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Closure properties of countable
non-standard integers

by

J. B. Paris (Manchester) and G. Mills (Berkeley)

Abstract. Let M be a model of Peano’s Axioms (PA) and let Iz,l be the largest initial segment

of M all of whose proper initial segments are countable. We investigate the closure properties of I ";‘,’
and show that in a certain sense multiplication and exponentiation are essentially the only functions
for which the cardinality of the arguments limit the cardinality of the values.

Introduction. Let M k PA. For ae M let
<a={be M| MEb<a}, |ld||= Card(<a).
For A an infinite cardinal let ‘ '
Il = {ae M| |lall<4},
JM() = Inf{||all| @€ M and |la|[>1} .

For economy we will use “initial segment” to mean “infinite initial segment”. For I an
initial segment of M we say I is closed under multiplication (exponentiation) iff
a,bel implies abel (d"€l), or equivalently a el implies a*el (2°¢I). The
equivalence for exponentiation follows from the inequality a"<2*". Using model
and set theoretic ideas within non-standard models of arithmetic we shall show the
following results

1) If I = o, JM(w)<2” then I*f is closed under multiplication and this is the
fastest function under which I needs be closed.

2) If |I¥] = o, JM(w)>2° then I is closed under exponentiation and this is
the fastest function under which I needs be closed.

3) If [[|>o (e = ;) then I} F PA.

1) follows from Lemma 1 and Theorem 2, 2) from Lemma 1 and Theorem 6
and 3) from Theorem 9. 1) and 2) can be viewed as saying that multiplication and
exponentiation are the only sorts of function F for which |[|4]| gives information
about ||F(a)l].

We conclude this paper by stating some extensions of these results to I¥ for
uncountable A.
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Before giving any results we introduce some more notation. Let 4 be a bounded
subset of M". We say 4 is in M, written 4 € M, if A is definable in M, equivalently
if 4 can be coded by an element of M. For 4 € M we let |4] denote the unique el-
ement a of M such that

M E A has exactly a elements
and write A<b if b>c¢ for all c e A.
LemMA 1. For M E'PA, I is an initial segment of M closed under multiplication.
If J(u,)>2“’ then I’ is closed under exponentiation.
Proof. It is clear that I’ is an initial segment. For a & M there is a map Ge M
such that G maps <ax <a 1-1 onto <a?. Thus'if a eI then
lla*[| = Card(||al| x |lal} <@
so a*eIM,
Smce in M there are exactly 2 subsets of <a, ||2%] <2Vl Thus if T (w)>2°,
C aeMs )Y <2°°—>1M7<2“->2" € M. m
The next two theorems show that thhout further assumptions on ./, Lemma 1is
the best possible.
THEOREM 2. Let M E PA, M countable and I an initial segment of M dmed under
multiplication. Then there is an N>M such that @) = 2% and T = .

Proof. By taking an end extension of M if necessary we may assume I 5% M.
Let I<ae M. Before proceeding with the construction of N we nced three propo-
sitions.

PROPOSITION 3. Let Ac:(<a)" A €M and |4|=d"[b some bel Then AX< <a,
Xe M such thar

a"+1/8b2<1{<}“03x13 y>[ XOGX xl E X&<x0’y> <X1,.]'>EA}I
. Proof. For n = 1 the result i is clear to supposé n>2. For each (3> € (<a)"™* let

er = {xl {x, y}eA}
Working in M consider the sum

ky = Xc2< lle5 0 X)x (e n TX) % {3}
XeM ‘

where 11X = <a— X and (y)e(<a)""1 Let Xg, x, be distinct elements of ey.
Then (xg, X;, 7> appears in 2*2 of the sets {e5 n X)x (e, N XD % {3}

. Thus the above sum is 2°72 x (the number of Ways of plckmg two distinct
elements from e5) = 2°72, (]e,.!z-—]e'“{) Smce

[e;[ = lAI?;’
ye(<apn-t '
2 n+1
a
]2 B Lot T
|ey]' ?P a T

{de(<ay-t
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Hence
P!
k=>2"2
y = 2b1
re(<ay-t N
since
- +1
, an-{ 1 an+1 ot
AP

Reversing the order of summation gives

. ! . ll"+1
> o vt ﬂ-‘TX)X{y}l>>2 e

XE<a  Ghe(<ay-?
XeM

Therefore since there are only 2* X € M with X< <a, for some X< <a, Xe M

.

