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“Wielez lat czekaé trzeba, nim si¢ przedmiot §wiezy
R e ‘ Jak figa ucukruje, jak tytun ulezy?” [13]

0. Abstract. Given algebras?l and B of the same type, a set X and a homomorphism /: 9¥— B
we study the collection of all supports of , i.e., sets ¥S X such that for all £, g ¢ UX if £ PY=g}Y
then h(f) = h(g).

1. Terminology and generalities, We identify every ordinal number ¢ with the
set of ordinal numbers smaller than &, e.g.,n = {0,1, ...,n—1}and 0 = {0, 1,...}.
Cardinal numbers are the initial ordinals. o and f denote cardinals. If X is a set
then | X| denotes the cardinal of X. o™ denotes the cardinal successor of .. A filter F
of subsets of X is called o-complete iff for every G < F with |G| <a we have () Ge F,
and Fis called an wultrafilter if from any two complementary sets in X at least one is
in F. We shall use the following surprising characterisation of «-complete ultra-
filters.

1.1 (Galvin and Horn [9]). Let F be a family of subsets of X and « be a car-
dinal >4. Then the following two conditions are equivalent

(i) F is an a-complete ultrafilter and @ ¢ F.
(ii) For every partition P of X with [P|<a we have [FnP|= 1.
For any cardinal a we denote by u(e) the least cardinal such that there exists
" a nonprincipal o*-complete ultrafilter of subsets of u(ex). We recall that u(n) = @
for 2<n<w, u(x) is a measurable cardinal and

1.2. Every a’-complete ultrafilter of subsets of pu(e) is p(x)-complete.

In fact p(e) has many other “closure properties”, see [11]. Even the existence
of 1(w) does not follow from the Zermelo-Fraenkel axioms of set theory, but the
main results of this paper could be easily reformulated so as to avoid the assumptions
of the existence of yt(x) for any infinite «. On the other hand the existence of u(«) for
every cardinal « is already a well established axiom of set theory, see e. g. [24] p. 47, 48
or [29] p. 675.
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For any function f: X— U and any set Y= X we denote by f} ¥ the restriction
of fto ¥, ie., f} Y=/ (YxU). German capitals 2 and B denote algebras
and 4 and B their respective universes. We write |2 for |4| and a e U for ae 4.
h: A—>B means that A and B are algebras of the same similarity type and 4 is
a homomorphism of % into B. For any algebra % and any set X, 9* denotes the
direct power of 9 with exponent X, i.e., the algebra of all functions f: X—d4 with
operations defined coordinatewise. & denotes isomorphism of algebras.

2. Introduction, main concepts and history.

2.1. DEFINITION. If /: ¥~ then Y is called a support of hiff Y= X and for
every f, g e WX if f}Y = g} Y then h(f) = h(g). :

The following proposition was stated in [23] p. 130.

2.2. PROPOSITION. The collection of all supports of a homomorphism h: A B
is a filter of subsets of X.

Proof. It is clear that if Y=Z< X and Y is a support of / then Z is a support
of . It remains to show that if ¥ and Z are supports of 4 then ¥ n Z also is a support
of h. Let f,ge¥U* and fIY " Z = g}¥Y nZ We put

_ff) for all xe Y,
76 = {g(x) for all xe X— Y.

Hence f}Y = p}Y and pt Z = gt Z. Therefore A(f) = h(p) = h(g).

2.3. DEFINITIO.N. S(A, B, «, f) means that for every set X with |X] <o and
every homomorphism 4: U*—B, k has a support of cardinality <g.

The relation S permits one to formulate briefly some old results on abelias
groups which motivated this paper. We shall deal only with f<w. Several theorems
of the form S(, B, w, 2) are proved in Section 4. Let 3 denote the infinite cyclic
group. In the literature on abelian groups an abelian group B is called slender if
S(3, B, wy, w) holds (we shall not use this terminology here). In 1950 [25] Specker
proved S(3, 3, oy, w). (His aim was to show that 3 is not a free abelian group

and this follows from S(3, 3, @y, w) in the following way. If 3° were free abelian |

then "it would have 2?° different homomorphisms into 3 but §(3, 3, o, w) yields
that it has only w such homomorphisms. The theorem of Specker has been comp-

lemented by a more recent result of Nébeling [17] (for a simpler proof see [1] or [8]) |

}vhich says.that for every set X the group of all functions f: X =3 with | f[X]|<w
is free abelian.) In 1959 [5] (see also [8]) Ehrenfeucht and ¥.06 proved that for every
group B

2.4 S(3,B, 0y, 0) = 53,8, u(0), w).

Corollary 3.2 of this paper partly extends (2.4) substituting an arbitrary algebra 2
for 3, alth?ugh w; had to be replaced by |N®|* (see Problem 3.3).

