

Closure properties of countable non-standard integers

by

J. B. Paris (Manchester) and G. Mills (Berkeley)

Abstract. Let M be a model of Peano's Axioms (PA) and let I_{ω}^{M} be the largest initial segment of M all of whose proper initial segments are countable. We investigate the closure properties of I_{ω}^{M} and show that in a certain sense multiplication and exponentiation are essentially the only functions for which the cardinality of the arguments limit the cardinality of the values.

Introduction. Let $M \models PA$. For $a \in M$ let

$$\langle a = \{b \in M \mid M \models b \langle a\}, \quad ||a|| = \operatorname{Card}(\langle a).$$

For λ an infinite cardinal let

$$I_{\lambda}^{M} = \left\{ a \in M | \ ||a|| \leq \lambda \right\},$$

$$J^{M}(\lambda) = \inf\{||a|| \ a \in M \text{ and } ||a|| > \lambda \}.$$

For economy we will use "initial segment" to mean "infinite initial segment". For I an initial segment of M we say I is closed under multiplication (exponentiation) iff $a, b \in I$ implies $ab \in I$ ($a^b \in I$), or equivalently $a \in I$ implies $a^2 \in I$ ($2^a \in I$). The equivalence for exponentiation follows from the inequality $a^a < 2^{2^a}$. Using model and set theoretic ideas within non-standard models of arithmetic we shall show the following results

- 1) If $|I_{\omega}^{M}| = \omega$, $J^{M}(\omega) \leq 2^{\omega}$ then I_{ω}^{M} is closed under multiplication and this is the fastest function under which I_{ω}^{M} needs be closed.
- 2) If $|I_{\omega}^{M}| = \omega$, $J^{M}(\omega) > 2^{\omega}$ then I_{ω}^{M} is closed under exponentiation and this is the fastest function under which I_{ω}^{M} needs be closed.
 - 3) If $|I_{\omega}| > \omega$ (i.e. $= \omega_1$) then $I_{\omega}^M \models PA$.
- 1) follows from Lemma 1 and Theorem 2, 2) from Lemma 1 and Theorem 6 and 3) from Theorem 9. 1) and 2) can be viewed as saying that multiplication and exponentiation are the only sorts of function F for which ||a|| gives information about ||F(a)||.

We conclude this paper by stating some extensions of these results to I_{λ}^{M} for uncountable λ .

Before giving any results we introduce some more notation. Let A be a bounded subset of M''. We say A is in M, written $A \in M$, if A is definable in M, equivalently if A can be coded by an element of M. For $A \in M$ we let |A| denote the unique el-

 $M \models A$ has exactly a elements

and write A < b if b > c for all $c \in A$.

ement a of M such that

LEMMA 1. For $M \models PA$, I_{ω}^{M} is an initial segment of M closed under multiplication. If $J_{(\omega)}^M > 2^{\omega}$ then I_{ω}^M is closed under exponentiation.

Proof. It is clear that I_{ω}^{M} is an initial segment. For $a \in M$ there is a map $G \in M$ such that G maps $\langle a \times \langle a | 1 - 1 \rangle$ onto $\langle a^2 \rangle$. Thus if $a \in I_a^M$ then

$$||a^2|| = \operatorname{Card}(||a|| \times ||a||) \leq \omega$$

so $a^2 \in I_m^M$

Since in M there are exactly 2^a subsets of $\langle a, ||2^a|| \leqslant 2^{||a||}$. Thus if $J^M(\omega) > 2^{\omega}$,

$$a \in I_{\omega}^M \to ||2^a|| \leqslant 2^\omega \to I_{\omega}^M \nleq 2^a \to 2^a \in I_{\omega}^M$$
.

The next two theorems show that without further assumptions on I_m^M , Lemma 1 is the best possible.

THEOREM 2. Let M | PA, M countable and I an initial segment of M closed under multiplication. Then there is an N > M such that $J^N(\omega) = 2^{\omega}$ and $I = I^N_{\omega}$.

Proof. By taking an end extension of M if necessary we may assume $I \neq M$. Let $I < a \in M$. Before proceeding with the construction of N we need three propositions.

PROPOSITION 3. Let $A \subseteq (\langle a \rangle^n, A \in M \text{ and } |A| \geqslant a^n/b \text{ some } b \in I$. Then $\exists X \subseteq \langle a, a \rangle$ $X \in M$ such that

$$a^{n+1}/8b^2 \leq |\{\langle x_0, x_1, \vec{y} \rangle | \ x_0 \in X, x_1 \in X \& \langle x_0, \vec{y} \rangle, \langle x_1, \vec{y} \rangle \in A\}|.$$

Proof. For n = 1 the result is clear to suppose $n \ge 2$. For each $\langle \vec{y} \rangle \in (\langle a \rangle)^{n-1}$ let

$$e_{\vec{y}} = \{x | \langle x, \vec{y} \rangle \in A\}$$
.

Working in M consider the sum

$$k_{\vec{y}} = \sum_{\substack{X \subseteq \langle a \\ X \in M}} |(e_{\vec{y}} \cap X) \times (e_{\vec{y}} \cap \neg X) \times \{\vec{y}\}|$$

where $\neg X = \langle a - X \text{ and } \langle \vec{y} \rangle \in (\langle a)^{n-1}$. Let x_0, x_1 be distinct elements of $e_{\vec{y}}$. Then $\langle x_0, x_1, \vec{y} \rangle$ appears in 2^{a-2} of the sets $(e_{\vec{v}} \cap X) \times (e_{v} \cap \exists X) \times \{\vec{v}\}$.

