A necessary condition for embedding a complex in S***
by

Stavros Papastavridis (Athens)

Abstract. Let us suppose that a topological space X is of the homotopy type of a subcomplex
of S¥+2, Then if a ¢ KU(X), then ch,(a) e H*(X, Q) is an integral cohomology class.

0. Totroduction. Let X be a topological space which is of the homotopy type of
a subcomplex of S22, Then the KU-group KU(X) and the Chern character
ch: KU(X)—H*(X; Q) can be defined.

Our main result is the following:

TrueoreM 0.1. If a topological space X is of the homotopy 1ype of a subcomplex
of S?**2 then for all a e KU(X) the cohomology class chy(a) e H*(X; Q) is integrdl,
(namely ir belongs to the image of the map H*(X; Z)—~H*(X; Q). ‘

The proof of this theorem is based on an old idea which has been used before
(see [6], [9], [10]) which is to exploit the existence of the Spanier-Whitehead dual .
of X in S**2. The existence of this dual imposes certain restrictions on X. In this
paper those restrictions are related with the integrability of certain rational charac-
" teristic classes on manifolds. )

As an application of Theorem 0.1, we have the fOIIOng result

PropOSITION 0.2. Let X, Y be fopological spaces which are of the homotopy type
of finite complexes. We assume that there is an a KU (X) such that chy(a) € H X5 Q)
is not integral. Furthermore we assume that H*(Y'; Z) is torsion-free and H?(Y; Z) #0.
Then X Y is not of the homotopy type of a subcomplex of S**21*2,

Note. From now on we adopt the following notational convention. If we have
an object which can be defined for both integral and rational coefficients (i.e. homo-
logy and cohomology groups, groups of the type Hom (A, %) where 4 is an abelian
.group e.t.c.) then we denote by s the map induced by the obvious inclusion Z—Q
if such a map is naturally defined. For example in this terminology a cohomology
class is integral if and only if it belongs to the image of s.

Proof of Proposition 0.2. Let x € H*(Y; Z) such that x is not divisible.
Since H*(Y; Z) is torsion-free then there exists b e KU(Y) such that ch(b) = s(x)
5%
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and chy) = 0 fori=0,1,2, .., I=1 (see [1]). Then since the Chern character is
multiplicative we have .

chyy (a@B) = chy(a)-s(x)+chy 1(a)-Chyy 1 (B) + ..+ cho(@) chyy () -

But by the universal coefficient theorem H*(Xx Y;Z) = H*X; Z)YQH*(Y;Z)
and of course the same isomorphism holds in rational coefficients. So the non-inte-
grability of ch,(d) together with the non-divisibility of ch,(b) = §(x) implies that
chy+ (a®b) is non-integral. And by Theorem 0.1, the result follows.

DEFINITION 0.3. As a notational convenience we use the symbolism X< $2*2

to mean that the space X is of the homotopy type of a subcomplex of SH*+2 - And
by X£52*2 we symbolize the negation,

In order to give some specific applications of the above results, let / be the ca-
nonical line bundle over CP(2), and let ¢ e H*(CP(2); Z) be the generator of the
cohomology. It is well known that ch(]) = ', s0 chy(!) =.%¢, which is non-integral.
This implies that CP(2) # S°. This result was already known (see [6]). Beyond that
in [6] it was proved that CP(2)<S". But our theory, because of Proposition 0.2,
gives beyond this example many others non-embeddability examples.

Of course analogous results hold for all complex projective space CP(n), but
for the higher dimensional ones probably there is a lot of room for improvement.

As another concrete application let X be the cell complex obtained by attaching
a (Qn+4k)-cell to $¥ by a map f: S2+4*~18%" where f is in the class of the
generator of the image of the J-homomorphism in the stable stem 74, Then it
is known that there is a bundle /e KU(X) such that the denominator of ch, .5, (1)
expressed as a fraction in lowest terms is M, /b, (see [4]). In the previous statement M, is
the denominator of the fraction B,/4k, where B, is the kth Bernoulli number expressed
in lowest terms, and by is 1 or 2 as k is even or odd. But M,/b, is never +1 (see [8]
p.284) s0 X £ 82"+ #+2, And as previously by Proposition 0.2 we get new # examples.

