x) is a P,-number for x or
a P,-number for x according as {x,7 ()} ePior{x,T ()} € P,. Since 7 is recursive
and finite-branching, it follows from Lemma 2 that 7 has at least one infinite branch 8
such that §~' <0~'~'. Let f3, be a particular infinite branch of 7, chosen so that /.ja' SQ’*«'.
We shall assume, without loss of generality, that {pgo(m)| ppoln) is a P-number for

Puln+1)} is infinite. (Our entire procedure would suffer only a minor notational
if such were not the case.) Let

2
3

in the proof of

change, namely the replacement of P, by P,
bo = (1) [xeBo& (YN (yeBo&y # x& T (§) = x) = {», x}eP];

i.e., by = the Jeast of those infinitely many elements of Bo which are P,-numbers
We shall construct a new non-trivial retracing tree 7'

for their F -preimages in fq.
(not necessarily finite-branching) in such a way that (a) if © is any infinite branch

of 7' then there exists an infinite branch B of & such that
boef&= {Pﬁ(")i by e 92(}7/1(”)) &Pp(”)

is a P,-number for py(n+1)} and () {Pgo)| pgo(n) is a P,-number for pg(n+1}
is an infinite branch of Z”. The definition of ', with by as its unique root, is as
follows:

To 5= {<bos bod};

Tho = Ty {Cx, )] x<s+1 &x¢dT &yedT i n (7 ()~ {x}) &
&{x,y}eP & (VD) [(x>z>y&ze F (X)) = {x,z} € Pal};
= U7

at

It is clear that each 7 is a finite retracing tree, and that (V[ =F 2 )
Furthermore, the sequence {7 ye o is r.e., since both 7 and the partition (Py, P2
are recursive. Thus, " is a retracing tree. To verify (a), let © be an infinite branch
of 7. Clearly, by € 7 ’(‘px(n)) holds for all ; moreover, it is plain from the definition
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of ., that t<p for some (uniquely determined) branch f of . We first note
that every number p,(n) has the property:

(V9)[(re p&x # p() & T () = ) = {x, p} € Py 5

i.e., p(n) is a P;-number for its  -preimage in B. For, suppose n, were a counter-
example: let xq €8, xp # png), T (xo) = pi(n,), and {x0, p(ne)} € P,. Then,
by the construction of T, {p(ny+1), P(11)} € Py and so, by the construction of I,
(Pl +1), p(ne)> ¢ 77: contradiction. To complete the verification of (a), it
remains to show that gp, = all of {xef| bye T (%) & x is a Pi-number for its
J -preimage in f}. Suppose x, were a counterexample; i.e., x, € f, x; is a P, ~number
for its -preimage in f, by e I (o), and x, ¢ 7. Let n, be such that PHe) <Xy
<Pnp+1). Now, since x, is a P,~number for its 7 -preimage in f, it follows from
the construction of J that {p,(n,+1), Xo} € Py; hence, by the definition of 77,
we have 7(p.(ny+1))=x,: contradiction. (a) is thus proven. To establish (b), we
proceed by induction. Let <5, , be the enumeration, in strictly increasing order,
of all x e B, such that x is a P;-number for its I~ -preimage in f,. From the defi-
nitions of J~ and 7, we readily see that <by, boy € s moreover, if <b;,,, by e T
then (again from the constructions of & and I ‘) it must also be the case that
$bisz,bi4:> €T, Thus, {b ieN } is an infinite branch of 7, which proves (b),
It is obvious that {b;| ie N } is recursive in B, and therefore that {b) ieN }'”QQ";
moreover, the set {b,| ie N} is (by the construction of I )a ]mn;c;gwgﬁe':)ﬁsﬂset for
(P, PO IfT" s finite-branching, we are done. Suppose 7' is not finite-branching,
and let j, be the smallest positive integer j such that the set J, defined by
Jo = {xebdT'| T%x) = Jj} is infinite. There is no harm in assuming that
F'(x) = T'(y) for all x,y€Jy, and for the sake of the rest of our argument,

Wwe so assume. We use J, to define a subtree of - > as follows: 7, = the,

union of the sets {(x, 7°()),<T (), 7 (7 (W), .., (TT D7), by, bo, bod}

where x e J,. Plainly, 7, isa recursively enumerable retracing subtree of 7. Since 7~ {
is a subtree of 7, it is finite-branching. It is an casy application of Ké&nig’s Lemma

(in view of the definition of 7 1 and the fact that 7 is finite-branching) to show
that 77, is non-trivial. If f is any infinite branch of 77, and if o 18 the minimal
7 -height of any element of J, n §, then {xepl T4x)2q,} is homogeneous for
{Py, Py); in fact, we readily see from the definitions of & and I that

[{xe Bl 7*)=q)2cP,.

It is now obvious how to use any such f, say B,, to extract from I 1 & non~trivial,
recursively enumerable subtree I 2, With unique root lying in By, which (in light

of Lemma 2) meets all the requirements of the theorem. That completes the proof of
Theorem 3. B

QUESTIONS. (a) We know from [I, Theorem 4.2] or [4, Theorem 2] that if
{Py, P,) is a recursive partition of [N]? then <P, , P,> admits an infinite I3 set X of
indiscernibles. Does <Py, Py necessarily admit an infinite retraceable set. X of
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indiscernibles for which X e IT 99 (Jockusch}’]s consttr\;:txsc.): cl: i[‘ll, Eftoz glt; ;ﬁ?&iﬁl Zi],
does not in any obvious way lead to such a set X, s1 n the : "
appeals for information to an oracle of degree 0~. Nor do we see a way

I(e)ple:clzi]elyﬂdgmijnﬁnite branches in the trees 7 co'n§tructed for.Thek())tre'l:llZL {z].el‘; is;e;;xz
possible, but by no means obvious, t!lat a positive a’nswer ‘15‘ ) 'a.1 bl o e
standard trick of approximating functions of degree 0~. by recursive seq

ecursive Functions.) ‘

Tewl(sb) While our proof of Theorem 3 does not produce retr‘acmg trcc:trtllgz?s:
(P, P,y is recursive, it does not seem at all unreasonable thdl lesi 1cone ot
part’itians should also admit retraceable homogenem}s svets_ (1efl1(vxccadc;(jscm;s‘zruct
all, occur in all degrees of unsolvability). Do .thc).[? (at'ls straléght. tmwcz)tri ! to construct
a partition {(Py, P,) of [N 1? which is recursive in 0=~ andfl mi ;/I n e el
geneous set retraceable by a finite-to-one retracing functlon,. hore ) a, Y e
tivizing [1, Theorem 3.1] and applying Lemn'la 2,. we see that t erzt o <pQ o
{Qy, Oz of [N 1?, recursive in 0~, such that 130 mﬁn%te 110mogen601;s 8 uencesl\:vmzh
is retraced by a finite-fo-one retracing function which 1'etraces. only 1seq ones e
are homogeneous for {Qy, Q) Beyond these easy obscrvations, however,

in ignorance.)
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