Thus the above sum is $2^{a-2} \times$ (the number of ways of picking two distinct elements from e_{y}^{-}) = 2^{a-2} . $(|e_{y}^{-}|^{2} - |e_{y}^{-}|)$. Since

$$\sum_{\substack{\langle y \rangle \in (\langle a)^{n-1}}} |e_{\overline{y}}| = |A| \geqslant \frac{a^n}{b},$$

$$\sum_{\substack{\langle y \rangle \in (\langle a)^{n-1}}} |e_{\overline{y}}|^2 \geqslant \frac{a^2}{b^2} \cdot a^{n-1} = \frac{a^{n+1}}{b^2}.$$

Hence

$$\sum_{\langle y \rangle \in (\langle a \rangle^{n-1}} k_{\overrightarrow{y}} \geqslant 2^{a-2} \cdot \frac{a^{n+1}}{2b^2}$$

since

$$\frac{a^{n+1}}{b^2} - |A| \geqslant \frac{a^{n+1}}{b^2} - a^n \geqslant \frac{a^{n+1}}{2b^2}.$$

Reversing the order of summation gives

$$\sum_{\substack{X \subseteq \langle a \rangle \\ X \in M}} \left(\sum_{\substack{\langle \vec{y} \rangle \in (\langle a \rangle^{n-1} \\ k \in M}} |(e_{\vec{y}} \cap X) + (e_{\vec{y}} \cap \neg X) \times \{\vec{y}\}| \right) \geqslant 2^{a-3} \cdot \frac{a^{n+1}}{b^2}.$$

Therefore since there are only 2^a $X \in M$ with $X \subseteq \langle a, for some X \subseteq \langle a, X \in M \rangle$

$$\sum_{(\vec{y})\in (\langle a)^{n-1}} |(e_{\vec{y}} \cap X) \times (e_{\vec{y}} \cap \neg X) \times \{\vec{y}\}| \geqslant \frac{e^{n+1}}{8b^2}.$$

This is the required X.

Since M is countable we can find a decreasing sequence a_n , $n \in \omega$ of elements of M such that I is exactly the set of lower bounds of this sequence. Fix such

PROPOSITION 4. Let $G \in M$, $G: (\langle a \rangle^n \to M$. Let $A \in M$, $A \subseteq (\langle a \rangle^n \text{ and } |A| \geqslant a^n/b$ for some $b \in I$. Then there is an $X \in M$, $X \subseteq A$ such that $|X| \geqslant a^n/c$ some $c \in I$ and either

- (i) G is constant on X or
- (ii) for some $n \in \omega$, a_n is a lower bound of G''X.

Proof. Find $q \in M$ such that

$$|\{\langle \vec{x} \rangle \in A | \ G(\vec{x}) < q\}| \leq |\{\langle \vec{x} \rangle \in A | \ G(\vec{x}) \geqslant q\}| \leq |\{\langle \vec{x} \rangle \in A | \ G(\vec{x}) \leqslant q\}| \ .$$

If $I < q \text{ set } X = \{\langle \vec{x} \rangle \in A | G(\vec{x}) \geqslant q \} \text{ so } |X| \geqslant \frac{1}{2} |A|$. If $q \in I \text{ set } Y = \{\langle \vec{x} \rangle \in A | G(\vec{x}) \leqslant q \}$ so $|Y| \ge \frac{1}{2}|A|$. By the pigeon hole principle in $M |G^{-1}\{e\} \cap Y| \ge |Y|/(q+1)$ for some $e \leq q$. Take $X = G^{-1}\{e\} \cap Y$.

PROPOSITION 5. Let $A \subseteq (\langle a \rangle)^n$, $A \in M$ and $|A| \geqslant a^n/b$ for some $b \in I$. Let a > c > I. Then $\exists X_1, ..., X_n \subseteq \langle a \text{ such that } X_1, ..., X_n \in M, |X_1| = |X_2| = ... = |X_n| = c$ and $|A \cap (X_1 \times X_2 \times ... \times X_n)| \ge c^n/b$.

Proof. Work in M. Consider all possible $X_1, ..., X_n \subseteq \langle a \rangle$ such that $|X_1| = |X_2| = \dots = |X_n| = c$. There are $\left(\frac{a!}{c!(a-c)!}\right)^n$ such sequences. Consider

209

 $\langle x_1, ..., x_n \rangle \in A$. This appears in $X_1 \times X_2 \times ... \times X_n$ for $\left(\frac{(a-1)!}{(c-1)!(a-c)!}\right)^n$ possible sequences $X_1, ..., X_n$. Thus

$$\sum_{X_1,\ldots,X_n} |(X_1\times X_2\times \ldots \times X_n)\cap A| = |A|\cdot \left(\frac{(a-1)!}{(c-1)!(a-c)!}\right)^n.$$

Hence one of the sets $(X_1 \times X_2 \times ... \times X_n) \cap A$ must have at least

$$\left(\frac{(a-1)!}{(c-1)!(a-c)!}\right)^n \cdot \left(\frac{a!}{c!(a-c)!}\right)^{-n} \cdot |A| \geqslant \frac{c^n}{b} \text{ elements.} \quad \blacksquare$$

Before returning to the proof of Theorem 2 we introduce some notation. Let $m \le n$, $G \in M$ and $G: (\langle a \rangle^m \to M$. We say $G': (\langle a \rangle^n \to M$ is an *n*-permutation of G if there are distinct $i_1, \ldots, i_m \le n$ such that

$$G'(x_1, ..., x_n) = G(x_{i_1}, ..., x_{i_m})$$
 for all $x_1, ..., x_n \in \langle a \rangle$.

