Closure properties of countable non-standard integers

by

J. B. Paris (Manchester) and G. Mills (Berkeley)

Abstract. Let M be a model of Peano's Axioms (PA) and let I^M_ω be the largest initial segment of M all of whose proper initial segments are countable. We investigate the closure properties of I^M_ω and show that in a certain sense multiplication and exponentiation are essentially the only functions for which the cardinality of the arguments limit the cardinality of the values.

Introduction. Let $M \models PA$. For $a \in M$ let

$$< a = \{ b \in M \mid M \models b < a \}, \quad ||a|| = \text{Card}(< a).$$

For λ an infinite cardinal let

$$I^M_\lambda = \{ a \in M \mid ||a|| \leq \lambda \},$$

$$J^M(\lambda) = \text{Inf}(||a||), \quad a \in M \text{ and } ||a|| > \lambda.$$

For economy we will use "initial segment" to mean "infinite initial segment!". For I an initial segment of M we say I is closed under multiplication (exponentiation) iff $a, b \in I$ implies $ab \in I$ ($a^b \in I$), or equivalently $a \in I$ implies $a^b \in I$ ($2^a \in I$). The equivalence for exponentiation follows from the inequality $a^b < 2^{ab}$. Using model and set theoretic ideas within non-standard models of arithmetic we shall show the following results:

1) If $||a|| = \omega$, $J^M(\omega) \leq 2^{\omega}$ then I^M_ω is closed under multiplication and this is the fastest function under which I^M_ω needs be closed.

2) If $||a|| = \omega$, $J^M(\omega) > 2^{\omega}$ then I^M_ω is closed under exponentiation and this is the fastest function under which I^M_ω needs be closed.

3) If $||a|| > \omega$ (i.e., ω_1) then $I^M_\omega \not\models PA$.

1) follows from Lemma 1 and Theorem 2, 2) from Lemma 1 and Theorem 6 and 3) from Theorem 9. 1) and 2) can be viewed as saying that multiplication and exponentiation are the only sorts of function F for which $||a||$ gives information about $|F(a)|$.

We conclude this paper by stating some extensions of these results to I^M_λ for uncountable λ.
Before giving any results we introduce some more notation. Let A be a bounded subset of M^c. We say A is in M, written $A \in M$, if A is definable in M, equivalently if A can be coded by an element of M. For $A \in M$ we let $|A|$ denote the unique element a of M such that

$M \vdash A$ has exactly a elements

and write $A < b$ if $b > c$ for all $c \in A$.

Lemma 1. For $M \vdash PA$, J^M_{ω} is an initial segment of M closed under multiplication. If $J^M_{2^n} > 2^n$, then J^M_{ω} is closed under exponentiation.

Proof. It is clear that J^M_{ω} is an initial segment. For $a \in M$ there is a map $G \in M$ such that G maps $< a \times < a - 1$ onto $< a$. Thus if $a \in J^M_{\omega}$ then

$|\omega| = \text{Card}(|a| \times |a|) \leq \omega$

so $a^2 \in J^M_{\omega}$.

Since in M there are exactly 2^n subsets of $< a$, $\||\omega|\| < 2^{3|a|}$. Thus if $J^M(\omega) > 2^n$,

$a \in J^M_{\omega} \Rightarrow |\omega| < 2^n \Rightarrow J^M_{\omega} \not= 2^n \Rightarrow 2^n \in J^M_{\omega}$. □

The next two theorems show that without further assumptions on J^M, Lemma 1 is the best possible.

Theorem 2. Let $M \vdash PA$, M countable and I an initial segment of M closed under multiplication. Then there is an $N > M$ such that $J^N(\omega) = 2^n$ and $I = J^N_{\omega}$.

Proof. By taking an end extension of M if necessary we may assume $I \not= M$.

Let $I < \omega \in M$. Before proceeding with the construction of N we need three propositions.

