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Small subsets of first countable spaces
by

Eric K. van Douwen (Athens, Ohio) and Michael L. Wage (New Haven, Conn.)

Abstract. The existence of two types of first countable spaces is shown to be equivalent to
a certain structure on the rationals. This structure, whose intuitive content is that discrete subsets
of the rationals are small, is consistent with the usual axioms for set theory.

Introduction. In this paper we present two consistent examples of first countable
spaces both of which require caraful handling of certain sets which are small in an
intuitive sense. We use two combinatarial principles, called P(c) and BF (c), which
will be explained in Section 2. Both are strictly weaker than Martin’s Axiom, hence
strictly weaker than the Continuum Hypothesis, and BF(c) is strictly weaker than
P(c). However, it is consistent with ZFC that P(c) and BF(c) be false.

We first recall some definitions. A space X is collectionwise Hausdorff, ab-
breviated CWH, if for each closed discrete subset D of X there is an open family
{U,| xe D}in Xsuchthatx e U,, forallx e D, and U, N U, =@, forallx # yeD.
A space is o-discrete if it is the union of countably many closed discrete subsets.
A space is pseudonormal (or has property D) if any two disjoint closed subsets,
one of which is countable (and discrete) have disjoint neighborhoods. (This is not
the usual definition of property D, [M, p. 69], but is equivalent to it in first countable
regular spaces.)

Our first example answers Mike Reed’s question of whether every CWH
o-discrete Moore space is normal (hence metrizable) in the negative. This question
is quite natural, since in a CWH, space closed discrete subsets are “small”, so a CWH
o-discrete space is o-“small”.

1.1, ExaMPLE 1. [P(¢)] There is a CWH o-discrete Moore space which is not
pseudonormal.

The fact that there exists a nonnormal CWH Moore space was known already,
see [W]. The example in [W] does not require any additional set theoretic axioms.
Interest in collectionwise Hausdorffness in Moore spaces stems from Fleissner’s
Theorem that V = L (which implies CH, hence P(¢)) implies that first countable
normal spaces are CWH (in fact this is true for normal spaces with character <c), [F].

The existence of Example 1 will be deduced from the existence of Example 2,
which answers Mike Reed’s question of whether property D implies pseudonormality
in Moore spaces in the negative. )
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1.2. ExampLE 2. [P(c)] There exists a separable Moore space with property D
which is not pseudonormal. -

(That propery D and pseudonormality are not equivalent in regular spaces is
shown in [vD,]. The example in [vD,] does not require any additional set theoretic
axioms but is not first countable.) Example 2 shows that a countable closed discrete
subset is much smaller than just a countable closed subset. It should be contrasted
with the following Lemma from [vD,], which will be used in the construction.

1.3. Lemma ([vD,]). The following conditions are equivalent

(1) BF(o), ‘

(2) any first countable regular space with cardinality less than ¢ is pseudonormal,

and

(3) any separable Moore space with cardinality less than ¢ has property D.

Example 2 is more than just an example in the fine structure of weak separation
axioms in Moore spaces. As stated above, the existence of Example 1 follows from
the existence of Example 2. If separability is dropped, then the converse is also true,
and it does not simplify the construction if one looks just for a first countable regular
space, instead of for a Moore space, see Lemma 3.1. This. lemma also shows that
each space one may construct for Example 2 gives rise to a space looking like ours.

Another point of interest is that the existence of Example 2 (or Example 1 without
separability) is equivalent to the existence of a certain structure on @, the space of
rationals. The intuitive content of this structure is that closed discrete subsets of Q
are very small. It is unknown if the existence of this structure is independent of ZFC.

2. Preliminaries. As usual, a cardinal is an initial ordinal, and an ordinal is
the set of smaller ordinals; e is w,, and ¢ is 2¢. A family of sets is strongly centered
if every finite subfamily has infinite (rather than nonempty) intersection. A set 4 is
called an almost intersection of a family & if A\F is finite for each Fe %. If % is
a cardinal, then P(x) is the following assertion.

P(x): If & is a strongly centered collection of subsets of some countable set
and |F|<x, then & has an infinite almost intersection.