, g
Z I(e3 N X) x (e;n‘lX)X{J/H?-gEZ-
Grel=a1 o

This is the required X. B& . ‘

Since M is countable we.can find a decreasing sequence 4,, n € ®.of elements
of M such that I'is exactly the set of lower bounds of this sequence. Fix such
a sequence.

PROPOSITION 4. Let G e M, G: (<a)"—>M Let A e M, Ac(<a)’ and |A|=d"lb
for some bel. Then there is an X e M, XCA such that |X|za"l¢ some cel and
either

() G is constanr on X or

(i) for some ne w, a, is a lower bound of G"'X.

Proof. Find g€ M such'that

[{<F> e 4] G <gl<I{(F) e 4]l G(RN=qH<I{LE) e d| GR)<GH -

IfI<gset X = {{x) e A| G(X)=q}s0]|X|=%]4]. 1fqe[setY {(.x)eAlG(x)<q}
so |Y|=1]4]. By the pigeon hole principle in M 167 e} n Y]>|YJ/(g+1) for
some e<q. Take X = G Ye}n V. &

PROPOSITION 5. Let AS(<a)", AeM and |4|za"lb for. some‘ bel. Let
a>c>1. TﬁerlﬂXl, wo Xye <asuchthat Xy, ..., Xye M, | Xl = | Xl = .= || =¢
and |A 0 (X; % Xy % ... x X)| =c"/b.

' Proof. Work in' M. Consider all possible Xi,..., X,S'<a such that

al " .
= —_—] s . Consider
[Xy| = |X;| = ... = |X,| = c. There are (c}(a—c)!) such sequences. Cor
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a—1)! "
{Xyy vy X,» € A. This appears in X; X X, x...x X, for ( ( ) )'> possible

(e—=Dla—c
sequences X, ..., X,. Thus

s (a—=1! V"
(X x X% x X)) N Al = |A] ((c 1)!_(a——c)!> .
KigeeerXn

Hence one of the sets (Xyx X, x...x X,) n 4 must have at least

(@-D! \" al \"" o _
((c——l)!(a——c)!) . (c!(a—c)! - 4| >Z— elements. H

Before returning to the proof of Theorem 2 we introduce some notation. Let m<n,
GeMand G: (<ad)">M. Wesay G': (<da)'—M is an n-permutation of G if there
are distinct iy, ..., 7, <#» such that

G'(Xy, oy X,) = G(xys oy Xi,)

We are now ready to construct the N claimed in Theorem 2. Let Gy, icew
enumerate all maps G such that Ge M and G: (<ap)"—M for some 1 e w. We
assume that if G,: (<ay)'>M then n<m.

We now define 4,=(<ay)?" inductively so that

a) d,e M,

b) |4,)=a?"/b for some bel,

o AX7, .., Xj.c <a, such that A, S XXXy X oo x X5, | X5 = | X2 = ...
o= X0 = @, and XI, ..., Xt e M,

d) if m<n and G is a 2"-permutation of G, then either G is constant on 4, or
G 4,>a; for some i€ w,

for all x;,..,x,€ <a.

€) if (X, ..., Xn) € 4, then the x,, ..., X, are all distinet,
£) if (xy, ooy Xy €4, n>0 and f: {1, 2, ey 22711 {0, 1} then

<x2—f(1)5 Xa—r(2)s o> Xan—pan-1y) € A, q .

Set 4, = <a, = X{. Now suppose 4, bas been found successfully, In view
of the existence of the X7 we can visualize 4, as a subset of (<a,)*". We shall apply
Propositions 3, 4, 5 with this visualization in mind.

By Proposition 3 choose B}< X! such that

2n+1
n

¢ <|{<x1’ x’1,37>l Xy EB:: x:l € ,B;' &<x135;>, <x;’ 5;> GA,,}I
for some ¢ € I. Set C} to be the set within the modulus signs. Now by Proposition 1
choose Bj< X3 such that

an+2
n

r 14 e - -
<l{<x1ax1,x25x2! y>|x2€B;: X;E/Bg’ <xr:x;ax2a y>s <x1:x;’x;’ y> € C;.’}]

for some cel.
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Let C§ be the set within the modulus signs. Carry on like this to find
Cins(<ag)®™"" such that

on+1
|Chs| =——  for some cel.
c

on#1
n

Now by Proposition 4 pick E,,;SCh such that E,.,eM, |E, >

for some cel and all the 2"*!-permutations of Gg, ..., G, ire corlsfant ?In E, 4
.. . n

or bounded above I. Finally using Proposition 5 pick X3; L X5 e Xy all of

modulus a,,, such that

a2n+1
nt 1 B+l nd1y )~ n+1
IEn+1 n(X]_ XXZ X...Xin-n.)l/ p
for some cel. Set o
+ n+ n
Apyr = By 0 (X771 X3 I x X3aen) .