We are now ready to construct the N claimed in Theorem 2. Let G_i , $i \in \omega$ enumerate all maps G such that $G \in M$ and G: $(\langle a_0 \rangle^n \to M)$ for some $n \in \omega$. We assume that if G_m : $(\langle a_0 \rangle^n \to M)$ then $n \leq m$.

We now define $A_n \subseteq (\langle a_0 \rangle)^{2^n}$ inductively so that

- a) $A_n \in M$,
- b) $|A_n| \ge a_n^{2^n}/b$ for some $b \in I$.
- c) $\exists X_1^n, \dots, X_{2^n}^n \subseteq \langle a_0 \text{ such that } A_n \subseteq X_1^n \times X_2^n \times \dots \times X_{2^n}^n, |X_1^n| = |X_2^n| = \dots = |X_{2^n}^n| = a_n \text{ and } X_1^n, \dots, X_{2^n}^n \in M,$
- d) if m < n and G is a 2ⁿ-permutation of G_m then either G is constant on A_n or $G''A_n > a_i$ for some $i \in \omega$.
 - e) if $\langle x_1, ..., x_{2^n} \rangle \in A_n$ then the $x_1, ..., x_{2^n}$ are all distinct,
 - f) if $\langle x_1, ..., x_{2^n} \rangle \in A_n$, n > 0 and $f: \{1, 2, ..., 2^{n-1}\} \rightarrow \{0, 1\}$ then

$$\langle x_{2-f(1)}, x_{4-f(2)}, \dots, x_{2^n-f(2^{n-1})} \rangle \in A_{n-1}$$
.

Set $A_0 = \langle a_0 = X_1^0$. Now suppose A_n has been found successfully. In view of the existence of the X_i^n we can visualize A_n as a subset of $(\langle a_n \rangle^{2^n})$. We shall apply Propositions 3, 4, 5 with this visualization in mind.

By Proposition 3 choose $B_1^n \subseteq X_1^n$ such that

$$\frac{a_n^{2^{n+1}}}{c} \leq |\left\{\left\langle x_1, x_1', \overrightarrow{y} \right\rangle | \ x_1 \in B_1^n, x_1' \in B_1^n \& \left\langle x_1, \overrightarrow{y} \right\rangle, \left\langle x_1', \overrightarrow{y} \right\rangle \in A_n \right\}|$$

for some $c \in I$. Set C_1^n to be the set within the modulus signs. Now by Proposition 1 choose $B_2^n \subseteq X_2^n$ such that

$$\frac{d_n^{2^{n+2}}}{c} \leq |\{\langle x_1, x_1', x_2, x_2', \vec{y} \rangle | x_2 \in B_2^n, x_2' \in B_2^n, \langle x_1, x_1', x_2, \vec{y} \rangle, \langle x_1, x_1', x_2', \vec{y} \rangle \in C_1^n\}|$$

for some $c \in I$.

Let C_2^n be the set within the modulus signs. Carry on like this to find $C_{2n}^n \subseteq (<\alpha_0)^{2^{n+1}}$ such that

$$|C_{2^n}^n| \geqslant \frac{a_n^{2^{n+1}}}{c}$$
 for some $c \in I$.

Now by Proposition 4 pick $E_{n+1} \subseteq C_{2^n}^n$ such that $E_{n+1} \in M$, $|E_{n+1}| \ge \frac{a_n^{2^{n+1}}}{c}$

for some $c \in I$ and all the 2^{n+1} -permutations of $G_0, ..., G_n$ are constant on E_{n+1} or bounded above I. Finally using Proposition 5 pick $X_{2i}^{n+1}, X_{2i+1}^{n+1} \subseteq X_i^n$ all of modulus a_{n+1} such that

$$|E_{n+1} \cap (X_1^{n+1} \times X_2^{n+1} \times ... \times X_{2^{n+1}}^{n+1})| \geqslant \frac{a_{n+1}^{2^{n+1}}}{c}$$

for some $c \in I$. Set

$$A_{n+1} = E_{n+1} \cap (X_1^{n+1} \times X_2^{n+1} \times ... \times X_{2^{n+1}}^{n+1})$$

 A_{n+1} clearly satisfies a), b), c), d), e). To see f) notice that

$$\langle x_1, x_1', \vec{y} \rangle \in C_1^n \rightarrow \langle x_1, \vec{y} \rangle, \langle x_1', \vec{y} \rangle \in A_n,$$

$$\langle x_1, x_1', x_2, x_2', \vec{y} \rangle \in C_2^n \rightarrow \langle x_1, x_1', x_2, \vec{y} \rangle, \langle x_1, x_1', x_2', \vec{y} \rangle \in C^n$$

$$\rightarrow \langle x_1, x_2, \vec{y} \rangle, \langle x_1, x_2', \vec{y} \rangle, \langle x_1', x_2, \vec{y} \rangle,$$

$$\langle x_1', x_2', \vec{y} \rangle \in A_n$$

and so on.

