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On weakly n-dimensional spaces
by

B. Tomaszewski (Warszawa)

Abstract. It is shown that if X is a weakly #-dimensional space and Y is a weakly m-dimen~
sional space, then ind(Xx Y)<n+m—1; a simple example of a weakly n-dimensional space is
given forn=1,2, .. - -

‘We shall consider only metric separable spaces. We denote by Xy, the set
{xe X: ind, X = k}; the symbol B(4,¢) denotes the s-ball about the set 4.
A space X is called weakly n-dimensional if ind X = n and ind X, <n. If rX is a com-
pactification of the space X and r: X-»rX is the homeomorphic embedding cor-
responding to the compactification rX (see [1], p. 125), then we identify the points
xe X and r(x)erX. :

K. Menger in [6] asked whether there exists a weakly one-dimensional space X
such that ind X" = n for n = 1, 2, ... In this paper we answer this question, showing
that there is no such space. More exactly, we prove the following

THEOREM. If X is a weakly n-dimensional space and Y is a weakly m-dimensional

 space, then ind(Xx Y)<n+m—1.

In the second part of the paper we give a simple example of a weakly z-dimen-
sional space for # = 1, 2, ... which applies a construction due to K. Kuratowski [3].

In the proof of our theorem the following five easy lemmas will be applied:

LeMMA 1. Every one-dimensional space X has a one-dimensional compactifi-
cation rX such thar Xy <=(X)0)-

This is a particular case of a theorem proved in [2].

Straightforward proofs of Lemmas 1-4 are omitted.

A closed subset L« X is called a partirion between the sets 4 and B provided
that there exist two open sets U and ¥ in X such that

AcU, BcV, UnV=@g and XN\L=Uu/V.

LEMMA 2. Let rX be a compactification of the space X. If for any distinct points x
and y of the space rX there exists a partition L between x and y such that
ind(L n X)<n—1, then ind X<n.
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LemMa 3. If Z is a compact space and F<Z is a closed subset of Z, then for every
£30 the union of all components of the space Z having diameter not smaller than & and
intersecting the set F is a compact set. :

LemMa 4. If a closed subset F of a compact space Z is equal to the union of a family
of components of the space Z, then for every >0 there exists an open-and-closed set
UcZ such that FeU<B(F, g).

LemMMA 5. If a subset A of a compact space Z is equal to the union of a family of
components of the space Z and ANA is a compact set, then for every ¢>0 there exist
sets Uy, Uy, ...<Z such that ‘

(a) U, are open-and-closed and pairwise digjoint.

() Ac(@ U,cB(4, &).
' i=1 \

() Fr( G U)=ANA,
=1

Proof. Let us denote by & the family of all components of the space Z inter-
secting the set ANA and let us consider their union F = {J &#. The set F is compact
by virtue of Lemma 3; moreover Fn 4 = . Applying Lemma 4, let us take for
i=1,2,..an open-and-closed set V; such that Fe Vi< B(F, 1/i). The set F; = A\V;

is compact for every i; since ﬂ V; = F, the inclusion A< U F; holds. Each of the

sets V,, being open-and—closed is the union of a famﬂy of components of the
space Z. Hence, there exists an open-and-closed set U; such that F;c U; < B(Fy, ¢fi).
Let us define U; = UpN\(Uy U....  Uj_y) for i =1,2, ... The sets U, are open-
and-closed, pairwise disjoint and, moreover, :

«©

w .
4= c UU; = | U;cB(4,5).
i=1 i=1

ics
I

i

Tn order to conclude the proof of our lemma it remains to show that condi-
tion (c) is satisfied.

Let us assume that pe Fr({J U)) and p = limp;, where p;e Uj,. Since the
=1

sets U; are open-and-closed, it follows that limk; = co. For an arbitrary number
7>0 there exists a natural number j such that k;>gfn for i>j. Since

Q(PnA)<Q(pan1)<77 for i>j,

we have the inequality o(p, 4)<#. As the number # is arbitrary, we conclude that
p € A. Obviously, the relation p € 4 cannot hold.