Proposition 3. Let $A \subseteq \langle \omega \rangle^+$, $A \in M$ and $|A| \geq d/b$ some $b \in I$. Then $\exists X \subseteq \langle \omega \rangle^+$, $X \in M$ such that

$\langle \omega \rangle^+ \cup 2 \subseteq \{\langle x_0, x_1, \tilde{y} \rangle \mid x_0 \in X, x_1 \in X' \times < x_0, \tilde{y} \rangle, \langle x_1, \tilde{y} \rangle \in A\}$.

Proof. For $n = 1$ the result is clear to suppose $n > 2$. For each $\langle \tilde{y} \rangle \in < \omega \rangle^+$ let

$e_{\tilde{y}} = \{x \mid \langle x, \tilde{y} \rangle \in A\}$.

Working in M consider the sum

$k_{\tilde{y}} = \sum_{x \in M} |\langle x, \tilde{y} \rangle \times (\langle x \rangle \cap \tilde{y})|$

where $\tilde{y} = \langle x_0 - x, \tilde{y} \rangle$ and $\langle \tilde{y} \rangle \in < \omega \rangle^{n-1}$. Let x_0, x_1 be distinct elements of $e_{\tilde{y}}$.

Thus the above sum is $2^{2^n} \times$ (the number of ways of picking two distinct elements from $e_{\tilde{y}}$) $= 2^{2^n} \times (2^{2^n} - |\tilde{y}|)$.

Hence

$$\sum_{\langle y \rangle} k_{\tilde{y}} \geq 2^{2^n} \cdot \frac{a^{n+1}}{b^2}$$

since

$$\frac{a^{n+1}}{b^3} - |A| \geq \frac{a^{n+1}}{b^3} - d \geq \frac{a^{n+1}}{b^2}.$$

Reversing the order of summation gives

$$\sum_{\langle y \rangle} \sum_{\langle x \rangle} |\langle x, \tilde{y} \rangle \times (\langle x \rangle \cap \tilde{y})| \geq 2^{2^n} \cdot \frac{a^{n+1}}{b^3}.$$

Therefore since there are only $2^n \times \langle X \rangle \in M$ with $X \subseteq \langle \omega \rangle$, for some $X \subseteq \langle \omega \rangle$, $X \in M$

$$\sum_{\langle y \rangle} |\langle x, \tilde{y} \rangle \times (\langle x \rangle \cap \tilde{y})| \geq \frac{a^{n+1}}{b^3}.$$

This is the required X. □

Since M is countable we can find a decreasing sequence $a_n, n \in \omega$ of elements of M such that a_n is exactly to the set of lower bounds of this sequence. Fix such a sequence.

Proposition 4. Let $G \in M$, $G: < \omega \rangle^{n+1} \rightarrow M$. Let $A \in M$, $A \subseteq < \omega \rangle^+$ and $|A| \geq d/b$ some $b \in I$. Then there is an $\exists X \in M$, $X \subseteq A$ such that $|X| \geq d/c$ some $c \in I$ and either

(i) G is constant on X
(ii) for some $n \in \omega$, a_n is a lower bound of $G'(X)$

Proof. Find $q \in M$ such that

$$||\langle \tilde{y} \rangle \in A \mid G(\tilde{y}) < q|| \leq ||\langle \tilde{y} \rangle \in A \mid G(\tilde{y}) \geq q||.$$

If $I < q$ set $X = \{\langle \tilde{y} \rangle \in A \mid G(\tilde{y}) \geq q\}$ so $|X| \geq 1/|A|$. If $q \in I$ set $Y = \{\langle \tilde{y} \rangle \in A \mid G(\tilde{y}) \leq q\}$ so $|Y| \geq 1/|A|$. By the pigeonhole principle in M $|G^{-1}(\varepsilon) \cap Y| \geq |\varepsilon|/|\varepsilon| + 1$ for some $\varepsilon \leq q$. Take $X = G^{-1}(\varepsilon) \cap Y$. □

Proposition 5. Let $A \subseteq < \omega \rangle^+$, $A \in M$ and $|A| \geq d/b$ some $b \in I$. Let $a > c$. Then $\exists X_1, \ldots, X_n \subseteq < a$ such that $X_1, \ldots, X_n \in M$, $|X_1| = |X_2| = \ldots = |X_n| = c$ and $|\langle X_1 \times X_2 \times \ldots \times X_n \rangle \cup a^c| = a^n/b^c$.