?mprf)vmg a jcheorem of Sgsiada [19] R. J. Nunke [18, 19] (see also [8]) proved
that if B is a torsion free abelian group then B satisfies 5 (3,8, 0;, ®) (and hence
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also S(3, B, u(w), w)) iff B has no subgroups isomorphic to 3 nor to the additive
group of rational numbers nor to the additive group of p-adic integers for any
prime p. For related easy facts on rings see [28].

Generalizing the theorem of Ehrenfeucht and .08, Mréwka [14] proved that
if Xis a closed subspace of a product space N, where N is a countable discrete space
and T is any set, then every homomorphism /A: 3%*-3, where 3% is the group of
all continuous functions f: X-—3, has a compact support. Fajtlowicz and
Mréwka [6] gave a partial characterization of which compact subsets of X can be
supports of such homomorphisms A.

Galvin and Horn [9] gave another result related to the relation S which we have
translated into Theorem 4.12 below.

The problems 3.3, 3.7,4.3, 4.11 and 4.24 show that our understanding of S is
still quite limited.

For simplicity of notation we shall write only about homomorphisms of direct
powers UY, but some results could be generalized to direct products (e. g. 4.6 and 4.9).
Other generalizations are mentioned in 6.12.

We are indebted to Walter Taylor for many helpful remarks and for introducing
us to some material which lead to 4.6, . ., 4.10. Also 4.20 and 4.21 are due to him.

3. Results for § = o.
3.1. TueoreM. If S(, B, A", w) then for every set X and every homo-
morphism h: W*—®B the collection of all supports of h is a filter of the form (\ Fy,
k<n

where n<w and all F, are || *-complete ultrafilters of subsets of X. Moreover there
exists a homomorphism hy: W'—B such that for all fe an*

h(f) = ]10(‘10: o3 Oyy)
where each a, is defined by the condition f~"{a,} € Fy.

The proof will be given Section 6. For related theorems see Mréwka [15].
This result immediately yields the following corollary which was announced in [4].

32. COROLLARY. S(2U, B, |A°*, w) = S(UA, B, u(¥UD, »).

3.3. PrOBLEM. Would the assumption S(2, B, |A|*, w) be sufficient for the
conclusions of 3.1 and 3.2? (In the case 2 = 3 the answer is yes, see (2.4) above.
See also Example 6.11 below.)

The number p(|2)) in the conclusion of 3.2 is the largest possible as the following
proposition shows.

3.4. PROPOSITION. If || >1 then S(2L, o, (n(|AN)*, n(12AD) fails.

Proof. Let |X] = u(|2). Given an |2|*-complete non-principal ultrafilter F
on X, for any fe %¥ we put h(f) = aiff f~*{a} € F. Then h: A* A is a homo-
morphism without any support of cardinality less than p(AN. Q.E.D.

The following proposition shows that the two properties “2 is equationally
compact” (see [30], [26] and [27]) and S(%, A, w4, w) are opposing extremes (most
algebras do not satisfy any one of them).


Artur


192 A. Ehrenfeucht, S. Fajtlowicz and J. Mycielski

Jai 3.5. PROPOSITION. If U is equationally compact and | > 1 then S(A, A, », w)
ails. T

Proof. F?r any ultrapower A“/F, where 9 is equationally compact, there exists
a hoinom?rphlsm_r: A°/F—-A extending the natural isomorphism of the diagonal
of QI | F with QI (ris a retraction see [30]). Let 4: A~ A/F be the natural homomor-
phism. Then, if F is a nonprincipal ultrafilter, the homomorphism r o h: A®-9[
has no finite supports. Q.E.D. -

For completeness we list the following facts which are obvious.