The theorem will be proved by induction. We shall start with the case of two
weakly one-dimensional spaces X and Y.Let rX and rY be compactifications of X
and Y, respectively, such that X c(rX)y and Yo=(rY)(g; such compactlﬁ-
cations exist by virtue of Lemma 1.
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For arbitrary distinct points z; = (x4, y;) and z, = (x,,¥,) of the space
Z = rXxrY we shall construct a partition L in the space Z between the points z,
and z, such that ind L n (X'x ¥)<0. By virtue of Lemma 2 this will yield our theorem
in the case where n = m = 1. We can assume that x, # x,.

Since ind X(y) = 0, in the space rX there exists a partition M between the
points x; and x, such that M n Xy, = &. Obviously the set P = M x rXis a partition
in the space Z between the points z; and z,. Let Z\P = G, U G,, where G, and G,
are disjoint open sets such that z, € G; and z, € G,. Since M n X3, = @, we have
P r(XyyxrY) = &. We can also assume that

'eh) 0(xy, M)>2 and  o(x,, M)>2.

Let B, be the union of the family of all components of the space rX having
a diameter less than 1/m and intersecting the set M. Obviously B, = EN\F,,
where E is the union of all components of the space r.X intersecting A and F, is the
union of all components of the space rX having a diameter not less than 1/m. By
virtue of Lemma 3 the sets E and F,, are compact. Hence the set B,\B,, = B, N F,,
is compact. Applying Lemma 5, take open-and-closed pairwise disjoint sets Uy,
such that

@

and )
3) Fr( C)O Up)cE,.
i=1

Since B,,=B(M,1/m), it follows from (2) that . -
-]

@) U U B(M, 2|m) .
i=1

Let us denote by 4,, the union of the family of all components of the space 1Y
having a diameter not smaller than 1/m. By virtue of Lemma 3 the set A,, is compact.
Applying Lemma 4, take for i =1,2,.. an open-and-closed set ¥;, such that

Amc Vich(Am’ l/l.) .

Let us consider the set

W=

m

s
“CS

(Ulm x va)
1

i

14

We shall prove the inclusion
(5) (M X)x YleW,

Let us assume that (x, ») e [(M n X)x Y] and let us take a natural number m
such that ye4,. Since Mcri\X), we have M 0 XcXc(rX)e, and this

implies that (M n X) n |J F, = &. Since M n X< E, we conclude that (M n X)
n=1

1*
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c

< ENF,, = B,,. From the inclusion B, = |J U;, follows the existence of a natural
i=1

number 7 such that xe U,,. Since ye 4,=V,,, we have (x,y)e U, X Vi, < W.
Now we shall prove that

(6) _ FrWe[(rX)yyx (r¥)y] U P.

. Let p=(r,s)eFrW. Let us choose a sequence of points p,,p,,.., where
Pi = (1, s) € W, converging to the point p. Let py € U, X Vi, Since the sets
Ui X Vi are open-and-closed, we can assume that (i, m) s (i, m;) for k # j.
Moreover, we can assume (passing to a subsequence, if necessary) that either

(a) my<my<... or
b)ym=m =my =..and i;<i,<...

First we shall consider the case (a). Let us take an arbitrary natural number 7 and
such a number K that m,>n for k> K. Applying (4) we have r, & Uy, = B(M, 2/my)
c:B(M ; 2/n). Since the number # is arbitrary, it follows from the compactness of
the set M that limr, € M, so that p = (r, 5) € P.

Let us now consider the case (b). The sets U,,, where i = 1, 2, ..., are pairwise
disjoind and open-and-closed. Hence

re Fr(,}_}l U"km) CFI'( U Ui,,,)cF,,,c(rX)(l) .

Moreover, s,€ Vy,<B(4,,1/i,), so that lims, = seA,,,c:(rY)m This implies
that p = (r,8) e (rX)ayx (r¥)y and the proof of (6) is concluded.
By virtue of (1) and (4) we have

@] 21,7, €ZN\W.