Proof. Work in M. Consider all possible $X_1, \ldots, X_n \subseteq < a$ such that $|X_1| = |X_2| = \ldots = |X_n| = c$. There are \(\binom{a}{c(a-c)}\) such sequences. Consider
Let \(C_n \) be the set within the modulus signs. Carry on like this to find \(C_n^2 \subseteq (\{a_0\})^{n+1} \) such that
\[
|C_n^2| \geq \frac{2^{n+1}}{c}
\]
for some \(c \in I \).

Now by Proposition 4 pick \(E_{n+1} \subseteq C_n^2 \) such that \(E_{n+1} \cap M, |E_{n+1}| \geq \frac{2^{n+1}}{c} \)
for some \(c \in I \) and all the \(2^{n+1} \)-permutations of \(G_{x_{n1}}, G_{x_{n2}} \) are constant on \(E_{n+1} \) or bounded above \(I \). Finally using Proposition 5 pick \(X_{2_{n1}}^1, X_{2_{n2}}^1 \subseteq X^2_1 \) all of modulus \(a_{n+1} \) such that
\[
|E_{n+1} \cap (X_{2_{n1}}^1 \times X_{2_{n2}}^1 \times \ldots \times X_{2_{n2}}^1)| \geq \frac{2^{n+1}}{c}
\]
for some \(c \in I \).

Set
\[
A_n = E_{n+1} \cap \{x_{2_{n1}}^1 \times x_{2_{n2}}^1 \times \ldots \times x_{2_{n2}}^1\}.
\]

It clearly satisfies a), b), c), d), e). To see f) notice that
\[
\langle x_{11}, x_{12}, \ldots, x_{1k} \rangle \in C_1 \Rightarrow \langle x_{11}, x_{12}, \ldots, x_{1k} \rangle \in \mathcal{A}_3
\]
and so on.

For \(n \in \omega \) let \(G_1, G_2, \ldots, G_{2^n} \) enumerate \(2^n \) in the usual lexicographic ordering. We shall construct \(N \) using a compactness argument. Add to the language of arithmetic new constants \(b \) for each \(b \in M \) and \(f \) for each \(f \). Let \(Z \) be the set of sentences \(\theta(e_{f1}, \ldots, e_{f2}, b_1, \ldots, b_k) \) in this language such that for all \(k \) eventually, if \(e_{f1b} = G_{f1} \), \(i = 1, \ldots, n \) and \((x_{i1}, \ldots, x_{ik}) \in \mathcal{A}_3 \), then \(M \models \theta(x_{i1}, \ldots, x_{ik}, b_1, \ldots, b_k) \).

Clearly \(Z \) is consistent. Let \(N^+ \) be a model of \(Z \) and \(N \) the elementary substructure generated by \(\langle e_f \rangle \) and \(\{b \mid b \in M \} \). So up to isomorphism, \(M \prec N \).

It only remains to show that \(\Gamma = I, J(\omega) = 2^n \).

Certainly by e) for \(f, g \in 2^n, f \not= g \)
\[
(e_f \neq e_g) \in Z
\]
so \(N \) has cardinality \(2^n \). Furthermore in \(M \), \(|A_3| \leq \omega^n \). From this it follows that \(2^n = |A_3| \leq \omega^n \) and hence \(|a_0| = 2^n \). For suppose \(G_{n+1} \in f \in 2^n \) for \(i = 1, \ldots, 2^n \). Then by f),
\[
\langle x_{i1}, \ldots, x_{ik} \rangle \in A_3 \Rightarrow \langle x_{i1}, x_{i2}, \ldots, x_{ik} \rangle \in A_3 \text{ so } (\langle x_{i1}, \ldots, x_{ik} \rangle, \ldots, \langle x_{i1}, \ldots, x_{ik} \rangle) \in \mathcal{A}_3
\]
The result follows since there are \(2^n \) possible \(\langle f_1, \ldots, f_k \rangle \).

