

Table des matières du tome CIII, fascicule 1

	rages
B. Tomaszewski, On weakly n-dimensional spaces	1-8
R. J. Allen, Equivariant maps of Z_p -actions into polyhedra	9–2
— Equivariant embeddings of Z_p -actions in euclidean space	23-30
S. Nowak, Some remarks concerning the fundamental dimension of the cartesian	
product of two compacta	31-4
E. E. Robinson, A characterization of certain branched coverings as group actions	43-4
J. Roitman, Adding a random or a Cohen real: topological consequences and the	
effect on Martin's axiom	47–6
W. T. Ingram, Hereditarily indecomposable tree-like continua	61-6
J. Cowles, The theory of Archimedean real closed fields in logics with Ramsey	
quantifiers	65-7

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Théorie Descriptive des Ensembles, Algèbre Abstraite

Chaque volume paraît en 3 fascicules

Adresse de la Rédaction:

FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Pologne)

Adresse de l'Échange:

INSTITUT MATHÉMATIQUE ACADÉMIE POLONAISE DES SCIENCES Śniadeckich 8, 00-950 Warszawa (Pologne)

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA Krakowskie Przedmieście 7, 00-068 Warszawa (Pologne)

Correspondence concerning editorial work and manuscripts should be addressed to: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Poland)

Correspondence concerning exchange should be addressed to:
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, Exchange
Sniadeckich 8, 00-950 Warszawa (Poland)

The Fundamenta Mathematicae are available at your bookseller or at ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Poland)

C. Copyright by Państwowe Wydawnictwo Naukowe, Warszawa 1979

ISBN 83-01-00405-3

ISSN 0016-2736

DRUKARNIA UNIWERSYTETU JOTE IELLONSKIEGO W KRAKOWIE

On weakly n-dimensional spaces

by

B. Tomaszewski (Warszawa)

Abstract. It is shown that if X is a weakly n-dimensional space and Y is a weakly m-dimensional space, then $\operatorname{ind}(X \times Y) \leq n+m-1$; a simple example of a weakly n-dimensional space is given for n=1,2,...

We shall consider only metric separable spaces. We denote by $X_{(k)}$ the set $\{x \in X : \operatorname{ind}_x X = k\}$; the symbol $B(A, \varepsilon)$ denotes the ε -ball about the set A. A space X is called weakly n-dimensional if $\operatorname{ind} X = n$ and $\operatorname{ind} X_{(n)} < n$. If rX is a compactification of the space X and $r: X \rightarrow rX$ is the homeomorphic embedding corresponding to the compactification rX (see [1], p. 125), then we identify the points $x \in X$ and $r(x) \in rX$.

K. Menger in [6] asked whether there exists a weakly one-dimensional space X such that ind $X^n = n$ for n = 1, 2, ... In this paper we answer this question, showing that there is no such space. More exactly, we prove the following

THEOREM. If X is a weakly n-dimensional space and Y is a weakly m-dimensional space, then $ind(X \times Y) \le n+m-1$.

In the second part of the paper we give a simple example of a weakly n-dimensional space for n = 1, 2, ... which applies a construction due to K. Kuratowski [3].

In the proof of our theorem the following five easy lemmas will be applied:

LEMMA 1. Every one-dimensional space X has a one-dimensional compactification rX such that $X_{(0)} \subset (rX)_{(0)}$.

This is a particular case of a theorem proved in [2].

Straightforward proofs of Lemmas 1-4 are omitted.

A closed subset $L \subset X$ is called a *partition* between the sets A and B provided that there exist two open sets U and V in X such that

$$A \subset U$$
, $B \subset V$, $U \cap V = \emptyset$ and $X \setminus L = U \cup V$.

LEMMA 2. Let rX be a compactification of the space X. If for any distinct points x and y of the space rX there exists a partition L between x and y such that $\operatorname{ind}(L \cap X) \leq n-1$, then $\operatorname{ind} X \leq n$.

1 - Fundamenta Mathematicae T. CIII

Lemma 3. If Z is a compact space and $F \subset Z$ is a closed subset of Z, then for every $\varepsilon \geqslant 0$ the union of all components of the space Z having diameter not smaller than ε and intersecting the set F is a compact set.