It is easy to show that P(w,) is true, hence CH implies P(c). More generally,
Martin’s Axiom implies P(c), [MS, p. 54], but not conversely, [KT]. Also, if ZFC is
consistent, then so is ZFC+ 1P (w,)+ 1CH.

If 4 and B are sets, *B is the set of functions from 4 to B; we will use the fact
that fo A x B for fe*B. If f, g € *w, then f<*g means that f@)<g(a) for all but
finitely many a e 4. If % is a cardinal, then BF (») is the following assertion.

BF(%). If K is a countable set, and if F= o has cardinality less than x, then
there is a g € ¥o such that f<*g forall fe F.

F. Rothberger, who studied P(x) and BF(x) extensively, [R,], [R,], [Rsl,

showed that P(x) implies BF (x), [R3, Thm. 3%, in particular P(c) implies BF ().
Solomon showed that BF(c) does not imply P(c), [So]. Hechler proved that if ZFC
is consistent, then so is ZFC+ "1BF(w,)+ T1CH, [H].
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A space X is developable if there is a sequence <{¥,>,., of open covers such
that {St(x, 4,)| new} is a local base at x in X for all xe X, (Recall that
St(x,9) = v {Ge¥| xeG}) A Moore space is a regular developable space.
The following lemma will be used repeatedly, the easy proof is omitted.

2.1. Lemma. If X is a first countable T,-space, containing disjoint closed subsets F
and G such that F is discrete, G is countable, all points of X\(F U G) are isolated,
and X\(F U G) is an F,-subset of X, then X is developable.

3. The examples.

3.1. Construction of Example 2. Tt is shown in [vD,] that there is a col-
lection % of open subsets of Q, the rationals, such that
(1) for each closed discrete subset D of Q there is a Ue% with Dc U,

(2) if # is any finite subcollection of % then O\ U & is unbounded;
this does not require P(c). We can enumerate % as {U,] dec} Then

{O\U| Uea} v {O\N(~n, n)| n=1}

is strongly centered by (2). So P(c) implies that there is a family {G,| o e ¢} of infinite
subsets of ‘@, such that

(3) U, n Gy is finite whenever a<j,

(4) Gy (—n,n) is finite, for all f<c and n>1.

Let {V,] o ec} enumerate all neighborhoods of QO x {w) in the usual product
Ox(w+1). For each « there is a 1,: O—w such that

Ka, k) e Ox o] kzv(@}cV,.

Since P(¢) implies BF(c), we can find a subset {fJ aec} of o such that
(5) fu<*f; whenever a<p, and
6) f,cV, for all wee.

The underlying set of our example is T = ¢ & (@x(0+ 1)). We topologize T as
follows. Qx(w+1) is an open subspace of 7, retopologized by making all points
of @ x wisolated, and giving all points of Q x {w} their usual product neighborhoods.
A basic neighborhood of a & ¢ contains « and all but finitely many points of £,[G,].
(This explains why we made points of Q x W isolated.) Clearly T'is separable and first
countable, and Lemma 2.1 shows that T is developable. 7" is regular at all points
of Ox{w}, by (4), and is regular at all points of ¢ by (4) and the fact that
{£IG] «ec)is an almost disjoint family, which follows from (5). So T is regular.
Consequently T is a separable Moore space.

Each neighborhood of @x {w} in 7' contains some V,. It follows from 6)
that 7' is not psendonormal, since Q x {w} and ¢ are disjoint closed subsets of T,
one of which is countable.

We conclude by showing that T has property D. Let A be a countable closed
discrete subset of T, and let ¥ be any neighborhood of 4. We want to construct
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a neighborhood W of 4 in T'such that W™~ < V. Since all points of @ x o arg isolated,
it suffices to consider the following two. cases.

Case 1. A= QO x {w}. There is an a such that 4<U,x (a)+l): The open sub-
space §; = a U O x(w+1) of T has cardinality less t'han ¢, hence is pseudonormal
by Lemma 1.3. So we can find an open W, in T with

AW, cVn Ux(w+1) and S nWicV.

But (3) implies that f ¢ (U, x (0+1))” whenever fz«, so Wi V.
Case 2. Ace. Fix o such that the subspace
S, = U {{} v (<, 0D ke 0, [ <fI} y<a}
of T is a neighborhood of 4 and has cardinality less than c¢. It is pseudonormal
by Lemma 1.3, so we can find an open subset W, of T with
AeW,cVnS, and S,nW,cV.