Thus it only remains to show that if \(a \in N \) then either \(N \models a \in b \) for some \(b \in M \). Suppose then \(N \models a = b \), \(f \in 2^n \), \(f_1, \ldots, f_k \), distinct.
Let \(k \) be such that \(G_k: (a_0)^n \to M \),
\[G_k(x_1, \ldots, x_n) = \mu x: \theta(x, x_1, \ldots, x_n, b_1, \ldots, b_n) \text{ if this exists}, \]
\[= 0 \text{ otherwise.} \]

Let \(j > k \) be such that \(f_1 \upharpoonright f_2 \) are distinct, say \(f_1 \upharpoonright f_2 = G_{j_1}, \ldots, G_{j_n} \). Let \(G \) be the \(2^n \)-permutation of \(G_k \) such that
\[G(x_1, \ldots, x_n) = G_k(x_{j_1}, \ldots, x_{j_n}). \]
Then \(G \) is either constant on \(A_j \) or bounded below on \(A_j \) by some \(a_0 \). If the former occurs then for some \(b \in M \),
\[b = \mu x: \theta(x, x_1, \ldots, x_n, b_1, \ldots, b_n) \text{ if this exists}, \]
\[= 0 \text{ otherwise} \]
for all \(\langle x_1, \ldots, x_n \rangle \in A_j \). Clearly by \(f \) the corresponding result holds for \(f' \).

Hence
\[(\exists x) \exists x' \theta(x, x_1, \ldots, x_n, b_1, \ldots, b_n) \iff \exists x \theta(x, x_1, \ldots, x_n) \in Z. \]

Thus \(N \models b = \mu x: \theta(x, x_1, \ldots, x_n, b_1, \ldots, b_n) \) so \(N \models a = b \). Similarly if the second option occurs we see \(N \models a \preceq b \). Thus Theorem 2 is proved. ■

Remark. Since we could take \(I \) to be of the form \(\{ b \in M \mid b < a, \alpha \in A \} \) for some non-standard \(a \in M \), multiplication is the fastest function under which \(I \) needs be closed.

A second consequence of this result is that there is a model \(N \) of PA and \(a \in N \) such that \(\| \theta \| = 2^\omega \) whilst \(\| \sigma \| = \omega \).

We now prove a result for the case \(J^\omega(a) = \omega \).

THEOREM 6. Let \(M \) be PA, \(M \) countable and \(I \) an initial segment of \(M \) closed under exponentiation. Let \(\kappa \) be an infinite cardinal. Then there is an \(N > M \) such that \(J^\kappa(a) = \kappa \) and \(I = I^\kappa \).

Proof. As with Theorem 2 we first need some propositions. The proof of the next proposition mimics the proof of the Erdős–Rado theorem in Set Theory.

PROPOSITION 7. Let \(A, E \in M, a \in \langle - A \rangle \) and \(F: \langle A \rangle \to \langle a \rangle \). Then \(\exists X \subseteq A, X \in M, I \subseteq \langle X \rangle \) such that \(F \) is constant on \(\langle X \rangle \).

Let \(\langle A \rangle^* = \{ \langle x_1, \ldots, x_n \rangle \mid x_1, \ldots, x_n \in A \} \). Suppose \(T(b) \), the elements of \(T \) of level \(b \), has been found and suppose \(\langle x, Y \rangle \in T(b) \to x \in A, A \equiv Y \in M \) and \(x < Y \) (i.e. \(x < y \) for all \(y \in Y \)).