Let us consider open sets Gy = (G,\FrW) u W and G, = G,\W contained in Z,
where Gy and G, are open disjoint sets determined by the partition P; obviously,
(;1 s} G2 ='@. By virtue of (7) z; € G and z, € G, so that the set

L = ZN(G, U G}) = ZNI(GNFr W) U W U (GATT)]

= FIW U[Z\(G, U WU G))] = FriW U [(Z\(G; U G)\W]
= FrW u (P\W)

is a partition between the points z; and z, in the space Z = rXxrY.

In order to conclude the proof of the particular case under consideration, it
suffices to show that ind(L n (X% ¥))<0.

Let us consider. the decomposition of the set I’ = L A (X'x Y) into the sets
L; = L'~ P and L, = L'\P. The set L, is closed in L. Hence, in order to prove
that indZ’<0 it suffices to show that indL, <0 and indZ,<0.

The first coordinate of every point from L’ n P belongs to X, (0)- By virtue of (5),
the second coordinate belongs to Y(oy. Hence we have Ly = X)% Yoy and this
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implies that indZ, <0. Applying (6), we conclude that L, = X(yyx Y(yy; hence —
by the weak one-dimensionality of X and ¥ — also indL,<0. Hence we have
proved that ind(Xx ¥) = 1 if the spaces X and Y are weakly one-dimensional.

LemMA 6. For every n-dimensional space X there exists a zero-dimensional set
Dc X such that for every natural number k<n and each point x € X(k)\D the in-
equalities ind (X\D)<k—1 and ind(Xu\D)<ind X,y~1 hold.

Proof. Let % = {U,}, be a countable base of the space X such that for
every x € X, there exist members Uy, Uy,, ... of the base # which constitute a base
for the space X at the point x and satisfy the inequality ind(FrU,)<k—1 for
i=1,2, .. For every natural number m such that FrU, # 0 let us take a zero-
dimensional F,-set A,,« Fr U, satisfying the equality ind (Fr U,\4,,) = ind (FrU,,) —1.

]

Let A = |J 4,,. From the sum theorem it follows that the set 4 is zero-dimensional ;
m=1

moreover, A is an F,-set.

Let Bc X, be a zero-dimensional F,-set in X, such that ind(X\B)
ind X,,—1. The set B also is an F,-set in the space X, because X, is an F,-set
in X. Let us define D = A4 U B. From the sum theorem it follows that the set D is
zero-dimensional; it is easy to check that the set D satisfies also the remaining
requirements of the lemma.

Let us now assume that the theorem holds for all natural numbers 1z and m such
that n4+m<k—1>2. Consider a weakly n-dimensional space X and a weakly
m-dimensional space Y such that n+m = k. We shall prove that ind(X'x ¥)
<n+m—1.

Let X and r Y be arbitrary compactifications of the space X and Y, respectively.
By virtue of Lemma 2 it suffices to prove that for any two distinct points
2., 7, €rXxrY, where z; = (x1,y,) and z, = (x5, y,), there exists a partition
LerXxrY between z; and z, such that ind(L n (¥x Y))Sn+m—2. We can
assume that x, # x,. Let Dc X be a set satisfying the requirements of Lemma 6.
Since the set D is zero-dimensional, in the space rX there exists a partition L' between
x, and x, such that L' n D = @. From Lemma 6 it follows that either

(a) ind(L' n X)<n—2 or

(b) L' n X is a weakly (n—1)-dimensional space.

Obviously L = L'xrY is a partition between z, and =z,. Moreover,
LA(XxY)=(L'n X)x Y. Thus in case (a) we have ind[L n (X'x Y)]<n+m—2;
from the inductive assumption it follows that the same inequality holds in case (b).