Lemma 4. If a closed subset F of a compact space Z is equal to the union of a family of components of the space Z, then for every $\varepsilon > 0$ there exists an open-and-closed set $U \subset Z$ such that $F \subset U \subset B(F, \varepsilon)$.

LEMMA 5. If a subset A of a compact space Z is equal to the union of a family of components of the space Z and $\overline{A} \setminus A$ is a compact set, then for every $\varepsilon > 0$ there exist sets $U_1, U_2, ... \subset Z$ such that

(a) U; are open-and-closed and pairwise disjoint.

(b)
$$A \subset \bigcup_{i=1}^{\infty} U_i \subset B(A, \varepsilon)$$
.

(c)
$$\operatorname{Fr}\left(\bigcup_{i=1}^{\infty} U_{i}\right) \subset \overline{A} \setminus A$$
.

Proof. Let us denote by \mathscr{F} the family of all components of the space Z intersecting the set $\overline{A} \setminus A$ and let us consider their union $F = \bigcup \mathscr{F}$. The set F is compact by virtue of Lemma 3; moreover $F \cap A = \emptyset$. Applying Lemma 4, let us take for i=1,2,... an open-and-closed set V_i such that $F \subset V_i \subset B(F,1/i)$. The set $F_i = A \setminus V_i$ is compact for every i; since $\bigcap_{i=1}^{\infty} V_i = F$, the inclusion $A \subset \bigcup_{i=1}^{\infty} F_i$ holds. Each of the sets V_i , being open-and-closed, is the union of a family of components of the space Z. Hence, there exists an open-and-closed set U_i' such that $F_i \subset U_i' \subset B(F_i, \varepsilon|i)$. Let us define $U_i = U_i' \setminus (U_1' \cup ... \cup U_{i-1}')$ for i=1,2,... The sets U_i are open-and-closed, pairwise disjoint and, moreover,

$$A = \bigcup_{i=1}^{\infty} F_i \subset \bigcup_{i=1}^{\infty} U_i' = \bigcup_{i=1}^{\infty} U_i \subset B(A, \varepsilon).$$

In order to conclude the proof of our lemma it remains to show that condition (c) is satisfied.

Let us assume that $p \in \operatorname{Fr}(\bigcup_{i=1}^{\infty} U_i)$ and $p = \lim p_i$, where $p_i \in U_{k_i}$. Since the sets U_i are open-and-closed, it follows that $\lim k_i = \infty$. For an arbitrary number $\eta > 0$ there exists a natural number j such that $k_i > \varepsilon/\eta$ for i > j. Since

$$\varrho(p_i, A) < \varrho(p_i, F_{k_i}) < \eta \quad \text{for} \quad i > j,$$

we have the inequality $\varrho(p,A) \leq \eta$. As the number η is arbitrary, we conclude that $p \in \overline{A}$. Obviously, the relation $p \in A$ cannot hold.

The theorem will be proved by induction. We shall start with the case of two weakly one-dimensional spaces X and Y. Let rX and rY be compactifications of X and Y, respectively, such that $X_{(0)} \subset (rX)_{(0)}$ and $Y_{(0)} \subset (rY)_{(0)}$; such compactifications exist by virtue of Lemma 1.

For arbitrary distinct points $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$ of the space $Z = rX \times rY$ we shall construct a partition L in the space Z between the points z_1 and z_2 such that ind $L \cap (X \times Y) \le 0$. By virtue of Lemma 2 this will yield our theorem in the case where n = m = 1. We can assume that $x_1 \ne x_2$.

Since $\operatorname{ind} X_{(1)} = 0$, in the space rX there exists a partition M between the points x_1 and x_2 such that $M \cap X_{(1)} = \emptyset$. Obviously the set $P = M \times rX$ is a partition in the space Z between the points z_1 and z_2 . Let $Z \setminus P = G_1 \cup G_2$, where G_1 and G_2 are disjoint open sets such that $z_1 \in G_1$ and $z_2 \in G_2$. Since $M \cap X_{(1)} = \emptyset$, we have $P \cap (X_{(1)} \times rY) = \emptyset$. We can also assume that

(1)
$$\varrho(x_1, M) > 2$$
 and $\varrho(x_2, M) > 2$.