Essentially Theorem 0.1, is a “codimension” two result. It is not clear how it can
be extended to greater “codimensions”.

The paper has been arranged as follows. In the first section we prove some
integrability results for characteristic classes of weakly almost complex manifolds.
In the second section combining the results of Section 1 and Spanier—-Whitehead
duality we prove Theorem 0.1.

1. Integrability of characteristic classes. Let M be an m-dimensional closed
connected C* manifold with a complex structure on its stable tangent bindle. Follow-
ing Hattori we will call such a manifold weakly almost complex manifold (see [5])
and in abbreviation w.a.c. manifold. For such a manifold we denote t,,: M—BU
the map classifying the stable tangent bundle. Note that BU is BU (%), the classifying
space of N-dimensional complex bundles, where N is very big in comparison with m.

DerNITION 1.1 We define I2F = {x e H¥(BU; 0): t}(x) e H**(M; Q) is
integral cohomology class for all w.a.c. m-dimensional manifolds M }.

It is an important question to compute /2* for the various values of k, m.
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Let K(Z, m—2k) be the well-known Eilenberg-McLane space and i its fiynda-
mental class. If m = 2k we put K(Z, m—2k) = point.
Next we consider the m-dimensional complex bordism groups

MU,(K(Z, m—2k)),
whose clemgnts consists of equivalence classes of pairs (M, f), where M is an
m-dimensional w.a.c manifold and f: M—K(Z,m—2k) is a map. For details on

bordism groups e.t.c. a good reference is R. Stong’s book [13].
Following Brown-Peterson (see [2]) we define a map

I: H*BU; Q)»Hom (MU, (K(Z, m—2K)), Q)

by the formula I(x) (M, f) = (t§(x)"f*())) (M) € Q. By (M) we denote the orientation
class of the w.a.c. manifold M. It can be checked that / is well defined.

Our next result gives a reduction of the computation of /2* to a homotopy
question.

THEOREM 1.2. The group I** cousists of those elemems x e H*(BU; Q) such
thar 1(x) belongs to the image of s.

In the statement of the Theorem above we make use of the notational con-
vention described in the Introduction after Proposition 0.2.

The group IZF has been computed and the answer is commonly referred as the
Hattori-Stong Theorem (see [5], [12]). Our next result gives a description of e

THEOREM 1.3, I2%,, = IZF.

The rest of this section is occupied with the proof of Theorems 1.2 and 1.3.
Essentially we follow the methods of Brown-Peterson (see [2]). I believe that
Theorems 1.2 and 1.3 are known to other people too, but I have not seen them
published, so I include them here.

LEMMA 1.4. Let M be an m-dimensional, closed, connected, oriented manifold.
Let x be an element of HY(M; Q). Then x is integral if and only if for every
ye H""Y(M;Z) we have (x's(»))(M)eZ< Q.

Proof. Let us consider the following commutative diagram:

HY(M; 0) > Hom(H"(M; 0), 0)

s
S
H(M; Z) = Hom (H" (M Z), Z)

where f; is defined by the formula f;(x)(») = (x-¥)(M) e @ for all x € H¥(M; Q),
ye H" %M; Q), and the map f, is defined similarly.

By Poincaré duality we have the isomorphisms H"™4(M; )=~ H*(M; ) where %
is Z or Q. On the other hand by the universal coefficient theorem we have epimor-
phism H(M; «)—~Hom(H,(M; %), ), which is isomorphism for the case » = Q.
So f; is iso and f; is epi. Since homomorphism into Q kills torsion we have an iso-
morphism s: Hom(H™~%(M; Z), 0)~Hom(H""(M; ), Q).
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Because of the previous remarks the above diagram takes the following form:

HU(M; 0) % Hom(H"~(M; Z), 0)
5 s
g2
HY(M; Z) = Hom(H"™(M; Z), Z)
where both g, and g, are induced by the cup product pairings:
HYM; Q)x H""YM; Z)~»Q and HYM;Z)yx H" %(M; Z)~Z

respectively.