3.6. PROPOSITION. (i) S(9, B, a, 0}~ S(U°, B, «, ) for every oy <d,

(i) S(U, B, o, H=S(A(NA), By, «, f) for every | ' '
vy ot 05 %, B) | ry homomorphism h of W and

(]11) [S(QI: SBI > Oy (0) & S(QI: $25 ®, CD)] = S(Q'[’ ml X 2329 o CO).
(V) Let Wy = <A, p>,cs,, By = (B ’
2 s/5e80> - > qs)ss 0 QI = sz s/se8» =
and Sy=S then S(A,, By, a?ﬁ):S(Q{, B, a, ;). o POuss B Bt dyes
3.7. PrOBLEM. Does the implication

[S(Qtla 935 o, CD) & S’(Q[2= 235 o, CU)] - S(QI:[ XQ[Z, o, CD)
hold? (By 3.6 (i) and (ii) the answer is yes if A, is a‘homomorphic image of 2A;.)
4. Results for f<ao.

4.1. THEOREM. If n<w and S(A, B, |A|*
[, B, +w, n) then th 1
and no more than n ultrafilters are needed, ) e concluton of 3.1 hols

yield':“l'gl ;3}(())«1)12 iiiz?iljrros?a:;e proof of 3.1, see Section 6. This result immediately

4.2. CorOLLARY. S(¥, B, |[* 4o, n)==S(A, B, u(|AN, n).

By 3.4 the number u(|?) in the conclusion of 4.2 is the largest possible

4.3. EXAMPLE. The implication S, A1, D=S(A, A, 141 2) fail.s i
general, as the following example shows. Let 9 = {0, 13, x—l,-l ,x+ y>’ where 1'n
modulo 2 Then every homomorphism h: U2—9( is a projecti(;n but ’ e

Xo+x 4350 AWoA

is 2 homomorphism without one-

el i
for Tanger ot ement supports, We are lacking counterexamples

Now we shall prove a number of concre
te theorems of the f
An algebra of the form <4,d(-,-,-, "), where ©form SCL, B, 0,2)

(4.4) dx, y, u, v) = u %f x=y,
. v if x#£y
is called a discriminator algebra. Tn a finite fiel

k . .
function d of power p*, where p is a prime, the
4= ut(x=3)"""o-u)

satisfies (4.4). Hence, cf. 3.6(iv), the following facts will apply to all finite fields
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4.5. PROPOSITION. Every discriminator algebra is simple.

This follows immediately from (4.4).
The next three results are close to some theorems of Bergman [2] and Foster

and Pixley [7] see also [21].
4.6, THEOREM. If U is a discriminator algebra, X is any set and A’ <A* then for
every congruence = in W' there exists a filter F of subsets of X such that for all

frge ’
f=g e {xifx)=gM}eF.
Proof. For any f, g € W we put Ey, = {x: f(x) = g(x)}. Fixst we show for
all f,9,p,9eW
47 Iff=g and E;jSE, then p =gq.
Indeed by the assumptions
p=d(f.f,p.q)=d(f.9,p,9) =4q-
Now we show for all £, g,p,q,7, 52
(48) Iff=g, p=gq and E,n E,SE, then r = 5.
Let t = d(f,g,r,5). Then E;,SE, and E,SE,. Hence, by 47), r=t=s.
4.6 follows of course from (4.8). Q.E.D.
4.9. TueoreM. If 9 and B are discriminator algebras then every homomorphism
h: WXB is of the form h = iehy, where
h i
9w > A/ F > B,
Fis an ultrafilter of subsets of X, hg is the natural homomorphism and i is an injection.
Proof. By 4.6 we get a filter F corresponding to the congruence determined
by A. By 4.5 A¥/F is simple and hence F is an ultrafilter.
4.10. COROLLARY. If % and B are discriminator algebras then S(U, B, v, 2).
This follows immediately from 4.9. .
4.11. PROBLEM. By 3.4 and 4.10 the implication (2, 2, w, 2) = S(A, A, vy, 2)
fails in general. Does S(2U, U, o, 2)=S(U, A, w;,2)?
An algebra of the form (4, e,(*)scas F> Where, for all ae 4,
ey =e)Fa i xtaty,
and
ea(a) =da,
is called a full algebra. In a finite field of power P the functions

e, = a+(x—a)pk~1

‘satisfy the above requirements. Therefore the following theorem applies to all finite
fields with all elements added as constants.
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4.12. THEOREM. ){f (U] =3 and W is a full algebra then for every set X anvd every
homomorphism h: A*~A the collection F of all supports of h is an |WN|*-complete
ultrafilrer of subsets of X and moreover for all a &N and feu¥ ’