Set
\[D(x, Y) = \{ u \mid \exists W, \langle u, W \rangle \subseteq \langle x, Y \rangle \in T \}, \]
so \(|D(x, Y)| = b + 1 \) for \(\langle x, Y \rangle \in T(b) \). For each \(G: D(x, Y) \to \langle a \rangle, G \in M \) let
\[e_0 = \{ z \in Y \mid F(z, z) = G(z) \text{ for all } \langle z, Y \rangle \in D(x, Y) \} \]
Thus there are \(\{ e_0 \} \subseteq \langle a \rangle \) possible \(e_0 \)'s. The elements above \(\langle x, Y \rangle \in T(b) \) on level \(b+1 \) are the pairs
\[\langle \min(e_0), e_0 - \langle \min(e_0) \rangle \rangle \text{ for } e_0 \neq \emptyset. \]

By induction in \(M, T(b) \leq \langle a \rangle^b \). We shall show \(T(b) \neq \emptyset \) for some \(b > I. \) Suppose not. Then \(T(b) = \emptyset \) for some \(b > I. \) This means that for every \(x \in A \) there is a \(c < b \) such that \(\langle x, Y \rangle \in T(c) \) for some \(Y \). But then
\[|A| \leq \sum_{b>c}^\omega \langle a \rangle^b < \omega^\omega \leq \omega^{\omega^b} \in I - \text{ a contradiction.} \]

Now pick \(b > I, T(b) \neq \emptyset \) and let \(\langle x, Y \rangle \in T(b), U = D(x, Y) \). Then
\[|U| = b + 1 > I \text{ and if } \langle x_1, \ldots, x_n \rangle \in |U|^a \text{ then} \]
\[F(x_1, \ldots, x_n) = F(x_1, \ldots, x_n, x_{n+1}) = H(x_1, \ldots, x_n) \]
By assumption pick \(X \subseteq U, X \in M, |X| > I \) such that \(H \) is constant on \(|X|^a \).

Then \(F \) is constant on \(|X|^a \). ■

The next proposition works in the same way that Proposition 4 did in the proof of Theorem 2.

PROPOSITION 8. Let \(G, A \in M, I \subseteq \langle A \rangle, \langle a \rangle \to \langle A \rangle \). Then \(\exists X \subseteq A, X \subseteq M, I \subseteq \langle X \rangle \) such that either
(i) \(\exists b > I, G^* \neq b \) or
(ii) \(G \) is constant on \(\langle X \rangle \).

Proof. For each \(a \in M \) let \(H_a: \langle A \rangle \to \langle a \rangle \) by \(H_a(x) = 0 \iff G(x) \sim a \). Working in \(M \) pick for each \(H_a \) a maximal homogenous set \(X \). If \(H_a^* \langle X \rangle = \emptyset \) for some \(a > I \) take \(X = X \), and notice that by Proposition 7, \(|X| > I \). Otherwise \(H_a^* \langle X \rangle = \{ x \} \) for some \(a > I \) and \(|X| > I \) so by using Proposition 7 we can find \(X \subseteq X \) to satisfy (i).

Proof of Theorem 6 continued. The method of proof is similar to the proof of Theorem 2.

Let \(\omega_0 \) be a decreasing sequence of elements of \(M \) whose set of lower bounds is precisely \(I. \) Let \(G_i, i \in \omega \) enumerate all maps \(G \in M, G: \langle a_0 \rangle^\omega \to \langle M \rangle \) for some \(n. \)

We define decreasing subsets \(A_n \) of \(\langle a_0 \rangle^\omega \) satisfying
\[a \text{ a}_0 \subseteq M, \]
\[b \text{ i} \neq n \text{ and } G_i^\omega \subseteq A \text{ then either } G_0 \text{ is constant on } \langle a \rangle^\omega \text{ or } G_i^\omega \subseteq a \text{ for some } k. \]