For $n \in \omega$ let G_1^n , ..., G_{2n}^n enumerate "2 in the usual lexicographic ordering. We shall construct N using a compactness argument. Add to the language of arithmetic new constants \underline{b} for $b \in M$ and e_f for $f \in {}^{\omega}2$. Let Z be the set of sentences $\theta(e_{f_1}, ..., e_{f_n}, \underline{b}_1, ..., \underline{b}_n)$ in this language such that for all k eventually, if $e_{f_1k} = G_{j_1}^k$, i = 1, ..., n and $\langle x_1, ..., x_{2k} \rangle \in A_k$ then $M \models \theta(x_{j_1}, ..., x_{j_n}, b_1, ..., b_n)$.

Clearly Z is consistent. Let N^+ be a model of Z and N the elementary substructure generated by $\{e_f|f\in {}^\omega 2\}\cup\{\underline{b}|\ b\in M\}$. So up to isomorphism. M < N. It only remains to show that $I^N_\omega = I$, $J^N(\omega) = 2^\omega$.

Certainly by e) for $f, g \in {}^{\omega}2, f \neq g$

$$(e_f \neq e_g) \in Z$$

so N has cardinality 2^{ω} . Furthermore in M, $|A_k| \leq a_k^{2^k}$. From this it follows that $2^{\omega} = |A_k|_N \leq ||a_k^{2^k}||_N$ and hence $||a_k||_N = 2^{\omega}$. For suppose $G_i^k \subset f_i \in {}^{\omega}2$ for $i = 1, ..., 2^k$. Let $j \geqslant k$ and $f_i \upharpoonright j = G_{p_i}^j$ for $i = 1, ..., 2^k$. Then by f),

$$\langle x_1, ..., x_{2l} \rangle \in A_j \rightarrow \langle x_{p_1}, ..., x_{p_2k} \rangle \in A_k$$
 so $(\langle e_{f_1}, ..., e_{f_2k} \rangle \in A_k)$

The result follows since there are 2^{ω} possible $\langle f_1, ..., f_{2^k} \rangle$.

Thus it only remains to show that if $a \in N$ then either $N \models \underline{a}_k \leqslant a$ some k or $N \models a = \underline{b}$ some $b \in M$. Suppose then $N \models a = \mu x$: $\theta(x, e_{f_1}, ..., e_{f_n}, \underline{b}_1, ..., \underline{b}_m)$, $f_1, ..., f_n$ distinct.

Let k be such that $G_k: (\langle a_0 \rangle^n \to M)$,

$$G_k(x_1, ..., x_n) = \mu x$$
: $\theta(x, x_1, ..., x_n, b_1, ..., b_m)$ if this exists,
= 0 otherwise.

Let j > k be such that $f_1 \mid j, ..., f_n \mid j$ are all distinct, say $f_i \mid j = G_{p_i}^j$, i = 1, ..., n. Let G be the 2^j -permutation of G_k such that

$$G(x_1, ..., x_{2^j}) = G_k(x_{p_1}, ..., x_{p_n}).$$

Then G is either constant on A_j or bounded below on A_j by some a_k . If the former occurs then for some $b \in M$,

$$b = \mu x$$
: $\theta(x, x_{p_1}, ..., x_{p_n}, b_1, ..., b_m)$ if this exists,
= 0 otherwise

for all $\langle x_1, ..., x_{2j} \rangle \in A_j$. Clearly by f) the corresponding result holds for j' > j. Hence

$$((\exists x)[\theta(x, e_{f_1}, ..., e_{f_n}, \underline{b}_1, ..., \underline{b}_m) \rightarrow \underline{b} \text{ is least such } x]) \in Z.$$

Thus $N \models \underline{b} = \mu x$: $\theta(x, e_{f_1}, ..., e_{f_n}, \underline{b}_1, ..., \underline{b}_m)$, so $N \models a = \underline{b}$. Similarly if the second option occurs we see $N \models a \ge \underline{a}_k$. Thus Theorem 2 is proved.

Remark. Since we could take I to be of the form $\{b \in M \mid M \models b < a^n, n \in \omega\}$ for some non-standard $a \in M$, multiplication is the fastest function under which I_{ω}^N needs be closed.

A second consequence of this result is that there is a model N of PA and $a \in N$ such that $||a||_N = ||2^a||_N = \omega$ whilst $||a^a||_N = 2^\omega$.

We now prove a result for the case $J^{N}(\omega) > 2^{\omega}$.

THEOREM 6. Let $M \models PA$, M countable and I an initial segment of M closed under exponentiation. Let \varkappa be an infinite cardinal. Then there is an N > M such that $J^N(\omega) = \varkappa$ and $I = I^N_\omega$.

Proof. As with Theorem 2 we first need some propositions. The proof of the next proposition mimics the proof of the Erdös-Rado theorem in Set Theory.