Let B_m be the union of the family of all components of the space rX having a diameter less than 1/m and intersecting the set M. Obviously $B_m = E \setminus F_m$, where E is the union of all components of the space rX intersecting M and F_m is the union of all components of the space rX having a diameter not less than 1/m. By virtue of Lemma 3 the sets E and F_m are compact. Hence the set $\overline{B}_m \setminus B_m = \overline{B}_m \cap F_m$ is compact. Applying Lemma 5, take open-and-closed pairwise disjoint sets U_{lm} such that

$$(2) B_m \subset \bigcup_{i=1}^{\infty} U_{im} \subset B(B_m, 1/m)$$

and

(3)
$$\operatorname{Fr}\left(\bigcup_{i=1}^{\infty} U_{im}\right) \subset F_{m}.$$

Since $B_m \subset B(M, 1/m)$, it follows from (2) that

$$(4) \qquad \qquad \bigcup_{i=1}^{\infty} U_{im} \subset B(M, 2/m) .$$

Let us denote by A_m the union of the family of all components of the space rY having a diameter not smaller than 1/m. By virtue of Lemma 3 the set A_m is compact. Applying Lemma 4, take for i = 1, 2, ... an open-and-closed set V_{im} such that

$$A_m \subset V_{im} \subset B(A_m, 1/i)$$
.

Let us consider the set

$$W = \bigcup_{m=1}^{\infty} \bigcup_{i=1}^{\infty} (U_{im} \times V_{im}) .$$

We shall prove the inclusion

$$[(M \cap X) \times Y_{(1)}] \subset W.$$

Let us assume that $(x, y) \in [(M \cap X) \times Y_{(1)}]$ and let us take a natural number m such that $y \in A_m$. Since $M \subset rX \setminus X_{(1)}$, we have $M \cap X \subset X_{(0)} \subset (rX)_{(0)}$ and this implies that $(M \cap X) \cap \bigcup_{n=1}^{\infty} F_n = \emptyset$. Since $M \cap X \subset E$, we conclude that $(M \cap X)$

 $\subset E \setminus F_m = B_m$. From the inclusion $B_m \subset \bigcup_{i=1}^\infty U_{im}$ follows the existence of a natural number i such that $x \in U_{im}$. Since $y \in A_m \subset V_{im}$, we have $(x,y) \in U_{im} \times V_{im} \subset W$. Now we shall prove that

(6)
$$\operatorname{Fr} W \subset [(rX)_{(1)} \times (rY)_{(1)}] \cup P.$$

Let $p = (r, s) \in FrW$. Let us choose a sequence of points $p_1, p_2, ...$, where $p_k = (r_k, s_k) \in W$, converging to the point p. Let $p_k \in U_{i_k m_k} \times V_{i_k m_k}$. Since the sets $U_{i_m} \times V_{i_m}$ are open-and-closed, we can assume that $(i_k, m_k) \neq (i_j, m_j)$ for $k \neq j$. Moreover, we can assume (passing to a subsequence, if necessary) that either

(a)
$$m_1 < m_2 < ...$$
 or

(b)
$$m = m_1 = m_2 = ...$$
 and $i_1 < i_2 < ...$

First we shall consider the case (a). Let us take an arbitrary natural number n and such a number K that $m_k > n$ for k > K. Applying (4) we have $r_k \in U_{i_k m_k} \subset B(M, 2/m_k)$ $\subset B(M, 2/n)$. Since the number n is arbitrary, it follows from the compactness of the set M that $\lim r_k \in M$, so that $p = (r, s) \in P$.

Let us now consider the case (b). The sets U_{im} , where $i=1,2,\ldots$, are pairwise disjoind and open-and-closed. Hence

$$r \in \operatorname{Fr}\left(\bigcup_{k=1}^{\infty} U_{i_k m}\right) \subset \operatorname{Fr}\left(\bigcup_{i=1}^{\infty} U_{i_m}\right) \subset F_m \subset (rX)_{(1)}.$$

Moreover, $s_k \in V_{i_k m} \subset B(A_m, 1/i_k)$, so that $\lim s_k = s \in A_m \subset (rY)_{(1)}$. This implies that $p = (r, s) \in (rX)_{(1)} \times (rY)_{(1)}$ and the proof of (6) is concluded.