Put \(A_0 \neq \langle a \rangle. \) Suppose \(A_0 \) constructed. Using Proposition 8 find \(X \subseteq A_n, X \subseteq M, I \subseteq \langle X \rangle \) such that \(b \text{ holds for } G_0 \). Now let \(A_{n+1} = X, A_{n+1} = M \text{ such that } I \subseteq \langle A_{n+1} \rangle \subseteq a_{n+1}. \)
Now add to the language of arithmetic κ new constants $e_n, v < \kappa$ and b for each $b \in M$. Let Z be the set of sentences $\theta(e_1, \ldots, e_n, b_1, \ldots, b_n)$ such that $v_1 < v_2 < \cdots < v_n$ and for all t eventually, all $\langle x_1, \ldots, x_n \rangle \in \{A_n\}^n$,

$$M \models \theta(x_1, \ldots, x_n, b_1, \ldots, b_n).$$

Clearly Z is consistent. Let N^+ be a model of Z and N the elementary substructure of N^+ generated by the $e_n, v < \kappa$ and $b, b \in M$. Then, up to isomorphism, $M \cong N$. From b it follows that $\|a\|_n = x$ for $n \in \omega$ and hence using c it follows that $J^\omega(\omega) = x, I^\omega_n = I$.

Remarks. If we define the super power function, Sp, by

$$Sp(a, 0) = 1, \quad Sp(a, x+1) = d^{Sp(a, x)}$$

then the I in Theorem 6 could be taken to be

$$\{b \in M \mid M \models b < Sp(a, n), n \in \omega\}$$

for some non-standard $a \in M$. In this sense this exponentiation is the fastest function under which I^ω_n needs to be closed, assuming $J^\omega(\omega) > 2^\omega$.

The above construction also enables us to show the following:

For any complete extension T of PA and any infinite cardinal κ, there is an elementary end extension of the minimal model M_0 of T such that $\kappa < \kappa$ and every elementary submodel of M_0 is cofinal in κ.

This follows from the proof of Theorem 6 by letting M be a minimal elementary end extension of M_0 and choosing I so that $M_0 \subset I \subset M$ (strict inclusion). Then M is cofinal in the model N produced in the proof, and N has cardinality κ. Suppose $N' < N$ is not cofinal in N. Then $N' < b$ for some $b \in M$. Setting

$$M' = \{x \in M \mid \exists y \in N' \ x < y\}$$

one can show by checking for closure under Skolem functions that $M' < N$. Since M is minimal over M_0 and M_0 is the minimal model of T, it follows that $M' = M_0$. Thus $\forall x \in N', \forall y \in M - M_0 \ x < y$ and hence $\forall x \in N' \exists y \in I \ x < y$ (namely, y can be any element of $I - M_0$). Since by construction

$$\{x \in N' \mid \exists y \in I \ x < y\} \subset M$$

we get that $N' \leq M$. Therefore $N' < N$, and since $N' \neq N$ it follows that $N' = M_{\omega_\alpha}$ as desired.

Finally, in the following remarks, the I^ω_n were both countable. As the next theorem shows this was essential. Notice $|I^\omega_n| \geq 2^\omega$, $|I^\omega_\omega| = \omega_1$.

Theorem 9. If $M \models PA$ and $|I^\omega_n| = \omega_1$, then $I^\omega_n \models PA$.

Proof. We first need an easy proposition.

Proposition 10. Let I^ω_n be as in Theorem 9, $\omega \in I^\omega_n$. Then $\theta(\bar{z}, \bar{b})$ is $I^\omega_n(\Sigma_n)$. Then there is a Δ_0 formula $\psi(\bar{x}, \bar{b}, \bar{c})$, $\bar{c} \in I^\omega_n$ such that for all $\bar{x} < a$,

$$I^\omega_n \models \theta(\bar{x}, \bar{b}) \iff \psi(\bar{x}, \bar{b}, \bar{c}).$$

Proof. By induction on n. Result clear if $n = 0$ so assume $n > 0$. Let $\theta(\bar{x}, \bar{b}) = (\forall \bar{c})\eta(\bar{x}, \bar{b}, \bar{c})$ where η is Σ_n. Since there are only countably many $\bar{x} < a$, and I^ω_n has cofinality ω_1 we can find $\bar{c} \in I^\omega_{\omega_\alpha}$ such that for all $\bar{x} < a$,

$$I^\omega_n \models (\exists \bar{c})\eta(\bar{x}, \bar{b}, \bar{c}) \iff (\exists \bar{c} < \bar{b}) \eta(\bar{x}, \bar{b}, \bar{c}).$$