A,y clearly satisfies a), b), c), d), e). To see f) notice that
(%, X1, > € Ciadxy, 79, <5, Py € Ay s
<x15 x]’.’ X2, x;’ 5;> EC;-—?(XI, x;ax23 J7>; <x15 x’l: X2, y> € Cn
'"’(xl: X2s 5;>: <x1’ x;:;): (x;.i X2, y>s
(xy, X, V) € 4y
and so on. ) ) .

For ne o let Gt, ..., G enumerate "2 in the usual lexicographic order-mg. We
shall construct N using a compactness argument. Add to the language of arithmetic
new constants b for be M and e, for fe“2. Let Z be the set 'of sentencss
0(esys o5 €5y» b1s s by) in this language such that for all k eventually, if e,y = Gj;»
i= i, vyt and (X, e, Xpep €A, then ME O(Xjy 5 eees Xjs bys e b,).

Clearly Z is consistent. Let N + be a model of Z and N the elen?entary su]I\)r-
structure generated by {e;| fe“2} u {1_7][v beM };, So up to isomorphism. M<N.
It only remains to show that I§ = I, J"(w) = 2°.

Certainly by ) for f,ge“2, f# ¢

(e # e)eZ
so N has cardinality 2. Furthermore in M, |4, <a?. 'kFrom t“}ﬁs it .follows thzc"’tt
2% = |A |y < a2 ly and hence ||y = 2“,". For suppose Gjcfie“2fori=1,..,2%
Let j>k and f,} j = GJ, for i =1, ..., 2" Then by ),

¢
gy veey X1 € Ay = {Xpyy cons Xppi ed, 50  ({ep, e €AL).

The result follows since there are 2° possible {fy, ..., f2k>. -

Thus it only remains to show that if a € N then either N F g,<a some kb or
NEa=b some be M. Suppose then NFa = px: 0(x, epys ooes €rms bis s By
fis ey fy distinct.
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Let k be such:that G,: (<ay)"->M,

Gi(Xq5 vy X%) = pxt 0(x, %1, oy Xy, by, oy by,) if this exists,
= ( otherwise.

Letj>k be such thatf; } j, ..., f, }j are all distinct, say f;}j = Gj;i, i=1,..,n

Let G be the 2’-permutation of G, such that
. G(xl EIRLEFY ij) = Gk(xm: ey x}zn) .
Then G'is either constant on A; or bou '
3 ; nded below on 4; by some . If the for
occurs then for some b e M, " b A1 the Former

b= px: 0(x, Xp,, vy Xppy byy iy by) if this exists,
= 0 otherwise

for all {x,,..., ; : ] ¥ i
o al {4 Xq5) €4;. Clearly by f) the corresponding result holds for j >

(@X)[0(x, es,, .o €, by, o, by)—D s least such xNez.
ThllSNFb:ux' G(X e ) ’ ' R
. 2 PO e, s e, By, e, by), S0 N Ea = b, Similarly if th
option occurs we see Nk azg,. Thus Theorem 2 is proved. B g ® seeond

) Remark. Since we could take'J to be of the form {be M| Mk b<a’ ne w}
‘Tor some non-standard a € M, multiplication is the fastest function :

needs be closed. ylnder which I,f,'

A second consequence of this result is th i

secon at there is a model N of PA and

such that [|a|[y = ]2y = © whilst lla%|y = 2% : . ‘aEN
We now prove a result for the case TN (w)>2%,

THEOREM 6. Let M E PA, M countable and I an initial segment of M closed under

exponentiation. Let x be an infinite cardinal. .
and I = I(IZ- 1fi inal. Then there is an N'>-M such that J™ (@) =

Proof. As with Theorem 2 we first n i
A Tl need some propositions. The proof of t}
next proposition mimics the proof of the Erdés-Rado theorem in Iget Theor;e

PROPOSITION 7. Let 4, Fe M, ael<|d| )
. s , and F: [A]" /
XeM, I<|X| such that F is constant on [XT I <a The”‘ el

([A4I" = {Cxyy e D] %y, e, x, €4 and x, <X <X,}) .