By virtue of (1) and (4) we have

$$(7) z_1, z_2 \in Z \setminus \overline{W}.$$

Let us consider open sets $G_1' = (G_1 \setminus \operatorname{Fr} W) \cup W$ and $G_2' = G_2 \setminus \overline{W}$ contained in Z, where G_1 and G_2 are open disjoint sets determined by the partition P; obviously, $G_1' \cap G_2' = \emptyset$. By virtue of (7) $z_1 \in G_1'$ and $z_2 \in G_2'$, so that the set

$$\begin{split} L &= Z \backslash (G_1' \cup G_2') = Z \backslash [(G_1 \backslash \operatorname{Fr} W) \cup W \cup (G_2 \backslash \overline{W})] \\ &= \operatorname{Fr} W \cup [Z \backslash (G_1 \cup W \cup G_2)] = \operatorname{Fr} W \cup [(Z \backslash (G_1 \cup G_2)) \backslash W] \\ &= \operatorname{Fr} W \cup (P \backslash W) \end{split}$$

is a partition between the points z_1 and z_2 in the space $Z = rX \times rY$.

In order to conclude the proof of the particular case under consideration, it suffices to show that $\operatorname{ind}(L \cap (X \times Y)) \leq 0$.

Let us consider the decomposition of the set $L' = L \cap (X \times Y)$ into the sets $L_1 = L' \cap P$ and $L_2 = L' \setminus P$. The set L_1 is closed in L. Hence, in order to prove that $\operatorname{ind} L' \leq 0$ it suffices to show that $\operatorname{ind} L_1 \leq 0$ and $\operatorname{ind} L_2 \leq 0$.

The first coordinate of every point from $L' \cap P$ belongs to $X_{(0)}$. By virtue of (5), the second coordinate belongs to $Y_{(0)}$. Hence we have $L_1 \subset X_{(0)} \times Y_{(0)}$ and this

implies that $\operatorname{ind} L_1 \leq 0$. Applying (6), we conclude that $L_2 \subset X_{(1)} \times Y_{(1)}$; hence — by the weak one-dimensionality of X and Y — also $\operatorname{ind} L_2 \leq 0$. Hence we have proved that $\operatorname{ind}(X \times Y) = 1$ if the spaces X and Y are weakly one-dimensional.

LEMMA 6. For every n-dimensional space X there exists a zero-dimensional set $D \subset X$ such that for every natural number $k \le n$ and each point $x \in X_{(k)} \setminus D$ the inequalities $\operatorname{ind}_{x}(X \setminus D) \le k-1$ and $\operatorname{ind}(X_{(n)} \setminus D) \le \operatorname{ind}X_{(n)}-1$ hold.

Proof. Let $\mathscr{U}=\{U_n\}_{n=1}^\infty$ be a countable base of the space X such that for every $x\in X_{(k)}$ there exist members $U_{k_1},\ U_{k_2},\ldots$ of the base \mathscr{U} which constitute a base for the space X at the point x and satisfy the inequality $\inf(\operatorname{Fr} U_{k_l})\leqslant k-1$ for $i=1,2,\ldots$ For every natural number m such that $\operatorname{Fr} U_m\neq 0$ let us take a zero-dimensional F_σ -set $A_m\subset\operatorname{Fr} U_m$ satisfying the equality $\inf(\operatorname{Fr} U_m\setminus A_m)=\inf(\operatorname{Fr} U_m)-1$.

Let $A = \bigcup_{m=1}^{\infty} A_m$. From the sum theorem it follows that the set A is zero-dimensional; moreover, A is an F_{σ} -set.

Let $B \subset X_{(n)}$ be a zero-dimensional F_{σ} -set in $X_{(n)}$ such that $\operatorname{ind}(X_{(n)} \setminus B)$ ind $X_{(n)}-1$. The set B also is an F_{σ} -set in the space X, because $X_{(n)}$ is an F_{σ} -set in X. Let us define $D = A \cup B$. From the sum theorem it follows that the set D is zero-dimensional; it is easy to check that the set D satisfies also the remaining requirements of the lemma.

Let us now assume that the theorem holds for all natural numbers n and m such that $n+m \le k-1 \ge 2$. Consider a weakly n-dimensional space X and a weakly m-dimensional space Y such that n+m=k. We shall prove that $\operatorname{ind}(X\times Y) \le n+m-1$.