But (5) implies that 8¢ S, whenever f=o, so Wi cV.

The following lemma shows that the existence of Example 1 follows from the
existence of Example 2, and that the existence of Example 1 is intimately related
to the structure of Q. We organize the proof in such a way that the reader can skip
this relationship.

3.2. Lemma. The following conditions are equivalent.

(1) There is a Moore space with property D which is not pseudonormal.

(1) There is a first countable regular space with property D which is not pseudo-
rormal. .

(2) There is a o-discrete CWH Moore space which is not pseudonormal.

(2") There is a first countable regular o-discrete CWH. space which is not pseudo-
normal. .

(3) There exists a family U of open subsets of Q and a collection V' consisting of

countably infinite families of open subsets of Q, such that

(a) for edch closed discrete subset D of Q there is a Ue¥ with Dc U,

(b) if W is any open cover of Q, then there is a V" € ¥V which refines #’,

(c) for each UeU and ¥ €Y there are at most finitely many Ve ¥ with Ve U.

That (2) implies (1) was observed by Mike Reed, after hearing the converse
implication. In the proof we use a Moore-ificator inspired by the example in [W],
and use the following machine, inspired by examples in [vD,], four times,

3.3. The disjointer. Let X be a first countable space containing two disjoint
closed subsets F and G, with G countable, such that

(1), F and G do not have disjoint neighborhoods in X,

(2) each point of F has a neighborhood whose closure misses G,

(3) X is regular at each point of G,

(4) each closed discrete subset of G has a neighborhood whose closure misses F.
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Then there is a first countable regular CWH space Y satisfying property D,
also containing F and G as disjoint closed subsets, this time with F discrete, such
that F and G do not have disjoint neighborhoods in Y. k

Moreover, if X\(F U G) is an F,-subset of X (in particular if X is a Moore
space) then Y is a Moore space.

Let I = X\(F U G). The underlying set of ¥'is F G & FxI. A basefor ¥ is

{GH xeFxI} U {(GA D)L (Fx{In D) U open in X}o
u{{x}u({xxTn U))l U open in X, xe Fu U}.

Clearly Y is first countable. It follows from (2) and (3) that ¥ is regular. It is easy to
see that F and G are disjoint closed subsets of Y, with F discrete, which do not have
disjoint neighborhoods in ¥, Let 4 be a closed discrete subset of ¥ with AcF U G,
It follows from (4) that 4 » Fand 4 n G have disjoint neighborhoods, Uy and Uy,
respectively, in Y. Since ¥'is regular and 4 ~ Gis at most countable, there is a disjoint
open family {V,| xedn G} in ¥ with xe VicUg for xed nG. Put
Ve=({x} u{x}xD) n Uy for xed  F. Then {Vil xed} is a disjoint open
family in ¥ with x € ¥, for x € 4. Since all points of YN(F U G) are isolated, it follows
that ¥ is CWH. The fact that ¥ has property D can be similarily verified.

That ¥ is a Moore space if ¥\(Fu G) is an F,-subset of X follows from
Lemma 2.1.

3.4. Proof of the lemma. We prove N=@)~(2)~(1)=(1) and (3)(1").

(1)=+(2) Let F and G be disjoint closed subsets, with G countable, of a Moore
space X' with property D, such that F and G do not have disjoint neighborhoods.
Run X through the disjointer.

(2)—(2") Trivial.

(27—(1") (Reed). It suffices to show that each regular ¢-discrete CWH space X’
has property D. Let 4 and B be disjoint closed subsets of X with A countable and
discrete. Enumerate 4 as {a,| ne }. Since X is o-discrete, we can find for each
new a closed discrete B, in X such that B = U, B,. Since X is regular there is for
each n a neighborhood U, of a, with B U, = . Since X is CWH, and 4 U B,
is closed discrete in X for each #, there is for eachn € @ a neighborhood ¥, of B, such

that ¥, N 4 = @. As in the proof that regular Lindelof spaces are normal, it
follows that

U U w) and
k<sn

new

U (Vn\kg U;)

new

are disjoint neighborhoods of 4 and B, respectively.