M) =a if flajeF.
Proof. Letus put %* = {4, R,> i i
: » RoDueas Where R, is an equivalence relation over
whose eqllnv?lence classes are {a} and 4—{a}. By the theorem of Galvin e'tnﬁ
Hon;f[9] it is enough to prove the following lemma ‘
A is full and h: ¥ then 4 is also a h . i
: 2 omomorphism of (2*)¥ into r*
. Suppose that fJ.Z,,g holds in (%), i.e., f~1{a} = g~ Y{a}. We ha\('e tg sllllclw(; lQh[th
(f)R.k(g) holds in A*. Since 4 is a homomorphism and e, of = e, 0 g we h't:le
a Cl

ei(h(f)) = hle,of) = hie,o 9) = e,(h(g)).
Therefore A(f) = a iff h(g) = a and h(f)R,h(g) follows. Q.E.D
4.13. COROLLARY. If || <3 and % is a full 1
. R il algebra and | X| < u(|A]) th

homomorphism h: W*~A is a projection onto one axis. <UD, the evry
ifIQI4.1_4. Remark. :I'h‘e supposition {|>3 in 4.12 and 4.13 is. essential. Tn fact
i [u: 2h then the e, s are definable by the term x, but if 9 is the two-element group
0 the homomorphism x; +x,: A2—A does not have any one-element support

H er if is the two-element Bool n algebra € 1 e Ci 4
OWEV A W oolea 1 ¥ i
. ’ . 34 onclusions of 12

4.15. THEOREM. If U is a self-sim, jce, i,

o L IF 9 1 self-simple lattice, i.e., every homo . )

is either an automorphism or a constant, then S(U, A cﬁ 2) o i B
W l;toovg Let i: A9, We‘shall prove by induction on 7 that % has a 1-element
{(J]:p e need some terminology and lemmas. A subset of A" of the form
0<3,;.i, 2q1). _ (Xig -ees :xfk-l) = (tg, -, @p—y)}, Where (@gs e, ap_) e A* and
th\ ? 1< <lp_(<m, WLI_I be called a k-plane or briefly a plane. A subset of A" of

e form Ayx...xA,_, will be called a product set. o

(4.16’ If Sisa [)IoduCl: set and 101 every l-plane L if LN S 2 then Lec

The proof is an obvious induction based

g on the following fact. I
oX.w XA, 4, 1422 and S, = on...xAi_lexAHx xi the1f
i aee n—1

$;<S. This in turn follows from th i
: ¢ assumption of (4.16) since if S, E
exists a 1-plane L whose fixed coordinates are those of P, with ler\E Ay iih;n there

4.17)  If SSA"has the property that whenever u, ve St

) I . " 3
then S is a product set. b {x. unvSESUY v} <5

y Le>t< Si be the projcction of § into the ith axis, we have to show that
S XS ’ »
o n—1S S. Let §5; € Si and P; €5 be such that the ith coordinates Ofp is s

i i

Do /\Pn—1<(so,
s 8y—1) €S follows.

then

s S )PV Vp,
and (sp, .. o
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(4.18) For every ae 9 the coset h~*(a) is a plane.

In fact A~ (q) is a sublattice of ". Also, since  preserves <, if #<x<v and
u, v € h~1(a) then x & h~*(a). Hence, by (4.17) A~ "(a) is a product set. If L is a 1-plane
and |L ~ A~ (a)| 2 then k| L is not injective. Since L is a sublattice of A" isomor-
phic to 2 hence by the assumption of 4.15 A} L is a constant. Hence L& hY(a).
Thus h~%(a) satisfies the assumption of (4.16), and (4.18) follows.

(4.19) If |9, n>2 then there exists an g, €9 such that A~ '(a)| =2.

Take any two disjoint 1-planes L; and L,. Since they are sublattices of A" iso-
morphic to U hence either A} L, and At L, are both constants or one of them is
surjective and their ranges intersect. In either case we get an 4, as desired.

Now we can conclude our inductive proof of 4.15. For |¥% =1 orn =1 the
assertion is obvious. Thus we can assume |2, #>2. Let k™ Y(a,) be given by (4.19).
By (4.18) ™ Y(a) is a plane and it includes some 1-plane P. Let P be any 1-plane
parallel to P,. Then P is either included in or disjoint with 2~'(a,). Hence i} P
cannot be surjective and it is a constant. Thus & does not depend on the coordinate
which parametrises Po. Hence by the inductive assumption %z has a 1-element
support. Q.E.D. .
" 4.20. EXAMPLE (W. Taylor). The lattice of the figure is self-simple but is not

simple.