Let rX and rY be arbitrary compactifications of the space X and Y, respectively. By virtue of Lemma 2 it suffices to prove that for any two distinct points $z_1, z_2 \in rX \times rY$, where $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$, there exists a partition $L \subset rX \times rY$ between z_1 and z_2 such that $\operatorname{ind}(L \cap (X \times Y)) \leq n+m-2$. We can assume that $x_1 \neq x_2$. Let $D \subset X$ be a set satisfying the requirements of Lemma 6. Since the set D is zero-dimensional, in the space rX there exists a partition L' between x_1 and x_2 such that $L' \cap D = \emptyset$. From Lemma 6 it follows that either

- (a) $\operatorname{ind}(L' \cap X) \leq n-2$ or
- (b) $L' \cap X$ is a weakly (n-1)-dimensional space.

Obviously $L=L'\times rY$ is a partition between z_1 and z_2 . Moreover, $L\cap (X\times Y)=(L'\cap X)\times Y$. Thus in case (a) we have $\inf[L\cap (X\times Y)]\leqslant n+m-2$; from the inductive assumption it follows that the same inequality holds in case (b).

Now we shall describe, for n=1,2,..., a weakly n-dimensional space; our construction seems simpler than the well-known construction due to Mazurkiewicz (see [7]). By C we shall denote the Cantor set. The space X constructed by K. Kuratowski (see [3] or [4] § 27, VI) is the graph of the function $f: C \rightarrow [-1, 1]$ defined by the formula

(8)
$$f(x) = \frac{(-1)^{k_1}}{2^1} + \frac{(-1)^{k_2}}{2^2} + \dots + \frac{(-1)^{k_n}}{2^n} + \dots,$$

where

(9)
$$x = \frac{2}{3^{k_1}} + \frac{2}{3^{k_2}} + \dots + \frac{2}{3^{k_n}} + \dots, \quad k_1 < k_2 < \dots$$

Let us denote by D the set of all points $x \in C$ which have a finite expansion of form (9); the set D is countable. One easily sees that D is the set of points of discontinuity of the function f. We define

$$X_1 = \{(x, f(x)): x \in D\}$$
 and $X_0 = \{(x, f(x)): x \in C \setminus D\};$

obviously $X = X_0 \cup X_1$. K. Kuratowski showed that $X_0 = X_{(0)}$ and $X_1 = X_{(1)}$, but his result will not be needed here. The only fact we shall use is that the function f has the following property:

(10) for every $x \in D$ there exist sequences \overline{x}_k and \underline{x}_k converging to x such that \overline{x}_k , $\underline{x}_k \in D$, \overline{x}_k , $\underline{x}_k \neq x$ for k = 1, 2, ... and

$$\vec{f}(\vec{x}_k) = \vec{f}(x), \quad f(\vec{x}_k) = f(x),$$

$$\vec{f}(\underline{x}_k) = f(x), \quad f(\underline{x}_k) = f(x),$$

where f(x) and f(x) denote, respectively, the upper and the lower limit of the function f at the point x.

The space X^n is the graph of the function $k_n = f \times f \times ... \times f$: $C^n \to [-1, 1]^n$. Let $x = (x_1, x_2, ..., x_n) \in D^n$ and $\varepsilon_i = \pm 1$ for i = 1, 2, ..., n. Let $A_x^{n_1 \dots n_n}$ be the boundary of the n-dimensional cube

$$K_x^{\varepsilon_1...\varepsilon_n} = \{(x, y_1, y_2, ..., y_n) \in \{x\} \times [-1, 1]^n : \bar{f}(x_j) \geqslant y_j \geqslant f(x_j),$$
if $\varepsilon_i = 1$ and $f(x_i) \geqslant y_i \geqslant f(x_i)$, if $\varepsilon_i = -1\}$.

The set $K_x = \bigcup_{\substack{\varepsilon_1, \dots, \varepsilon_n = \pm 1}} K_x^{\varepsilon_1 \dots \varepsilon_n}$ is an *n*-dimensional cube; by A_x we shall denote the boundary of this cube. We shall prove that the space

$$Y = X_0^n \cup \bigcup_{x \in D^n \ \varepsilon_1, \dots, \varepsilon_n = \pm 1} A_x^{\varepsilon_1, \dots, \varepsilon_n}$$

s a weakly *n*-dimensional space. The symbol 0 shall denote the point $(0,0,...,0) \in D^n$. To prove that ind $Y \ge n$ it suffices to show that the identity mapping $\mathrm{id}_{A_0} \colon A_0 \to A_0$ is not continuously extendable over the whole space Y.