Proof.If n = 1 the result is clear so
£1f7 suppose n>1 and the result proved for n—
Working in M define a. tree T as follows. T has initial élcm}c):nt ol

{min(4), 4 —{min(4)}>.

Suppose T'(b), the elements of T of level b, has been found and sup};ose
(x, YyeTB)»xed ; '
st O B)—xed, A2 YeM and x<Y (i.e. x<y for all ye¥).' ‘

DG, ) = {ul 3W, Cu, Wy<(x, ¥y in T}, .
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so |D(x, Y)| = b+1 for {x, Yy eT(b). For each G: [D(x, NP to<a, GeM
let ) ‘
e = {ze Y| F(x,2) = G(%) for all {(x)e[D(x, )I"'}.
Thus there are ¢V (< g®+ """ possible e4’s. The elements above (x, ¥ € T'(b)
on level b+1 are the pairs )
‘ (min(eg), eg—{min(eg)}y for eg# D.
By induction in M, | T'(b)| <a®*".We shall show T'(b) # @ for some b>I. Suppose

not. Then T'(h) = @ for some b € I. This means that for every x € A there is a ¢<b
such that (x, YD e T(c) for some Y. But then

b-1
IAI<1 U T(c)|< Y At < pg® Y e I — a contradiction.
c<b i=0

Now pick b>I, T(b)# @ and let (x,¥Y)eT(®), U= D(x,Y). Then

U] = b+1>1 and if xg, ..., X1 € |U|"* then
D OF (g, ey Xy = F(X1y ey Xt X)) = H(Xg50ns Xy~q1) SaY.

By assumption pick X< U, Xe M, | X|>1 such that H is constant on [X]
Then F is constant on [X]". & ‘

'The next proposition works in the same way that Proposition 4 did in the proof
of Theorem 2.

PROPOSITION 8. Let G, A e M, I<|A|, G:[A]"~M. Then dX¥cd, Xe M, I<|X]
such that either

@ Ab>1, G"[XT">b or

(ii) G is constant on [XT". . ; :

Proof. For each ae M let H,:[Al'=2 by H(x) =0 « G(x)=a. ‘Working
in M pick for each H, a maximal homogeneous set X,. If HX,I" = {0} for some
a>Ttake X = X, and notice that by Proposition 7, | X|> 1. Otherwise HIX = {1}
for some ael, and |X,|>I so by using Proposition 7 we can find X=X, to
satisfy (i). ® ’

Proof of Theorem 6 continued. The method of proof is similar to the

proof of Theorem 2.
Let a, be a decreasing sequence of elements of M whose set of lower bounds

is precisely I. Let Gy, i € w enumerate all maps G e M, G:[<ap]*~M for some n.
We define decreasing subsets 4, of <aq satisfying
a) A, e M,
b) I<|4,i<a,,
¢) if i<n and G;:l<a]"»M ‘ _
then either G, is constant on [4,]" or G;'[4,]">a for some k.
Put A, = <a,. Suppose A, constructed. Using Proposition 8 find X< 4,, Xe M,
I<|X] such that ¢) holds for G,. Now let Ayo1SX, Aypp€M such that
I<|Apyil <ysq- . .

n—1
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Now add to the language of arithmetic » new constants e,, v<» and b for

each be M. Let Z be the set of sentences O(e,,, ..., e,,, by, ...
v <vy<..<v, and for all ¢ eventually, all {x,, ..., x,> € [4,]",
MEO(x, .y Xy by, s b))

Clearly Z is consistent. Let N * be a model of Z and N the elementary substructure
of N* generated by the e,, v<x and b, b M. Then, up to isomorphism, M~<N.
From b) it follows that ||a,|ly = » for ne w and hence using c) it follows that
M) =%, IN=1 B

Remarks. If we define the super power function, Sp, by
Sp(a,0) =1, Sp(a, x+1) = o
then the I in Theorem 6 could be taken to be

, by) such that

{beM| MFb<Sp(a,n),ne w}

for some non-standard « € M. In this sense then exponentiation is the fastest function
under which I} needs be closed, assuming J¥(w)>2°.

The above construction also enables us to show the following:

For any complete extension T of PA and any infinite cardinal %, there is an
elementary end extension N of the minimal model My of T such that card N = »
and every elementary submodel of N except M, is cofinal in .