The next theorem is also due to W. Taylor and is published here with his per-

mission. .
421, TeeoreM. If U is a lartice and B is a linearly ordered laitice then

S(A, B, w, 2).
Proof. Let A; A*—B. Since A is a union of a chain of bounded lattice intervals
the theorem reduces to the case when 2 has a 0 and a 1. Then we can assume without

loss of generality that

K(1,0,0, .., 0)>h(0,1,0, .., 0)>h(0,0,1, ., 0 .. 240, ..., 0, 1) .

Hence
R(1,0, 0y 0) = h(1,0, 0, )V o VA, oy 0, 1) = A(L, 1, e 1)
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Now for any (aq, ..., 4,—,) € A"

h(ag, s ay_y) = A((1, 1, ..., D A(ag, ..., @y-1))
=h(l, 1, ., Dahlay, .., a,_,)
=h(1,0,..,0)Ak(q, ..., Gy y)
= h((1,0,...,0)A(dy, .., 4,_,))
= (a,0,0, ..., 0).

Q.E.D.

4.22. TreOREM. If U is a centerless group and B is a group such that every homo-
morphism h: A—B is either injective or a constant and there is no injection of A?
into B then S, B, w, 2).

Proof. Let h: A'—%B. We use induction with respect to n. For 12 = 1 the as-
sertion is obvious. For n>1 / is not an injection. Let a = (aq, ..., ,-1) € Ker(h),
"We can assume without loss of generality that a, # 1. Since 9 is centerless there
is a by e U such that ayb, # byag. Let ‘

Hence {0} is a support for k.

¢ = (bCI’ I) A ] 1)a(b0: 1: s 1>_1 = (boaob(;1> ayy ds, sy aﬂ—]) .

Then ceKer(#), and ac™ = (dy, 1,..., 1) e Ker(h), where dy = aybyag byt 5 1.
Hence (d, 1, ..., 1) e Ker(h) for all de L. Thus £ has a one-element support by
the inductive assumption.

4.23. EXAMPLE, If U is a finite nonabelian simple group then S, 9, ®,2)
holds. This example is known, see [9, Theorem 9.12(b), p. 51]. Finiteness is essential
here, as the group of even permutations of an infinite set shows. .

4.24. PROBLEM. An algebra ¥ is called weakly functionally complete (w.f.c.)
iff every function f: 42— 4 can be represented by a term with constants, i.e., by
a term in the extended algebra (U, a),.4.E. g finite discriminator algebras are w.f.c.
and finite nonabelian simple groups are w.f. C., see H. Werner [28, 29]. All w.f.c.
algebras are simple. Does S(A, A, w, 2) hold for all w.f.c. algebras A ?

4.25. THEOREM. If Wis a ring unity and B is a ring such that every homomorphism
h: W—B is either injective or a constant and there is no injection of 2 into B then
S(A, B, w,2).

. Proof. Let h: "B, We use induction with respect to 7. For n = 1 the as-
sertion is obvious. For n>1 A is not an injection. Let @ = (a0, s @, 1) € Ker(h)
and @ # 0. We can assume without loss of generality that ag # 0. Then

(@0,...,0) = (1,0, ..., 0) e Ker(h).

Hence (@, 0, ..., 0) & Ker(h) for all a 9. Thus £

has a one-clement support by the
inductive assumption.

4.26. Remark. The assumption that the ring 9 ﬁas a unity could be replaced
by the weaker assumption that for every ae U, a # 0 there exists a b € A with
ab % 0 or ba # 0.
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5, Homomorphisms of subalgebras of A¥, First we generalize some of the above
(s t X is a topological space.
concepts to the case when |
5.1. DerINITION. If X is a topological space then §nx denote:s the algebra of
all co'nt.inuous functions f: X¥—4, A being endowed with the discrete topology.
5.2. PROPOSITION. If X is a topological space then the collection of all supporz:‘s
of any. l;omomorphism h: WX B which are closed and open in X coustitutes a filter in
the Booleun algebra of all clopen subsets of X.
Proof, Same as the proof of 2.2. . . f
The following theorem is closely related to some results and conjectures o
Mréwka and Shore [16]. ‘
5.3. THEOREM. If S (Q{; B, w, n) then for every compact Hausdorff space X every
homomorphism h: WX B has an n-element support.
. . . ion 6.
The proof will be given in Section ,
5.4, COROLLARY. If S(%, B, w, n) and, for any set X, i denot.e.s' the ?lgebg
of all .the fumctions fi X—A with | f(X)| <o, then every lz?momarphzsm h: W,—
has an n-element suppori. : :
Proof. By 5.3, since every homomorphism £: AE B can be extendec_l (un%quely)
to a homémorphism ¥ AW, where X* is the Cech compactification of .
X discrete. o '
5.5. Remark. Many examples of algebras satisfying the assumptions of 5.3
and 5.4 with n = 2 are given in Section 4. )
For any sets 4 and X and any xe X and f'e A" we put