Let us assume that $g\colon Y\to A_0$ is a continuous extension of the mapping id_{A_0} . Let $B\subset D^n$ be the set of all points $x\in D^n$ such that the mapping $g\mid A_x\colon A_x\to A_0$ is not homotopic to a constant; this means that the mapping $g\mid A_x$ cannot be continuously extended over the set K_x . If $x\in B$, then there exists a sequence $\varepsilon_1,\ldots,\varepsilon_n$ of numbers equal to ± 1 such that the mapping $g\mid A_x^{\varepsilon_1\cdots\varepsilon_n}$ is not continuously extendable over $K_x^{\varepsilon_1\cdots\varepsilon_n}$; otherwise, the combination of all such extensions would be an extension of $g\mid A_x$ over K_x .

Let $x=(x_1,x_2,...,x_n)\in B$ and let $\varepsilon_1,...,\varepsilon_n$ be a sequence of numbers equal to ± 1 such that the mapping $g\mid A_x^{\varepsilon_1...\varepsilon_n}$ is not continuously extendable over $K_x^{\varepsilon_1...\varepsilon_n}$. Applying (10), let us take for i=1,2,...,n a sequence $\{x_i^k\}_{k=1}^\infty$ of points of the set D converging to x_i such that $x_i^k\neq x_i$ for every k and i=1,2,...,n and

$$\bar{f}(x_i^k) = \bar{f}(x_i), \quad f(x_i^k) = f(x_i), \quad \text{if} \quad \varepsilon_i = 1,$$

$$\bar{f}(x_i^k) = f(x_i), \quad f(x_i^k) = f(x_i), \quad \text{if} \quad \varepsilon_i = -1.$$

Let $x_k = (x_1^k, x_2^k, ..., x_n^k)$; obviously, $\lim x_k = x$. The set $A_x^{e_1...e_n} \cup \bigcup_{k=1}^{\infty} A_{x_k}$ is compact, so that the mappings g_k : $A_x^{e_1...e_n} \to A_0$ defined by the formula $g_k(x, y) = g(x_k, y)$ are uniformly convergent to the mapping $g \mid A_x^{e_1...e_n}$. Hence for almost all k the mappings g_k are not homotopic to a constant (see [5] § 54, II Theorem 4a). We obtain:

(11) for every $x = (x_1, x_2, ..., x_n) \in B$ there exists a sequence $\{x_k\}$ of points in the set B, where $x_k = (x_1^k, x_2^k, ..., x_n^k)$, such that $\lim x_k = x$ and $x_i^k \neq x_i$ for every k and i = 1, 2, ..., n.

As $0 \in B$, the set B is non-empty. Let us arrange all elements of D into a sequence a_1, a_2, \ldots From (11) it follows that there exists a point $y_1 \in B$ and its open neighbourhood $U_1 \subset C^n$ whose closure does not contain any point having at least one coordinate equal to a_1 . From the set U_1 we choose a point $y_2 \in B$ and its neighbourhood $U_2 \subset U_1$ whose closure does not contain any point having at least one coordinate equal to a_2 , and so on. In such a way we construct a sequence of points y_1, y_2, \ldots in the set B and a sequence of their neighbourhoods $U_1 \supset U_2 \supset \ldots$ Moreover, we can assume that $\delta(U_i) < 1/i$. The sequence $\{y_i\}$ converges to a point $y \in C^n$; from the construction if follows that $y \in (C \setminus D)^n$. None of the mappings $g \mid A_{y_i}$ is homotopic to a constant; hence the image of each mapping is the whole set A_0 . From this it follows that there exist a number $\eta > 0$ and points $y_i', y_i' \in A_{y_i}$ such that

$$\eta < \varrho((g|A_{v_i})(y_i'), (g|A_{v_i})(y_i'')) = \varrho(g(y_i'), g(y_i'')).$$

But the sequences $\{y_i'\}$ and $\{y_i''\}$ converge to the same point $(y, k_n(y)) \in X_0^n$, because the function f is continuous at all points y^i , where $y = (y^1, y^2, ..., y^n)$. This contradicts the assumption of the continuity of function g. Hence ind $Y \ge n$.

Let us note that for every $x \in X_0^n$ the equality $\operatorname{ind}_x Y = 0$ holds.