By inductive hypothesis there is a Δ_0 formula $\chi(\bar{x}, \bar{b}, \bar{c}, \bar{d}) \in I^\omega_n$, such that for all $\bar{x} < a, \bar{b} < \bar{c}$,

$$I^\omega_n \models (\exists \bar{d}) \chi(\bar{x}, \bar{b}, \bar{c}, \bar{d}) \iff (\exists \bar{d} < \bar{c}) \chi(\bar{x}, \bar{b}, \bar{c}, \bar{d}).$$

Thus for $\bar{x} < a$,

$$I^\omega_n \models \theta(\bar{x}, \bar{b}) \iff (\forall \bar{c}) \chi(\bar{x}, \bar{b}, \bar{c}, \bar{d})$$

and $I^\omega_n \models \theta(\bar{x}, \bar{b}) \iff (\forall \bar{c} < \bar{a}) \chi(\bar{x}, \bar{b}, \bar{c}, \bar{d})$.

this last formula being the required ψ.

Proof of Theorem 9 continued. It is enough to show that the axiom of induction holds in I^ω_n. Suppose $I^\omega_n \models \theta(0) \land (\forall x \theta(x) \to \theta(x + 1))$. Let $\omega \in I^\omega_n$ and by Proposition 10, find a Δ_0 formula $\psi(x)$ (maybe containing elements of I^ω_n) such that for all $x < a$,

$$I^\omega_n \models \psi(x) \iff (\exists \bar{c}) \chi(\bar{x}, \bar{b}, \bar{c}, \bar{d}).$$

Then $I^\omega_n \models \psi(0) \land (\forall x < a) (\psi(x) \to \psi(x + 1))$. Since I^ω_n is an initial segment of M and this last formula is Δ_0, $I^\omega_n \models \psi(0) \land (\forall x < a) (\psi(x) \to \psi(x + 1))$.

Since $M \models PA$, (indeed bounded induction is enough),

$$M \models \psi(\bar{c}).$$

Thus $I^\omega_n \models \psi(\bar{c})$ and so $I^\omega_n \models \theta(\bar{c})$. Therefore $I^\omega_n \models (\forall x \theta(x))$ and the theorem is proved.

Extension to the uncountable case. If we replace ω by an uncountable cardinal λ then Lemma 1 and Theorem 9 (with λ^+ in place of ω_1) go through as before.

Theorem 10. If $M \models PA$ and $|\omega| = \omega^\omega$, then $I^\omega_n \models PA$.

Proof. We first need an easy proposition.

Proposition 11. Let I^ω_n be as in Theorem 9, $\omega \in I^\omega_n$. Let $\theta(\bar{z}, \bar{b})$ be $I^\omega_n(\Sigma_n)$. Then there is a Δ_0 formula $\psi(\bar{x}, \bar{b}, \bar{c})$, $\bar{c} \in I^\omega_n$ such that for all $\bar{x} < a$,

$$I^\omega_n \models \theta(\bar{x}, \bar{b}) \iff \psi(\bar{x}, \bar{b}, \bar{c}).$$

Proof. We need the following generalization of Proposition 10:
Proposition 12. Let I_1, I_2 be initial segments of M closed under exponentiation. Let A, B, F, G define $I_1 < A$, $I_2 < B$, and $F : (A)^n \times (B)^m \to < d$ for some $m, n \in \omega$. Then there exist $X, Y \in M$ such that $X \subseteq A, Y \subseteq B, I_1 < X, I_2 < Y$ and $F(G, B)$ is independent of \bar{G} for $\langle \bar{G}, \bar{B} \rangle \in (X)^n \times (Y)^m$.

Proposition 13. If we assume $d \in I_1$ in Proposition 12, then we can choose X so that F is constant on $(X)^n \times (Y)^m$.