A¥ = {ged™: [{y: g # fFON} <o}
X _ 4%
(notice that for every g eAIf( we have 4; = Ay) and
4% ={ged*: Vye X[g(») # f(M=y =1}
¥ and h: ider the following
(notice that AfffCAf). For any DA™ and h: D—~A we consider the

property of &
P(H) < Vxe XV fe D[Vge D n A5 lh(g) = g(x)] o
' ~ or A} D 4% is a constant] .
The following theorem is a generalization of [20, Problem 2, p. 38].
5.6. THEOREM. If |4|23. fe A%, h: Af—A and P(h) then h has a support of
o X ¥ i t then it is easy to
Proof. If for every xe X and g € A}, h} A%, is a constant th » ey 0
check that / is a constant. From now on we may assume that fir a p) eT :lzg; e
have A(p) = p(x,), and have to prove that for all pe 4, h(};i) = }21();10- .AXA#A;
case |X| = 2 first. Then 4* and A4F can.be regarded as Ax A, and h:
Let us show that £ (k) makes it impossible to have

X)) 3a, bVx, ylh(a, ) = y and h(x, 8) = 5]
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In.deed if (5.7) were true then o = h(a,b) = b. Since |4|>3 we choose ¢ de A
with @ # ¢ % d # a. By the same argument which gave ¢ = b we see that, if Yy
h(c,y) = y then ¢ = b. Hence, by P(h), ht {c}xA is a constant and, by (5.7)
h(c,x) = ¢. In the same way we show that A(x, d) = d Hence ¢ = hic, d) = d’
contradictio.n. Thus (5.7) fails. Then we can assume without loss of generazlity tha’é
Z(rxfalf)x: xlsfzrczrlllstzzt _/f;(_)r allae 4 and h(x, by) = x for some bo € A. This yields

Now we consider an arbitrary X, To show h(p) = p(x,) we proceed by induction
on th.e number n(p) =|{x: p(x) go(x) and x X} Freezing all but two
zs:rgmf,;eszog 2, neu.mly1 p(xo) and p(x,), where P(xg) # go(x,) and x, 5 Xy we

, by the 2-dimensional i i i

e vatne o ensto Wecta:;; that & turns into a function which depends only on

ey _ JP&) . f
P = {go(x1) if

X % X,
xlea

and 7(p") <n(p). Hence by the inductive assumpti
ption and the above property of / w

have A(p) = h(p) = p'(xo) = p(x,). Q.E.D. ’ )

2.8. THEOREM. If 4|23, X is a4 compact Hausdorff space, 4*
h: A%~4 and PF) then b has a support of cardinality <1.

For the proof see Section 6.

5.9. COROLLARY. If |A|23, X is a set, 4% = {fed®

>3, » Ao = {fe 4% | fIX]|<w), h: 4%

and P (h) thgn h has a support of cardinalityﬂsl. fIxlizal, b 4lsd

Proof. 5.9 follows from 5.8 in the same way as 5.4 followed from 5.3.
N 2.10. E}.(AMPLES. In contrast to 5.6 and 5.9 there exist sets 4, X and maps
h: A=A \.Jv1t]-1 |4]>3 and 2 (k) but without finite supports. E.g. if 4 is finite and F
1S 2 nonprincipal ultrafilter of subsets of X then the ultrapower map 4: 4% 4
defined by F satisfies 2 (k) but has no finite supports. Also the supposition 4] =3

in 5.6, 5.8 and 5.9 is essential as the map h: {0, 1}*~{0, 1} defined by a(f) = []f(x)
xeX

is as in 5.1,

shows.