This follows from the proof of Theorem 6 by letting M be a minimal elementary
end extension of M, and choosing I so that MycIc M (strict inclusion). Then M is
cofinal in the model N produced in the proof, and N has cardinality ». Suppose
N'<N is nct cofinal in N. Then N'<b for some b e M. Setting

M ={xeM|IyeN' x<y}

one can show by checking for closure under Skolem functions that M’ < M. Since Mis
minimal over M, and M, is the minimal model of T, it follows that M’ = M,.
Thus VxeN',Vye M—M, x<y and hence Vxe Ndyel x<y (namely, y can
be any element of I—M,). Since by construction

xeN|dyel x<ylcM
we get that N’ = M. Therefore N'<M, and since N’ % M it follows that N’ = My
as desired.

In the two previous theorems the I3 were both countable. As the next theorem
shows this was essential. Notice I > - |IY| = .

THEOREM 9. If M EPA and |IY| = w, then I k PA.

Proof. We first need an easy proposition.

PROPOSITION 10. Let I be as in Theorem 9, a, b e IM. Let 0(%, 5) be (s,
Then there is a Ay formula \i(%,5,€), ¢ eI such that Sor all % <a,

IR0, b)) — y(%,5,8).

!
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Proof. By induction on n. Result clear if # = 0 so assume n>1. Lef 0(55, 5)
= (V2)n(%, Z, b) where  is Z,. Since there are only countably_‘many x<a and
since IM has cofinality w,; we can find ¢ e I such that for all ¥ <a,

PE@D G, 7, B) o @<, 7, 5).

By inductive hypothesis there is a 4, formula x(x,2,b,d) der¥, such that for
all x<a, z <,
om0 o (3,2,6,4d).
Thus for x<a, ,
MEOE,B) — (VOIn(K,2,b)
<« (VE<C)71()?, E, 5)
o (VZ<dy(x,2,b,d)
this last formula being the required . B
Proof of Theorem 9 continued. It is enough to show that the axiom of
induction holds in IM. So suppose IMEGO)A(Vx)(0(x)—~0(x+1)). Let ae Ig,
and by Proposition 10, find a 4, formula i (x) (maybe containing elements of I)
such that for all x<a,
MEY(x) < 0(x).
Then I k y(0) A (Vx <a) (f (x) > (x+1)). Since I is an initial segment of M and
this last formula is 4,

MEYO) ANV x<a)(y ()= (x+ D).
Since M k PA, (indeed bounded induction is enough),
MEY(a).

Thus ™k () and so Ik 6(a). Therefore Iif F (Vx)0(x) and the theorem is
proved. B

Extension to the uncountable case. If we replace @ by an uncountable cardinal
then Lemma 1 and Theorem 9 (with A* in place of @) go through as before.

Theorem 6 generalizes immediately but trivially to the uncountable case by
noting that w<A<x&JN(w) = x—J"() = % & I} =NIﬁ. However we can also
obtain the following generalization with nontrivial I3 .

TuEoREM 11. Let M & PA. with M countable, and let I be an initial ,s'egmenf of "M
closed under exponentiation and containing a nonstandard element. Let %, A.be mﬁiute
cardinals with A<x. Then there exists N>>M such that TV =,

Il = {xeN| yelx<y},

and ae N |la|| = 4 N
Proof. We need the following generalization of Proposition 8:
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"PROPOSITION 12. Let I}, I, be initial segments of M closed under exponentiation.
Let A, B, F, de M satisfy I;<|d|el,, del,<|B|, and F: [A]"x [B]"— <d for
some m, n € . Then there exist X, Y e M such that X<d, Y<B, I, <|X|, I,<|Y]
and F(d, B is independent of b for {a,b>e [X]"x [Y]"

PROPOSITION 13, If we assume de I, in Proposition 12, then we can choose X,
Y so that F is constant on [X]"x [Y]". : :

Proof. For each b e [B]" consider the induced function Fy: [A]"— <d given
by Fg(a) = F(a, b). Thisis a function inside M. Since there are at most ¢ = 141"
such functions in M, we may consider the map 5—F3 to be coded by GeM,
G: [BI'—<e. Here ec 1, since I, is closed under exponentiation. Therefore by
Prgpoiition 7 there is Y& M, I,<|Y|, Y< B such that G is constant on [Y]". Thus
F(a,b) is independent of & for <&, 5> € [A]"x [Y]". This proves Proposition 12.
If del,, then picking any 5e[Y]" and applying Proposition 7 to Fy, we get
Xe M, X< 4, I <|X] such that Fy is constant on [X]™. Since F(@, b) is independent
of b on [AT"x[YT]", it is constant on [X]"x [¥]". This proves Proposition 13. B