PROPOSITION 7. Let A, $F \in M$, $a \in I < |A|$ and $F: [A]^n \to <a$. Then $\exists X \subseteq A$, $X \in M$, I < |X| such that F is constant on $[X]^n$.

$$([A]^n = \{\langle x_1, ..., x_n \rangle | x_1, ..., x_n \in A \text{ and } x_1 < x_2 < ... < x_n \}).$$

Proof. If n = 1 the result is clear so suppose n > 1 and the result proved for n - 1. Working in M define a tree T as follows. T has initial element

$$\langle \min(A), A - \{\min(A)\} \rangle$$
.

Suppose T(b), the elements of T of level b, has been found and suppose

 $\langle x, Y \rangle \in T(b) \rightarrow x \in A, A \supseteq Y \in M \text{ and } x < Y \text{ (i.e. } x < y \text{ for all } y \in Y)$. Set

$$D(x, Y) = \{u | \exists W, \langle u, W \rangle \leq \langle x, Y \rangle \text{ in } T \},$$

so |D(x, Y)| = b+1 for $\langle x, Y \rangle \in T(b)$. For each $G: [D(x, Y)]^{n-1} \to \langle a, G \in M|$ let

$$e_G = \{z \in Y | F(\vec{x}, z) = G(\vec{x}) \text{ for all } \langle \vec{x} \rangle \in [D(x, Y)]^{n-1} \}$$
.

Thus there are $a^{|[D(x,Y)]^{n-1}|} (\leqslant a^{(b+1)^{n-1}})$ possible e_G 's. The elements above $\langle x, Y \rangle \in T(b)$ on level b+1 are the pairs

$$\langle \min(e_G), e_G - \{\min(e_G)\} \rangle$$
 for $e_G \neq \emptyset$.

By induction in M, $|T(b)| \le a^{(b+1)^n}$. We shall show $T(b) \ne \emptyset$ for some b > I. Suppose not. Then $T(b) = \emptyset$ for some $b \in I$. This means that for every $x \in A$ there is a c < b such that $\langle x, Y \rangle \in T(c)$ for some Y. But then

$$|A| \le \left| \bigcup_{c < b} T(c) \right| \le \sum_{i=0}^{b-1} a^{(i+1)^n} < b \cdot a^{(b+1)^n} \in I$$
 — a contradiction.

Now pick b>I, $T(b)\neq\emptyset$ and let $\langle x,Y\rangle\in T(b)$, U=D(x,Y). Then |U|=b+1>I and if $\langle x_1,...,x_{n+1}\rangle\in |U|^{n+1}$ then

$$F(x_1, ..., x_n) = F(x_1, ..., x_{n-1}, x_{n+1}) = H(x_1, ..., x_{n-1})$$
 say.

By assumption pick $X \subseteq U$, $X \in M$, |X| > I such that H is constant on $[X]^{n-1}$. Then F is constant on $[X]^n$.

The next proposition works in the same way that Proposition 4 did in the proof of Theorem 2.

PROPOSITION 8. Let $G, A \in M, I < |A|, G: [A]^n \to M$. Then $\exists X \subseteq A, X \in M, I < |X|$ such that either

- (i) $\exists b > I$, $G''[X]^n > b$ or
- (ii) G is constant on $[X]^n$.

Proof. For each $a \in M$ let $H_a: [A]^n \to 2$ by $H_a(x) = 0 \leftrightarrow G(x) \geqslant a$. Working in M pick for each H_a a maximal homogeneous set X_a . If $H_a''[X_a]^n = \{0\}$ for some a > I take $X = X_a$ and notice that by Proposition 7, |X| > I. Otherwise $H_a''[X_a]^n = \{1\}$ for some $a \in I$, and $|X_a| > I$ so by using Proposition 7 we can find $X \subseteq X_a$ to satisfy (i).

Proof of Theorem 6 continued. The method of proof is similar to the proof of Theorem 2.

Let a_n be a decreasing sequence of elements of M whose set of lower bounds is precisely I. Let G_i , $i \in \omega$ enumerate all maps $G \in M$, $G: [< a_0]^n \to M$ for some n. We define decreasing subsets A_n of $< a_0$ satisfying

- a) $A_n \in M$,
- b) $I < |A_n| \leq a_n$,
- c) if i < n and $G_i : [< a_0]^m \to M$ then either G_i is constant on $[A_n]^m$ or $G_i''[A_n]^m \ge a_k$ for some k.

Put $A_0 = \langle a_0 \rangle$. Suppose A_n constructed. Using Proposition 8 find $X \subseteq A_n$, $X \in M$, I < |X| such that c) holds for G_n . Now let $A_{n+1} \subseteq X$, $A_{n+1} \in M$ such that $I < |A_{n+1}| \le a_{n+1}$.

Now add to the language of arithmetic \varkappa new constants e_{ν} , $\nu < \varkappa$ and \underline{b} for each $b \in M$. Let Z be the set of sentences $\theta(e_{\nu_1}, ..., e_{\nu_n}, \underline{b}_1, ..., \underline{b}_m)$ such that $\nu_1 < \nu_2 < ... < \nu_n$ and for all t eventually, all $\langle x_1, ..., x_n \rangle \in [A_t]^n$,

$$M \models \theta(x_1, ..., x_n, b_1, ..., b_m).$$

Clearly Z is consistent. Let N^+ be a model of Z and N the elementary substructure of N^+ generated by the e_v , $v < \varkappa$ and \underline{b} , $b \in M$. Then, up to isomorphism, M < N. From b) it follows that $||a_n||_N = \varkappa$ for $n \in \omega$ and hence using c) it follows that $J^N(\omega) = \varkappa$, $I^N_\omega = I$.