But since g, is iso and g, is onto our lemma follows free of charge,

Proof of Theorem 1.2. Let us assume that /(x) belongs to the image of s.
By the definition of I that means that (ty(x)-f*()}(M)eZ< Q for all m-dimen-
sional w.a.c. manifolds M, and all maps f: M—K(Z, m—2k). By the fundamental
property of Eilenberg-McLane spaces, f*(i) could be any cohomology class of
Hm_?k(M ; Z), and according to the previous lemma, the previous remark implies
that 7%(x) is integral, and by the very definition x e 12X,

By MU we denote MU(N), the Thom space of the universal N-dimensional
complex bundle, when N is very big in comparison with m. Let Ue H*"(MU; Z)
be the Thom class of the universal bundle. Let f: BU-BU be the map classifying
the inverse of the universal bundle. Clearly § is 2 homotopy equivalence and f?~Id.
For every w.a.c. manifold there is a naturally induced complex structure on its
stable normal bundle. Let M be a w.a.c. manifold and v,;: M—~BU be the map
classifying the stable normal bundle of M, then vy o7y, Ty2fvy.

It is well known that the group MU,(K(Z, m—2k)) is isomorphic with
Ton+mMUAK(Z, m—2k),). For abbreviation we put X = MU A K(Z, m—2k).
Through the isomorphism above, the map I: H2*(BU; Q)~Hom (n55.4,(X), Q)
¢an be described as follows: Let a: S?M ™ X be a map and (a) the corresponding
homotopy element, then I(x)(a) = a*(f*(x) U-i)(S™*™) e Q (see Stong’s book).

Proof of Theorem 1.3. Because of the previous remarks we have:

MU (point) 2 myy 1 0 (MU), MUy, 1(K(Z= 1)) 2Tonarrt(MUA Si) .

But the groups 7,y ,,(MU) and myy4 254 (MU A SL) are isomorphic through the
suspension isomorphism. Because of the description of / gwen above the following
diagram commutes.

1
H* BU; Q) —> Hom (754 (MU, Q)
\t‘\ s~
‘ Hom(ﬂzNHkﬂ(MU/\ S}l-): Q)
(S is the map induced by the suspension map). Now the theorem follows easily.

Remark. By combining Theorem 1.2 and the approach of A. Hattori (see [5])
the group J2,, can be computed the basic special feature being the fact that the
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space K(Z,2) = CP(c0) is torsion-free. But it seems that the method does not
work for IZ¥ if m>2k+2. ‘

2. The Todd character and Spanier—Whitehead‘duality We begin by summarizing
some well-known facts about complex bordism, KU-theory, Chern character,
Todd character e.t.c. A good reference is Conner—-Floyd’s book [3].

Let Y be a finite complex. Then MU*(Y) is the homology complex bordism
group, MU¥(Y) is the cohomology complex bordism group, KUx(Y) is the homo-
logy KU-theory group and KU*(Y) is the cohomology KU-theory group. The
grading in all these theories is over the integers. Furthermore KU°Y) is KU(Y).

It is well-known there is a natural transformation w: MU*(Y¥)->KU*(Y)
and p: MU(Y)=KU4(Y) such that p: MU%(Y)—->KU®(Y) is onto. There is
a natural transformation called Chern characrer

KUX(Y)=H**!(Y; Q) ,
KU(Y)—Hy4 (Y5 Q) -

We consider the composition th; = ch,p, it is called the Todd character.

The Todd character th;: MU(Y)—H{(Y; @), where j is 2i or 2i+1, can be
described in another way as follows.