(10-(1). Let Fand G be disjoint closed subsets, with G countable, of a first
countable regular space X with property D, such that F and G do not have disjoint
neighborhoods. We may assume that X is CWH and that F is closed discrete in X,
for otherwise we first run X through the disjointer. Denote X\(F U G) by I.
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We now run X through a Moore-ificator. Retopologize the subset
Y= (Fu@x{n}ulxo

of Xx(w+1) as follows. A basic neighborhood of <x, {w}> e ¥, with x € F, has

the form
Y (Ux (@+D)

where U is a neighborhood of x in X. Points of Gx {w} get their usual subspac.e
neighborhoods, and points of Ix @ are made isolated. One easily checks that Y is
a first countable regular space. To prove that Y is Moore we show that (F‘ U Q) x {w}
is a Gj-subset, and then apply Lemma 2.1. For each x € F choose a neighborhood
base {U(x,n)| new} of x in X such that U(x,m)=>U(x,n+1) for all n, and
U(x,1) n U(y,1) = & if x, e F are distinct. Then

N (U W, mx@+1)n ¥)=Fx{o},

new xekF.
and

N (Gx{w} U Ix(w\n) = Gx{w}

new

hence (Fu G)x{w} is a Gssubset of Y.

Let 7 denote the “projection” from ¥ onto X. = is continuous, and if D is a closed
discrete subset of ¥ with Dc(F U G) x {w}, then =[D] is a closed discrete subset
of X, and n(x) # n(y) for distinct x,ye D. Since X is CWH and all points of
YN(Fu G)x {w} are isolated, it follows that ¥ is CWH. .

Let ¥ be a neighborhood of Fx {w} in Y. There is a neighborhood U of Fin X
such that ¥ n (Ux(w+1))<V. There is an x e G such that xe U~ (in X). Then
{x,wye V™ (in Y). Hence Y is not pseudonormal.

This completes the proof of the first part. We now first prove (3)—(1") to make
the function of % and Y clear.

(3)—(1") Let J be the collection of all nonempty open subsets of Q. Define
a space X as follows. The underlying set of X'is @ U ¥ U . Points of ~ are isolated.
If U is a neighborhood of xe @ in Q, then

AU =Uu{Ted| T<U}
is defined to be a neighborhood of x in X. If ¥" €V, and if # < is finite, then
{¥}u (@&

is a neighborhood of ¥” in X. Notice that X is first countable. We want to apply the
disjointer to X with F = ¥V and G = Q, so (1)-(4) of Section 3.3 must be verified.
If His a neighborhood of Q in X, then there is an open cover #~ of the space Q
such that
U{dW)| We#}cH.
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Clearly ¥ € H™ for each ¥ e ¥ which refines . It follows from (b) that Q and Vdo
not have disjoint neighborhoods in X, although they are disjoint closed sub-
sets of X.

Fix ¥ eV, and let H = {#"} U¥. We want to show that the closure of
in X misses Q. Fix ge Q. Since {g} is closed discrete in O, there is a U e with
g€ U. By (c) the set # = {V'e¥| V'<U} is finite. We can find a finite subset
of G of U\{q} such that no member of # is contained in UNG. Then A(UNG) is
a neighborhood of ¢ which misses H.

We next show that X is regular at all points of Q. Fix g€ Q. As above, there
is a Ue with ge U. Let H be any neighborhood of g in X. We may assume that
H = A(W), where W is a neighborhood of ¢ in Q. Since O is zero-dimensional,
there is a clopen K in Q with ge KU n W. Clearly A(K)= A(W), and no point
of O\Kis in the closure of 4 (K). Let " e ¥ be arbitrary. Then & = Verl vet}
is finite. But then {¥"} U ¥\ is a neighborhood of %" which misses A(K). Since
all points of J are isolated in X, it follows that A(K) is closed.

To complete the proof, run X through the disjointer with F = ¥ and G = Q.

(1)~(3) Let X be a first countable regular space which has property D, but
which contains disjoint closed sets Fand G, with G countable, such that F and G do
not have disjoint neighborhoods.