Remarks. If we define the super power function, Sp, by

$$Sp(a, 0) = 1$$
, $Sp(a, x+1) = a^{Sp(a,x)}$

then the I in Theorem 6 could be taken to be

$$\{b \in M \mid M \models b < \operatorname{Sp}(a, n), n \in \omega\}$$

for some non-standard $a \in M$. In this sense then exponentiation is the fastest function under which I_{ω}^{N} needs be closed, assuming $J^{N}(\omega) > 2^{\omega}$.

The above construction also enables us to show the following:

For any complete extension T of PA and any infinite cardinal κ , there is an elementary end extension N of the minimal model M_0 of T such that card $N=\kappa$ and every elementary submodel of N except M_0 is cofinal in N.

This follows from the proof of Theorem 6 by letting M be a minimal elementary end extension of M_0 and choosing I so that $M_0 \subset I \subset M$ (strict inclusion). Then M is cofinal in the model N produced in the proof, and N has cardinality κ . Suppose $N' \prec N$ is not cofinal in N. Then N' < b for some $b \in M$. Setting

$$M' = \{ x \in M \mid \exists y \in N' \ x < y \}$$

one can show by checking for closure under Skolem functions that M' < M. Since M is minimal over M_0 and M_0 is the minimal model of T, it follows that $M' = M_0$. Thus $\forall x \in N', \forall y \in M - M_0$ x < y and hence $\forall x \in N' \exists y \in I$ x < y (namely, y can be any element of $I - M_0$). Since by construction

$$\{x \in N | \exists y \in I \ x < y\} \subseteq M$$

we get that $N' \subseteq M$. Therefore $N' \prec M$, and since $N' \neq M$ it follows that $N' = M_0$, as desired.

In the two previous theorems the I_{ω}^{N} were both countable. As the next theorem shows this was essential. Notice $|I_{\omega}^{M}| > \omega \rightarrow |I_{\omega}^{M}| = \omega_{1}$.

THEOREM 9. If $M \models PA$ and $|I_{\omega}^{M}| = \omega_{1}$ then $I_{\omega}^{M} \models PA$.

Proof. We first need an easy proposition.

PROPOSITION 10. Let I_{ω}^{M} be as in Theorem 9, $\alpha, \vec{b} \in I_{\omega}^{M}$. Let $\theta(\vec{x}, \vec{b})$ be $\Pi_{n}(\Sigma_{n})$. Then there is a Δ_{0} formula $\psi(\vec{x}, \vec{b}, \vec{e})$, $\vec{e} \in I_{\omega}^{M}$ such that for all $\vec{x} < \alpha$.

$$I_{\omega}^{M} \models \theta(\vec{x}, \vec{b}) \leftrightarrow \psi(\vec{x}, \vec{b}, \vec{e})$$
.

Proof. By induction on n. Result clear if n=0 so assume $n \ge 1$. Let $\theta(\vec{x}, \vec{b}) = (\forall \vec{z}) \eta(\vec{x}, \vec{z}, \vec{b})$ where η is Σ_n . Since there are only countably many $\vec{x} < a$ and since I_{ω}^M has cofinality ω_1 we can find $c \in I_{\omega}^M$ such that for all $\vec{x} < a$,

$$I_{\omega}^{M} \models (\exists \vec{z}) \neg \eta(\vec{x}, \vec{z}, \vec{b}) \leftrightarrow (\exists \vec{z} < c) \neg \eta(\vec{x}, \vec{z}, \vec{b}) .$$

By inductive hypothesis there is a Δ_0 formula $\chi(\vec{x}, \vec{z}, \vec{b}, \vec{d})$ $\vec{d} \in I_{\omega}^M$, such that for all $\vec{x} < a$, $\vec{z} < c$,

$$I_{\omega}^{M} \models \neg \eta(\vec{x}, \vec{z}, \vec{b}) \leftrightarrow \chi(\vec{x}, \vec{z}, \vec{b}, \vec{d}).$$

Thus for $\vec{x} < a$,

$$\begin{split} I_{\omega}^{M} &\models \theta(\vec{x}, \vec{b}) \leftrightarrow (\forall \vec{z}) \eta(\vec{x}, \vec{z}, \vec{b}) \\ &\leftrightarrow (\forall \vec{z} < c) \eta(\vec{x}, \vec{z}, \vec{b}) \\ &\leftrightarrow (\forall \vec{z} < c) \neg \chi(\vec{x}, \vec{z}, \vec{b}, \vec{d}) \end{split}$$

this last formula being the required ψ .

Proof of Theorem 9 continued. It is enough to show that the axiom of induction holds in I_{ω}^{M} . So suppose $I_{\omega}^{M} \models \theta(0) \land (\forall x)(\theta(x) \rightarrow \theta(x+1))$. Let $a \in I_{\omega}^{M}$, and by Proposition 10, find a Δ_{0} formula $\psi(x)$ (maybe containing elements of I_{ω}^{M}) such that for all $x \leq a$,

$$I_{\omega}^{M} \models \psi(x) \leftrightarrow \theta(x)$$
.