Let Td = (Td,, Tdy, ..., Td;, ...) be the total Todd class, where Td; € H¥(BU; Q)
(see [7]). Let (M, /') € MU,(Y), where M is a w.a.c manifold and f: M— Y is a map.
The homology class th,(M,f)e H,(Y; Q) can be described as an element of
Hom(H/(Y; Z), Q) in the following way: if ye H(Y; Z) then

thy(M, /)(y) = (S*(NTAAD)(M) € Q

where Td(M) is v*(Td) e H*(M; Q) the total Todd class of M (see (3], p. 35).
LEMMA 2.1. Td, is an element of Isks,.

Proof. It is well known that Td, belongs to I3f (see [S5]) so because of
Theorem 1.3 our lemma follows.

ch;: KUK Y)—-H?(Y; 0), ch;:
chy: KU(Y)=H,(Y; @), chy:

The next proposition describes the relation between Chern character, Todd
character and Spanier-Whitehead duality (see [14]).

PROPOSITION 2.2, Let X be of the homotopy type of a subcomplex of S**2,
and Y be its Spanier-Whitehead dual. Then the following diagram commutes.

D
MU, 1(¥) <= MU°(X)
# » "
e | KUgy 1 (Y) < KU(X) th

chy |
~ H(Y; 0) <> 7¥xX; 0)

chye

where D iy the Spanier-Whitehead duality isomorphism.
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Proof of Theorem 0.1. We consider the diagram of the previous proposition.
Since Td, € I2, |, by the very description of th, that we gave, the image of thy in
this diagram consists of integral elements. Since u: MU®(Y)—KU°(Y) is onto it is
clear that the image of ch,, in the diagram, consists of integral elements, which is
exactly what we want to prove.
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Retraceable homogeneous sets *
by

T. G. McLaughlin (Lubbock, Tex.)

Abstract. We show that every recursive partition {Py, Pa> of [N]* admits a retraceable infinite
homogeneous set X whose Turing jump is < 0”; this refines a result of Jockusch [1] by adding the
condition of retraceability (in fact, retraceability by a finite-one retracing function).

1. Introduction. This article is intended as a contribution to the “fine analysis”
of Ramsey’s Theorem in terms of recursion-theoretic notions. Previous analyses of
this sort ([3], [4]) led to Jockusch’s paper [1] which from one point of view can be
regarded as the last word on the subject. Further words can be said, however, if we
consider other “descriptive” notions in place of or in addition to classification within
the Kleene hierarchy. One such notion is that of retraceability: recall that an infinite
Sequence o, @y , dy, ... of natural numbers is said to be retraceable if (Yn) [a,<a,+11&
there is a partial recursive function p such that (Ym)[p(a,.) is defined and = 4,].
‘We shall replace IT S classification, in [1, Theorem 4.2], by the combination of re-
traceability and a fairly strong condition on jumps of Turing degrees. It remains an
open question (as far as we know) whether retraceability can be added to IT 9 re-
presentability, in Theorem 4.2 of [1]; a brief discussion of this question is included
at the end of the paper. Our terminology and notation, where not explicitly defined
or entirely standard, is in line with that of [1].

2. Recursive partitions and a theorem of Jockusch. If N =the natural numbers
and Yc N is infinite, then [X]? denotes the set {{x,y}| x€ X&yeX&x 5+ y}.
The classical theorem of Ramsey asserts that if [V 12 is divided into complementary
subsets P, and P, then there is an infinite set X< N such that either [X <P, or
[X]?SP,; such an X is called a homogencous set (or a set of indiscernibles) for the
partition Py, Py). One can ask about the degree of constructivity possible for X in
case Py and P, are recursive sets of pairs. This question, first dealt with by Specker [31,
has been answered in a definitive way relative to the Kleene hierarchy in Jockusch [1]
(which paper, in addition, contains instructive commentary on what is probably the
most elegant possible proof (due independently to various mathematicians) of the

* A version of the central result of this paper, Theorem 3, was independently proved by Gordon
Phillips, a student of Jockusch, Our inquiries have led us to conclude that Phillips does not presently
intend to publish his proof.


Artur