We first use Sierpinski’s characterization that every countable first countable
regular space without isolated points is homeomorphic to @, [S], to see that we may
assume without loss of generality that G = Q. Indeed, the subspace X' = Xx {0} v
W Gx Q of Xx Q is first countable and regular, is easily seen to have property D,
and the disjoint closed subsets Fx {0} and Gx Q of X’ do not have disjoint neigh-
borhoods. But Gx Q has no isolated points and hence is homeomorphic to Q.

Since Q is a countable subspace of the first countable regular space X, we can
construct a countable open family # in X such that

(o) each Be 4 intersect Q in a nonempty convex subset (with respect to the
usual order on Q),

(B) for any B,B'€ %, if Q " BcQ N B' then Bc X/,

(y) for each xe Q the family {Be 2| x € B} is a local base at x in X, and

@) B nF=@ for Be®.

Let {#,| y& I'} be the collection of all subcollections of @& which cover 0,
where I' is some index set.

Fix y e I. Since F and Q do not have disjoint icighborhoods in X, there is an
Xy F with x, e (| 4,)”. Choose a sequence < Pk ew of points of |J £, which
converges to x,. For each k choose V,(k) e &, which contains Y(k). Unfix 7.

Let {%;| 6 e 4} be the collection of all subfamilies & of & satisfying

@ Fa(U&) =4¢, and '
(€) cach maximal convex subset of Q n (|J &) has the form Q n § for some
Ses. )

3 — Fundamenta Mathematicae t. CIII, 2
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Define .
#={0n(U%) dedy, ¥,={QnV,Blken} if yel,
V= {'Vv[ yel}.

We claim that % and ¥ satisfy (a), (b) and (c¢) of (3).
Check of (a). Let D be a closed discrete subset of Q. D is closed discrete in X.
Since X has property D, one can use (x) and (y) to find 6 &4 with D= U %,.

Check of (b). Let #" be an open (in Q) cover of Q. Then there is a y € I such
that {Q n B| Be4%,} refines # . But then also ¥#7, refines #".

Check of (). Let y€ I' and § € 4 be arbitrary. It follows from (g) that there is
an new such that y,(k)¢ U%,; for kzn Fix kzn We will show that
Q n V,(k)& U ;. Suppose the contrary. Since V,(k) € 4, it follows from (o) and (&)
that @ n V()= Q n U for some Ue%;. But Ue, so V(k)=U, by (B). This |
leads to the contradiction that y,(k)e U%,;. & |
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Effective bounds on Moﬂey rank
by

Gerald E. Sacks* (Cambridge, Mass.)
To the Memory of Andrzej Mostowski

Abstract. Effective bounds are obtained on the Morley rank of a 1-type, the Morley rank ar of
a totally transcendental theory T, and the Blum density number dr of a quasi-totally transcendental
theory T by means of type-omitting and absoluteness arguments over admissible sets. The above
restrictions on T imply that ar and dr are ordinals recursive in 7. Every theory T is seen to have
a universal domain hyperarithmetic in the hyperjump of 7.

1. Introdaction. This paper might better have been titled: On the Absolute
Character of the Morley Derivative. For the bounds given below on Morley rank,
and on Blum’s density number for quasi-totally transcendental theories, are derived
from some absoluteness properties of Morley’s analysis of 1-types. Let T be a count-
able theory of first order logic. Assume T is complete and substructure complete (*)
in order to smooth the application of Morley’s rank-and-degree machine to I
(The details of his machine will be reviewed in Section 2. A full account was given
in [12].) Suppose 7 is a substructure of a model of T, and p is a L-type over & (in
symbols o € o (T) and p € Ss£). If p has a Morley rank, then that rank is denoted
by ru(p), and the existence of that rank is indicated by the inequality : ry(p)<oo.

Let N be an admissible set as defined in Section 2. Assume T and & belongto N.
One aspect of the absoluteness of the Morley derivative is expressed by:

4)) ru(p) = p<co—speN&BeN.
Another aspect is the fact that the relation
peSs &ry(p)<p
is X, over N. (1) implies a bound first obtained by Lachlan [8]:

) rp(p) <o—ry(p) <%y,

* This article is based on a talk given at the 1972 Orléans Logic Conference. TIts preparation
was supported in part by NSF grant MCS 76-10430. The author is grateful to L. Harrington and
S. Simpson for several helpful comments.

() Substructure completeness is equivalent to admitting elimination of quantifiers.
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