Then $I^M \models \psi(0) \land (\forall x < a) (\psi(x) \rightarrow \psi(x+1))$. Since I^M_ω is an initial segment of M and this last formula is Δ_0 ,

$$M \models \psi(0) \land (\forall x < a) (\psi(x) \rightarrow \psi(x+1))$$
.

Since $M \models PA$, (indeed bounded induction is enough),

$$M \models \psi(a)$$
.

Thus $I_{\omega}^{M} \models \psi(a)$ and so $I_{\omega}^{M} \models \theta(a)$. Therefore $I_{\omega}^{M} \models (\forall x)\theta(x)$ and the theorem is proved.

Extension to the uncountable case. If we replace ω by an uncountable cardinal λ then Lemma 1 and Theorem 9 (with λ^+ in place of ω_1) go through as before.

Theorem 6 generalizes immediately but trivially to the uncountable case by noting that $\omega < \lambda < \varkappa \& J^N(\omega) = \varkappa \to J^N(\lambda) = \varkappa \& I^N_\lambda = I^N_\omega$. However we can also obtain the following generalization with nontrivial I^N_λ .

THEOREM 11. Let $M \models PA$ with M countable, and let I be an initial segment of M closed under exponentiation and containing a nonstandard element. Let \varkappa , λ be infinite cardinals with $\lambda < \varkappa$. Then there exists N > M such that $J^N(\lambda) = \varkappa$,

$$I_{\lambda}^{N} = \left\{ x \in N \mid \exists y \in I \, x < y \right\},\,$$

and $\exists a \in N ||a|| = \lambda$

Proof. We need the following generalization of Proposition 8:

PROPOSITION 12. Let I_1 , I_2 be initial segments of M closed under exponentiation. Let A, B, F, $d \in M$ satisfy $I_1 < |A| \in I_2$, $d \in I_2 < |B|$, and $F : [A]^m \times [B]^n \to < d$ for some m, $n \in \omega$. Then there exist X, $Y \in M$ such that $X \subseteq A$, $Y \subseteq B$, $I_1 < |X|$, $I_2 < |Y|$ and $F(\vec{a}, \vec{b})$ is independent of \vec{b} for $\langle \vec{a}, \vec{b} \rangle \in [X]^m \times [Y]^n$.

PROPOSITION 13. If we assume $d \in I_1$ in Proposition 12, then we can choose X, Y so that F is constant on $[X]^m \times [Y]^n$.

Proof. For each $\vec{b} \in [B]^n$ consider the induced function $F_{\vec{b}} \colon [A]^m \to < d$ given by $F_{\vec{b}}(\vec{a}) = F(\vec{a}, \vec{b})$. This is a function inside M. Since there are at most $e = d^{\|A\|^m\|}$ such functions in M, we may consider the map $\vec{b} \to F_{\vec{b}}$ to be coded by $G \in M$, $G \colon [B]^n \to < e$. Here $e \in I_2$ since I_2 is closed under exponentiation. Therefore by Proposition 7 there is $Y \in M$, $I_2 < |Y|$, $Y \subseteq B$ such that G is constant on $[Y]^n$. Thus $F(\vec{a}, \vec{b})$ is independent of \vec{b} for $(\vec{a}, \vec{b}) \in [A]^m \times [Y]^n$. This proves Proposition 12. If $d \in I_1$, then picking any $\vec{b} \in [Y]^n$ and applying Proposition 7 to $F_{\vec{b}}$, we get $X \in M$, $X \subseteq A$, $I_1 < |X|$ such that $F_{\vec{b}}$ is constant on $[X]^m$. Since $F(\vec{a}, \vec{b})$ is independent of \vec{b} on $[A]^m \times [Y]^n$, it is constant on $[X]^m \times [Y]^n$. This proves Proposition 13.

Proof of Theorem 11 (continued). As in the proof of Theorem 6, let b_n , $n \in \omega$, be a decreasing sequence of elements of M whose, set of lower bounds is precisely I. Let a_0 be a nonstandard element of I. Let G_i , $i \in \omega$, enumerate all maps $G \in M$ such that $G: [<a_0]^m \times [<b_0]^n \to M$ for some m, $n \in \omega$. We define a sequence of pairs $\langle A_i, B_i \rangle$, $i \in \omega$, satisfying

- a) $A_i, B_i \in M, A_i \subseteq A_{i-1} \subseteq \langle a_0, B_i \subseteq B_{i-1} \subseteq \langle b_0, B_i$
- b) $\omega < |A_i|$, $I < |B_i| \leqslant b_i$,
- c) if j < i, G_j : $[\langle a_0 \rangle]^m \times [\langle b_0 \rangle]^n \to M$, and $C = [A_i]^m \times [B_i]^n$ then either
- i) $G_j'' C \geqslant d$ for some $d \in M I$ or
- ii) $d > G_j'' C$ for some $d \in I$ and $G_j(\vec{a}, \vec{b})$ is independent of \vec{b} for $\langle \vec{a}, \vec{b} \rangle \in C$. Put $A_0 = \langle a_0, B_0 = \langle b_0 \rangle$. Suppose $\langle A_i, B_i \rangle$ is given. By taking a subset if necessary we may assume $|B_i| \leqslant b_{i+1}$. Let

 $I_1 = \{x \in M \mid \forall n \in \omega \operatorname{Sp}(x, n) < |A_i|\} \quad \text{and} \quad I_2 = \{x \in M \mid \forall n \in \omega \operatorname{Sp}(x, n) < |B_i|\}.$