Let U be an arbitrary open neighbourhood of the point $x = (t, k_n(t))$ in the space Y. Since the mapping k_n is continuous at the point t, there exists an openand-closed set $V \subset C^n$ such that $t \in V$ and $(t', k_n(t')) \in U$ for $t' \in V$. The set $\alpha^{-1}(V)$, where $\alpha: Y \to C^n$ is the projection of $Y \subset C^n \times [-1, 1]^n$ onto C^n , is open-and-closed as the inverse image of open-and-closed set V. Moreover, it is contained in U.

Hence

$$Y_{(n)} \subset \bigcup_{x \in D^n} \bigcup_{\varepsilon_1, \ldots, \varepsilon_n = \pm 1} A_x^{\varepsilon_1 \ldots \varepsilon_n}.$$

The last set is (n-1)-dimensional as a countable union of compact, (n-1)-dimensional sets, so that Y is weakly n-dimensional.

I am grateful to Professor R. Engelking for his help and to Mr. M. Zakrzewski, who was the first reader of this text.

References

- [1] R. Engelking, Outline of General Topology, Amsterdam 1968.
- [2] K. Kuratowski, Sur la compactification des espaces à connexité n-dimensionelle, Fund. Math. 30 (1938), pp. 242-246.
- [3] Une application des images de fonctions à la construction de certains ensembles singuliers, Mathematica 6 (1932), pp. 120-123.
- [4] Topology, vol. I, New York-London-Warszawa 1966.

8

- [5] Topology, vol. II, New York-London-Warszawa 1968.
- [6] K. Menger, Bemerkungen über dimensionelle Feinstruktur und Produktsatz, Prace Mat.-Fiz. 38 (1930), pp. 77-90.
- [7] S. Mazurkiewicz, Sur les ensembles de dimension faible, Fund. Math. 13 (1929), pp. 210-218.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK

Accepté par la Rédaction le 20. 9. 1976

Equivariant maps of Z_p -actions into polyhedra

by

Richard J. Allen (Northfield, Minn.)

Abstract. Let X be an n-dimensional compact metric space with a free Z_p -action. This paper shows that for any positive number ε there exists an equivariant ε -map from X into an n-dimensional polyhedron K with a free Z_p -action. Moreover, K can be equivariantly embedded in (2n+1)-dimensional euclidean space E with an orthogonal Z_p -action and there exists an equivariant ε -map arbitrarily close to a given equivariant map from X into E.

1. Introduction. Let X be an n-dimensional compact metric space with a map $a: X \to X$ of period p. The map a then defines a Z_p -action on X and (X, a) will denote the equivariant space (X, Z_p) . Frequently, (X, a) is called a Z_p -space. An equivariant map $f: (X, a) \to (Y, b)$ between two Z_p -spaces is an equivariant ε -map if $\dim f^{-1}y < \varepsilon$ for every $y \in fX$.

In the following, if (Y, b) is a \mathbb{Z}_p -space, then $y^* = \{y, by, ..., b^{p-1}y\}$ is called the *orbit of* Y, and $S^* = \bigcup_{j=0}^{p-1} b^j S$ is called the *orbit of* S, where y is an element in Y, and S is a subset of Y. A subset S of Y is called *sectional* if $S \cap y^* = \{y\}$ for each y in S, and any one-to-one function $\chi: (Y/\mathbb{Z}_p) \to Y$ is called a *section*.

If the action on X is free, then an immediate consequence of (2.3) below is that for any positive number ε there exists an equivariant ε -map from X into an n-dimensional polyhedron K with a free \mathbb{Z}_p -action. Moreover, by (3.1) below K can be equivariantly embedded in (2n+1)-dimensional euclidean space \mathbb{R}^{2n+1} with an orthogonal \mathbb{Z}_p -action. Finally, it is shown in (3.3) that there exists an equivariant ε -map arbitrarily close to a given equivariant map from X into \mathbb{R}^{2n+1} .

A set C is called a convex body in a euclidean space if C is closed, convex and has a nonempty interior.

2. Replacement by polyhedra. (2.1), which is stated here and is used in proving (2.3) below, can be found in Jaworowski [7, p. 235].

COVERING LEMMA (2.1). Let (X, a) be a compact metric Z_p -space and let A be an equivariant closed subspace of X such that Z_p acts freely outside of A. Suppose C is an equivariant open cover of X-A. Then there exists a countable, locally finite,