6. Proofs of 3.1, 4.1, 5.3 and 5.8. The main iden
. - O, m .
partition of X, we let am idea is the following. For P any

(6.1) ‘I)P be the Sllbalgebra. of A COnSiStin all tt ¢ Tunct W.
of 11 t i i
- g ions thh are constant

Then of course Ap o A, and Y* — U
. IPI<jay

partitions ‘and prove that they fi i i

g y form ultrafilters with the desired completeness

We shall use the notations

Up. We shall look at Supports in the

6.2) P(f) = {fYa}: aed} forall 1 X4 .
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If Py, Py, ... are partitions of X then
(6.3) PoaP,={ANB: AePy,BeP},
6.4 APo={N4,: A,eP}.
n<w n<o

Proof of 3.1. First the first part of 3.1. Let P be the set of all partitions of X
into no more than || blocks. .

(6.5) If P,eP for all n<w then A P,eP.

n<a
This follows from (6.4) and [A®® = |A“|.

By the assumption S(U, B, |AY|*, w), for every P e P there exists a finite set
F(P)< P such that for all £, g € %, (see (6.1)) with f} U F(P) = g} U F(P) we have
h(f) = h(g). We assume that F(P) is minimal. By 2.2 a minimal set of this kind is
unique. We shall study the function' F(P). .
(6.6) If P,QeP and P is a refinement of Q, i.e., PA Q = P, then each block

in F(Q) includes some block of F(P). :

This follows from the minimality of F(Q) by an obvious argument:

To get the next property we need (6.5) (see Example 6.11).

(6.7) There exists an n<w such that |F(P)|<n for all PeP.

Suppose to the contrary that there exists a sequence Py, Py, ... with [F(PY)>n.
Let P = A P,. Then, by (6.5), Pe P. By _

n<a

(6.6) |F(P)|=[F(P,)|>n for all n, which is a contradiction.

Let n be the least integer satisfying (6.7) and let P, be such that
F(Py) = {40: 3] An—l} >
where 4; are disjoint and non-empty. We put Py = {PAPy: PP} (see (6.3))
(6.8) For every Pe P, the set |J F(P) is a support of k.
This follows easily from (6.6) and (6.7). ‘
Now we prove the following key lemma.
(6.9) There exist n |2|*-complete ultrafilters Fy, ..., F,—; of subsets of X such
that .
(i) Ay e F, for all k<n;
(ii) |F, nP| =1 for all Pe P, and k<n;
(iif) F(PY=Pn |J F, for all Pe P,
‘ k<n .
By (6.6), for all P € P,, F(P) has exactly one element included in A, callit 4,(P).
Let us show that for any P,, P, € P, we have A,(P;) N A(P,) # @. By the mini-

4 — Fundamenta Mathematicae, t. CIIT
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mality of F(P,) there are two functions g,, g, €Up, such that g, (X—4,)
=g, M (X—4,) but h(g,) # h(g,). If A, (P) N A4(P,) =& was true then there
would be a function g such that g} A4 (P() = g, } 4(P)) and ¢} (X——A,,(PJ))
= g2} (X—4i(Py) and gt A(Py) = g, 4(Py). Then g,yg, €Wp,, 9,9, €Wp,,
gt UFPy) =gt UF(P,) and g, } U F(P,) = gt U F(P,). Hence h(g,) = h(yg)
= h(g,) which is a contradiction.

It follows that for every Py, P, e Py, if P; and P, split 4, in the same way
then A4,(P;) = 4,(P,). Hence, by 1.1, there exists an |9°|*-complete, and hence
|| *-complete, ultrafilter Gy of subsets of A, such that {4,(P)} = P A G, for all
Pe P, Let F be the filter of subsets of X generated by G, and (6.9) follows.

6.10) N F, ié the collection of all supports of 4.

k<n

Let Yekﬂ Fo, [,ge® and f} Y=g} Y. Let ¥, = Y 4, for all k<n,
k<n .
and Py = Py AP(fIAP(HA{ Yy k<n} L {X— U ¥;}) (see (6.2)). Then f, g € Up,
k<n

and, by (6.9), U F(P,)< Y. Hence h(f) = h(g). Let now ¥ be a support of /. Then,
by 2.2 and (6.8), U F(PoA{Y,X—Y}HcY, and by (6.9), Ye F, for all k<n.

By (6.9) and (6.10) the first part of 3.1 follows.