Then I_1 , I_2 are closed under exponentiation and $\omega \subset I_1 \subset I \subset I_2$, $I_1 < |A_i|$, $I_2 < |B_i|$. Let S(<,d,e) be the statement

$$\exists X \subseteq A_i \exists Y \subseteq B_i(\operatorname{Sp}(|X|, e) \geqslant |A_i| \wedge \operatorname{Sp}(|Y|, e) \geqslant |B_i| \wedge G_i'[X]^m \times [Y]^n < d).$$

Let $S(\geqslant,d,e)$ be the same statement but with $\geqslant d$ replacing < d. Note: e can be chosen standard, $e \in \omega$, iff X, Y can be chosen so that $I_1 < |X|$, $I_2 < |Y|$. Also $S(<,d,e) \land e < e' \rightarrow S(<,d,e')$ and similarly for $S(\geqslant,d,e)$. Finally, for every $d \in M$, by applying Proposition 13 to I_1 , I_2 , A_i , B_i , H_d , 2 where H_d : $[A_i]^m \times [B_i]^n \rightarrow 2$ is given by

$$H_d(\vec{a}, \vec{b}) = \begin{cases} 1 & \text{if} & G(\vec{a}, \vec{b}) \ge d, \\ 0 & \text{if} & G_i(\vec{a}, \vec{b}) < d \end{cases}$$

there is $e \in \omega$ such that

$$M \models S(\langle d, e \rangle) \lor S(\geq d, e)$$
.

Now, let $r = \max G_i''[A_i]^m \times [B_i]^n$. Then $M \models S(<, r+1, 0) \land \neg S(\geqslant, r+1, 0)$. Let d_0 be the least d such that $M \models \exists e(S(<, d, e) \land \forall f \leqslant e \neg S(\geqslant, d, f))$. If $d_0 > I$, let $A_{i+1} = X$, $B_{i+1} = Y$ where X, Y witness $S(\geqslant, d_0 - 1, e)$ for some $e \in \omega$. Then a), b) and c, i) hold.

If $d_0 \in I$, let X, Y witness $S(<, d_0, e)$ for some $e \in \omega$ and continue as follows: By Proposition 12 choose X_0 , $Y_0 \in M$ such that $X_0 \subseteq X$, $Y_0 \subseteq Y$, $\omega < |X_0|$, $I < |Y_0|$ and $G_i(\vec{a}, \vec{b})$ is independent of \vec{b} for $(\vec{a}, \vec{b}) \in [X_0]^m \times [Y_0]^n$. Then letting $A_{i+1} = X_0$, $B_{i+1} = Y_0$ we have a), b) and c, ii) holding. This completes the description of the sequence (A_i, B_i) , $i \in \omega$.

Now add three new sets of constants to the language of arithmetic:

$$C = \{\underline{c} | c \in M\},$$

$$D = \{d_{\alpha} | \alpha < \lambda\},$$

$$E = \{e_{\beta} | \beta < \varkappa\}.$$

Let Z be the set of sentences $\theta(d_{\alpha_1},...,d_{\alpha_m},e_{\beta_1},...,e_{\beta_n},\varepsilon_1,...,\varepsilon_r)$ such that $\alpha_1<\alpha_2<...<\alpha_m<\lambda,\ \beta_1<...<\beta_n<\varkappa$ and for all sufficiently large $i\in\omega$, all $\langle a_1,...,a_m\rangle\in [A_1]^m,\ \langle b_1,...,b_n\rangle\in [B_i]^n,$

$$M \models \theta(a_1, ..., a_m, b_1, ..., b_n, c_1, ..., c_r)$$
.

As in the proof of Theorem 6, let $N^+ \models Z$ and let $N \triangleleft N^+$ be generated by $C \cup D \cup E$, so that $M \triangleleft N$. Then $||a||_N = \lambda$ for all $a \in I$, $a \geqslant a_0$ by a) and c). Also $||b_k||_N = \varkappa$ for all $k \in \omega$ by a) and b) and the fact that $\operatorname{card} N = \varkappa$. Finally for all $a \in N$ there exists $b \in M$ such that $a \leqslant b \in I$ or $I \lessdot b \leqslant a$, by c). Thus I_{λ}^N and $J^N(\lambda)$ are as required.

By taking $I = \{b \in M \mid \exists n \in \omega \ M \models b < \operatorname{Sp}(a, n)\}$ for some nonstandard $a \in M$, we have that exponentiation is the fastest function under which I_{λ}^{M} needs be closed, no matter how large $J^{M}(\lambda)$ is, provided $I_{\lambda}^{M} \leqslant \lambda$.

Using Theorem 2 and Chang's Theorem (assuming G.C.H.) we can show that for each regular uncountable λ there is a model $M \models PA$ in which $J^M(\lambda) = \lambda^+$ and I^M_λ is not closed under exponentiation. We do not know whether the G.C.H. can be removed or whether this I^M_λ can be of the form

$$b \in \{M \mid M \models b < a^n, n \in \omega\}$$

for some non-standard $a \in M$.

DEPARTMENT OF MATHEMATICS
MANCHESTER UNIVERSITY
Manchester, England

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA Berkeley, California

Accepté par la Rédaction le 13. 12. 1976