Now we shall describe, for n = 1,2, ..., a weakly n-dimensional space; our
construction seemis simpler than the well-known construction due to Mazurkiewicz
(see [7]). By C we shall denote the Cantor set. The space X constructed by K. Kura-
towski (see [3] or [4] § 27, VI) is the graph of the function f: C—[~1, 1] defined
by the formula

(8) )=

(~ lkx — 1)k __ll\-n
) +(22) ERE 2,,) +ors
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where )
-2 2 2
©) ‘ x=§‘,~1+§c—z+...+?‘+..., ky<k,<..

Let us denote by D the set of all points x e C which have a finite expansion
of form (9); the set D is countable. One easily sees that D is the set of points of
discontinuity of the function f. We define

X, ={(x,f(x): xe D} and

X, = {(x,f(x): xe C\D};

obviopsly X = X, v X;. K. Kuratowski showed that X, = X0y and X = Xy,
but his result will not be needed here. The only fact we shall use is that the func-
tion f has the following property:

(10) for every x e D there exist sequences X, and x, converging to x such that
X, X, €D, X, xpy# x for k=1,2,... and

F@&E) = _f(x), fE) =f),
P Flxw =f(x), [f(x) =f(0),

where f(x) and f (x) denote, respectively, the upper and the lower limit of
the function /" at the point x. -

The space X" is the graph of the function k, = fxfx..xf: C'—[—1,1]".
Let x = (x;,%5,..,x,)e D" and ¢; = &1 for i =1,2,..,n Let A%* be the
boundary of the xn-dimensional cube »

Ko = (2, 1, Y25 s v e XIx [=1, 11" F ) 2y (x),
' if g; =1 and f(x)=y;=f (x), if & = —1}.
Theset K, = |

&y, tn=%1

the boundary of this cube. We shall prove that the space

Erotn L
K is an n-dimensional cube; by A, we shall denote

Y=x50o U U

xeD" gy1,,.,en=k1

ACLsrestn
x

s a weakly n-dimensional space. The symbol 0 shall denote the point (0, 0, ..., 0) e D",
?[‘o prove that ind Y>n it suffices to show that the identity mapping id,,: 45— 4,
is not continuously extendable over the whole space Y.

Let us assume that g: Y—4, is a continuous extension of the mapping id,, .
Let Bc D" be the set of all points x € D" such that the mapping g|4,: Ax—rAOA ;s
nf)t homotiopic to a constant; this means that the mapping g|4., cannot be con-
tinuously extended over the set K. If x € B, then there exists a sequence ¢, ..., &
of numbers equal to 41 such that the mapping g|4%* is not continuouslgr
exfendable over K3~ *"; otherwise, the combination of all such extensions would be
an extension of g|4, over K.

icm
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Let x = (x;, X2, ..., X,) € B and let g;, ..., &, be a sequence of numbers equal
to %1 such that the mapping g|4% ™ is not continuously extendable over K3 ™.
Applying (10), let us take for i =1,2,..,n a sequence {x51.; of points of the
set D converging to x; such that x¥ # x; for every kand i=1,2,..,n and

f(x’ic) = f(xy), f(x,f) =f(x), if &=1,
FEH =f), fGH=fC) I &=-1.

0

Let x, = (x%, x%, ..., x}); obviously, limx, = x. The set Ao | 4, is compact,
k=1

so that the mappings gy: 45 ~"—A, defined by the formula gi(x, ¥ =g,
are uniformly convergent to the mapping gl 4% Hence for almost all & the
mappings g, are not homotopic to a constant (see [5] § 54, IT Theorem- 4a). We
obtain:

(11)  for every x = (X1, X2, «s x;,) e B there exists a sequence {x,} of points in
the set B, where x, = (x%, 2%, ..., x}), such that limx, = x and X
for every k and i = 1,2, ..., -