Proof of Theorem 11 (continued). As in the proof of Theorem 6, let b,, n € w,
be a decreasing sequence of elements 6f M whose, set of lower bounds is precisely I.
Let a4 be a nonstandard element of I. Let G, i€ w, enumerate all maps Ge M
such that G: [<ap]" x [<b,]"»M for some m, new. We define a sequence of
pairs <{4;, B>, i€ w, satisfying

a) 4;, Bie M, A, A, ,=<a,, B,SB,_ c <by,

b) w<|4,|, I<|B|<b,, :

9 if j<i, G;: [<ap]"x[<byl">M, and C = [4;]" % [B]" then either
i) Gf C=d for some de M—1I or

i) d>Gj C for some de I and Gy(a, b) is independent of b for <&, 5> e C.

Put 4, = <ap, By = <b,. Suppose {A4;, B;) is given. By taking a subset if
necessary we may assume |B;|<b;,,. Let

Ii={xeM| VneoSp(x,m) <[4} and I, = {xe M|VnewSp(x,n)<|B}.

Then I, I, are closed under exponentiation and wclclcl, I1<|4,, I,<|B|.
Let S(<,d, e) be the statement .

X< 4,AYSB(Sp(IX], )14,/ ASP( Y], &)>|B)| A G/ [X]" x [Y]"<d).

Let S(>, d, e) be the same statement but with >d replacing <d. Note: ¢ can be
chosen standard, eew, iff X, Y can be chosen so that I <|X|, I,<|Y]|. Also
S(<,d,e)rne<e—S(<,d,e) and similarly for S(>,d, é). Finally, for every
fz’e M, by applying Proposition 13 to I, 7, A4y, By, Hy, 2 where Hy: [A ,]"" x [B]'—2
is given by

G, b)=d,

S o (1 f
Hd(aa b) - { Gi(&, E)<d

' 0 if
there is ¢ € w such that
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MES(<,d,)vS(z,d,e).

Now, let r = maxG;[A]"x[B;]". Then MF S(<,r+1,0)A1S(>,r+1,0).
Let dy be the least d such that MF3e(S(<,d, AYf<eT15(=,d,f)). If
do>1, let A;y = X, By = Y where X, Y witness S(>, dy—1, €) for some e e w.
Then a), b) and ¢, i) hold.
If dy €1, let X, ¥ witness S(<, dy, €) for some e € @ and continue as follows:
By Proposition 12 choose X,, ¥, € M such that X, =X, Y,&V, w<|X,|, I<]| Y|
and Gy(a, b) is independent of 5 for <&, B> e [X,]" x [¥,]". Then letting A4,, ;= X,
Bi,.1 = Y, we have a), b) and c, ii) holding. This completes the description of the
sequence {d4,;, B>, ie w.
Now add three new sets of constants to the language of arithmetic:
C={¢ ceM},
D={d| a<l},
E={e] f<).
Let Z be the set of sentences 0(d,,, ..., d,,, €p,» s €5 €15 oes Cp)
0 <Oy <. <, <A, fi<..<P,<x and for all sufficiently large
<al EE dm> € [Ai]my <bl LIRS bn> € [Bi]":

M':H(als 7bn5017"’! Cr)-

Asin the proof of Theorem 6, let N* k Z and let N< N * be generated by Cu D U E,
so that M<N. Then ||a||y = A for all ae ], a=a, by a) and c). Also ||b||ly = »
for all k € w by a) and b) and the fact that card N = . Finally for all a € N there
exists b € M such that a <be I or I<b<a, by c). Thus I} and J™(1) are.as required. B

By taking I = {be M| Ane o M F b<Sp(a,n)} for some nonstandard ae M,
we have that exponentiation is the fastest function under which I}* needs be closed,
no matter how large JY(R) is, provided I}'<A.

Using Theorem 2 and Chang’s Theorem (assuming G.C.H.) we can show that
for each regular uncountable A there is a model M F PA in which J¥(2) = A* and 1} is
not closed under exponentiation. We do not know whether the G.C.H. can be
removed or whether this I} can be of the form

be{M| MEb<d',ne w}

for some non-standard a e M.

such that
iew, all
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