The second part of 3.1 is a corollary of the first. Suppose that » is minimal.
Then there are disjoint sets A, e F, for all k<n. For any gy ey Gyey € let
ho(ag, ..es @y-1) = B(f), where f(x) = a, for all xe 4, and k<n. It is obvious
that A, has the required property. Q.E.D.

6.11. ExaMPLE. The following example shows that our proof would not work
under the suppositions || = @ and S(2A, B, w;, w) and, as mentioned in 3.3, we
do not know if 3.1isvalidin this case. Let X = o U {0, 1}*, and P be the set of all
partitions of X'into at most o parts. Then there exists a function Fwith domain P such
that F(P)<P and |F(P)|<w for all Pe P and F satisfies (6.6) but it violates (6.7).
To define such an F let a set /={0, 1} be called an interval of diameter 1/3" iff
I = {(x0, Xy, ) €40, 13" (g, ey X, y) = (ag; s @,-4)} for some (ag, ..., dy-y)
€ {0, 1}". For every Pe P let n(P) = min{n: there is an 4 e P which intersects two
disjoint intervals of diameter 1/3"}. Since |P|<2 it follows that 1 (P)<w. We put
F(P) = {deP: Ann(P)+ @}. It is easy to check that our F satisfies (6.6) and
violates (6.7).

Proof of 4.1. This proof is identical to the proof of 3.1 except that now we
let P be the set of all partitions of X into less than []* + o parts and we get (6.7)
directly from the assumption S(91, B, [UA* + o, n).

Proof of 5.3. Again this proof is quite similar to the proof of 4.1, Now P is
the set of all finite partitions of X into clopen sets, and (6.7) follows from the
assumption S(U, B, v, n).

6.12. GENERALIZATIONS. Some possibilities of generalizations were mentioned
at the end of Section 2. Let us remark here that the proofs of 3.1, 4.1 and 5.3 (unlike
the proofs given in Section 4) do not use explicitly the algebraic structure of the al-
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gebras involved. Hence they generalize (without any changes) to relational strue-
tures, algebras with relations, topological spaces, topological algebras, etc.

Proof of 5.8. Again the proof is quite similar to the proof of 5.3 except that now
we get (6.7) with n = 1 from 5.6.

7. Adjacent facts on topological spaces.

7.1. PROPOSITION. If A is a Hausdorff topological space and F is a finite discrete
space then for every set X every continuous map h: AX—F has « finite support.

Proof. For every p € F the inverse 2~ {p} is clopen. Every clopen set in 4% is
a cylirider over a clopen subset of a finite power of 4. Hence 7.1 follows.

In particular if A4 is a finite discrete space then

(72) Every continuous map k: 4*—4 has a finite support.

It was asked if theré are any infinite spaces 4 with this property. In 1967 Cook [3]
constructed a contintum 4<R? such that

(7.3) Every continuous function f: A—4 is either the identity or a constant.

The following theorem generalizes a result of [12] and answers the above
question. .

7.4. THEOREM. If A is a Hausdorff space with Property (1.3) then for every set X
every continvous map h: AX—~A has a support of cardinality <1.

Proof. Pick any point p € 4. For any finite set Y< X and any fe 4% we let

f(x) for xe?,
p

f,(x):{ for xeX-Y,

and S = {fy: fe 4, Y= X,|Y|<w}. By 5.6 h} S is either a constant or there
exists an x, € X such that h(g) = g(x,) for all g € S. In the first case, since S'is dense
in A% and & is continuous, % is a constant and & is a support for 4. In the second case,
since fy converges to f over the net of finite sets Y and since A(fy) = fy(>xo) = f (x0)
whenever x, € ¥, we get A(f) = £ (x,) for allfe A*. Thus {x,} is a support. Q.E.D.

Addenda

1. R. Quackenbush gave the following simple solution of Problem 3.7.
If A ={0,1}, +,0,1>, %, =<{0,1}, +,1,00 and B =<{0,1},+,1,1D,
where + is mod 2, then the implication in 3.7 fails.

2. R. Quackenbush and H. Werner gave the following positive solution of
Problem 2.24. First A* = (A, a),., has the same congruences as 2, and the same
is true for (A*)" and A" for any n. Then, if WA is w.f.c. and |A|>1, by the results
of G. A. Fraser and A. Horn (Congruence relations in direct products, Proc. Amer.
4>
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