As 0 e B, the set B is non-empty. Let us arrange all elements of D into a sequence
dy, sy, ... From (11) it follows that there exists a point y; € B and its open neigh-
bourhood U; =C" whose closure does not contain any point having at least one
coordinate equal to a;. From the set U; we choose a point y, € B and its neighbour-
hood U,=U, whose closure does not contain any point having at least one
coordinate equal to @,, and so on. In such a way we construct a sequence of points
$1s Vs, ... in the set B and a sequence of their neighbourhoods U; = U, =... Moreover,
we can assume that §(U)<1fi. The sequence {y;} converges to a point y € C";
from the construction if follows that y e (C\.D)". None of the mappings ¢g|4,, is
homotopic to a constant; hence the image of each mapping is the whole set Ao.
From this it follows that there exist a number #>0 and points i, »;" € 4,, such
that
n<a((914,) (7, (1 4,) (1)) = e(g (), g ) -

But the sequences {y;} and {y;'} converge to the same point (¥, k) € X5, because
the function f is continuous at all points 3¢, where y = (¥', %, ..., y"). This con-
tradicts the assumption of the continuity of function g. Hence ind Yzn.

Let us note that for every x € X the equality ind, ¥ = 0 holds.

Let U be an arbitrary open neighbourhood of the point x = (z, k() in the
space Y. Since the mapping k, is continuous at the point 7, there exists an open-
and-closed set V< C" such that t e ¥ and (¢, k,(t')) € U for ¢ € V. The set a” (),
where a: Y—C" is the projection of Y<C"x [—1, 1]* onto C”, is open-and-closed
as the inverse image of open-and-closed set ¥. Moreover, it is contained in U.

Hence

Y(,,)C U U A;]...an .

xED" 81,00, En=E
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The last set is (n—1)-dimensional as a countable union of compact, (n 1)- dmlen«
sional sets, so-that ¥ is weakly #-dimensional.

I am grateful to Professor R. Engelking for his help and to Mr. M. Zakrzewski,
who was the first reader of this text.
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Equivariant maps of Z,-actions into polyhedra
by

Richard J. Allen (Northfield, Minn.)

Abstract. Let X be an n-dimensional compact metric space with a free Zp-action. This paper
shows that for any positive number ¢ there exists an equivariant e-map from X into an n-dimensional
polyhedron K with a free Z,-action. Moreover, K can be equivariantly embedded in (2n+1)-dimen~
sional euclidean space E with an orthogonal Zp-action and there exists an equivariant e-map arbi-
trarily close to a given equivariant map from X into E.

1. Introduction. Let X be an n-dimensional compact metric space with a map
a: X— X of period p. The map a then defines a Z,-action on X and (X, 4) will denote
the equivariant space (X, Z,). Frequently, (X, ) is called a Z,-space. An equi-
variant map f: (X, &)—(Y, b) between two Z,-spaces is an equivariant e-map if
diamf ~ly<e for every yefX.

In the following, if (Y, b) is a Z,-space, then y*

= {y, by, ..., b* "'y} is called

=
the orbit of Y, and S* = U bIS is called the orbit of S, where y is an element in Y,
i=

and S'is a subset of Y. A subset S of Yis called sectional if S n y* = {y} foreach y
in S, and any one-to-one function y: (¥/Z,)—Y is called a section.

If the action on X is free, then an immediate consequence of (2.3) below is
that for any positive number ¢ there exists an equivariant e-map from X into an
n-dimensional polyhedron K with a free Z,-action. Moreover, by (3.1) below K can
be equivariantly embedded in (2n+1)- dlmensmnal euclidean space R*'*' with
an orthogonal Z,-action. Finally, it is shown in (3.3) that there exists an equivariant
£-map arbmarlly close to a given equivariant map from X into R*'*!.

A set Cis called a convex body in a euclidean space if C is closed, convex and
has a nonempty interior.

2. Replacement by polyhedra. (2.1), which is stated here and is used in
proving (2.3) below, can be found in Jaworowski [7, p. 235].

CovERING LemMMA (2.1). Let (X, a) be a compact metric Z,-space and let A be
an equivariant closed subspace of X such that Z,, acrs freely outside of A. Suppose C
is an equivariant open cover of X—A. Then there exists a countable, locally finite,
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