Proof. For each $\bar{B} \in [B]^m$ consider the induced function $F_\bar{B} : [A]^n \to < d$ given by $F_\bar{B}(G) = F(G, \bar{B})$. This is a function inside M. Since there are at most $d^{d^{d^{d^n}}}$ such functions in M, we may consider the family $\mathcal{F} = \{ F_\bar{B} \}$, and for each $\bar{B} \in [B]^m$, we may choose a constant function $\phi_{\bar{B}} : [A]^n \to < d$, such that $\phi_{\bar{B}}(G) = F_\bar{B}(G)$ for all $G \in M$. Then $F(G, \bar{B})$ is independent of $\phi_{\bar{B}}$ on $(A)^n \times (B)^m$, and therefore on $[A]^n \times [B]^m$. This proves Proposition 12.

Proposition 13. If we assume $d \in I_1$, then picking any $\bar{B} \in [B]^m$ and applying Proposition 7 to $F_\bar{B}$, we get $X \in M, X \subseteq A, I_1 < X$ such that $F_\bar{B}$ is constant on $(X)^n \times (Y)^m$. Since $F(G, \bar{B})$ is independent of $\phi_{\bar{B}}$ on $(A)^n \times (B)^m$, it is constant on $(X)^n \times (Y)^m$. This proves Proposition 13.

Proof of Theorem 11 (continued). As in the proof of Theorem 6, let $b_\alpha, \alpha \in \omega$, be a decreasing sequence of elements of M whose set of lower bounds is precisely I. Let α_0 be a nonstandard element of I. Let $G_\alpha, \alpha \in \omega$, enumerate all maps $G \in M$ such that $G : (A_\alpha)^n \to (B_\alpha)^m$ for some $m, n \in \omega$. We define a sequence of pairs $\langle A_\alpha, B_\alpha \rangle, \alpha \in \omega$, satisfying:

a) $\alpha_0 \in A_\alpha, \alpha_1 \in A_{\alpha+1}, \alpha_1 \in A_{\alpha+2}, \alpha_2 \in B_{\alpha+1}, \alpha_2 \in B_{\alpha+2}, \alpha_3 \in B_{\alpha+3}, \alpha_3 \in B_{\alpha+4}, \ldots$;

b) $\alpha_2 \in A_{\alpha+2}, \alpha_2 \in B_{\alpha+2}, \alpha_2 \in B_{\alpha+2}$;

c) if $\alpha < \beta$, $G_\alpha : (A_\alpha)^n \to (B_\alpha)^m$ then either $G_\beta : (A_\beta)^n \to (B_\beta)^m$.

Proof of Theorem 11 (continued). As in the proof of Theorem 6, let $N^* \subseteq \mathbb{N}$ and $N < N^*$ be generated by $C \cup \mathbb{D} \cup E$, so that $M = N^*$. Then $|\mathbb{N}| = \lambda$, for all $a \in \mathbb{N}$, \mathbb{D}, and $c \in \mathbb{C}$. Also $|\mathbb{C}| = \lambda$ for all $c \in \mathbb{C}$, and the same for \mathbb{D}. Finally for all $a \in \mathbb{N}$ there exists $b \in M$ such that $a \in b$ or $b < c.a. b \in a$. From this λ and λ^+ are both as required.

By taking $I = \{ b \in M \mid b \in \mathbb{N} \cap \mathbb{D} \}$ for some nonstandard $\alpha \in M$, we have that exponentiation is the fastest function under which λ^+ needs to be closed, no matter how large λ^+ is, provided $\lambda^+ \leq \lambda$.

Using Theorem 2 and Chang's Theorem (assuming G.C.H.) we can show that for each regular uncountable λ there is a model $M \models \lambda^+$ in which $\lambda^+ = \lambda^+$ and λ^+ is not closed under exponentiation. We do not know whether the G.C.H. can be removed or whether this λ^+ can be of the form λ^+ for some non-standard $\alpha \in M$.