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Abstract, With the help of the continuum hypothesis, a hierarchy is constructed of sets which
are not concentrated on any countable set yet which have the property C of Sierpinski.

1. Introduction. A set E in a topological space X is concentrated on a countable
set D if whenever G is open in X, and G= D, then (E\G) is countable. Besicovitch [1]
(see also [4], p. 74, Theorem 38) showed that if the continuum hypothesis is true,
there exist uncountable concentrated sets in each uncountable complete separable
metric space. ‘ . '

Here we construct and study sets which. are not concentrated on a countable
set yet which have the property C of Sierpifiski (see e. g. [5], or 3.1 for the definition).
We show that there is a hierarchy of such sets, similar to the hierarchies of scattered
and Borel sets.

We define the operation of concentration (see 3.3), and show in Section 3 that
the class of sets with property C is closed under concentration and the operation
of taking countable unions. Starting from the countable sets and applying these two
operations we construct a class of sets whicl is also closed under these operations
and which is contained in the class of sets with property C. .

I thank Dr. A. Ostaszewski for drawing to my attention papers by E. Michael [3]
and R. Telgarsky [7]. 1 am also grateful to Prof. C. A. Rogers for reading an early
draft, and to R. Telgarsky for his comments.

2, Definitions and preliminary results. We assume the continuum hypothesis
throughout this paper, denoting it by CH. Without loss of generality, all sets will
be subsets of the real line, R.

DerNrTIoN 2.1. We shall say that countable sets are of type 0, and denote
the class of countable sets by &,. A set E is 1-concentrated on a set A if G open
and Go A imply that ENG is countable. Tf A is countable, E is of type 1. The class
of sets of type 1 we denote by %;.

Thus a set concentrated in the ordinary sense is of type 1, and belongs to %,
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Suppose we have defined &-concentration and sets of type ¢ for ordinals §<a.

Then a set E is a-concentrated on a set A if G open and G A4 imply that E\G
is of type ¢ for some ¢<a.

Suppose « is either a non-limit ordinal, or a limit ordinal not cofinal with w,,
the first infinite ordinal. A set E is of type o if E is a-concentrated on a set 4 of
type & for some £<a. .

Suppose o is a limit ordinal cofinal with w,. Then E'is of type o if E = |J E,,

h
where E, is of type &(n) for E(n)<a.

We denote the class of sets of type o by #,.

We justify these definitions in Section 4.

The following lemmas are easily proved:

LemmA 2.2. If E is of type o, and F< E, then F is of fype .

Lemma 2.3. Let «, B be ordinals with a<f. If E is of type a, then E is of type f.

THEOREM 2.4. (i) The .countqb/e union of sets each of type o is again of type a.

(i) If a>1 is a non-limit ordinal or a limit ordinal not cofinal with wq, the countable
union of sets E, of type E(n) for E(my<a is of type & for some ¢ <o

Proof. (i) is true for & = 0 and (ii) for « = 1. Suppose (i) and (ii) are true for
all a<n..If  is a limit ordinal cofinal with w,, (i) is clearly true for o = 5 by de-

finition. Suppose 7 is either a non-limit ordinal or a limit ordinal not cofinal with
w,. First we prove (ii).

Let E, be of type £(n) for £(m)<n, and E = () E,. Let & = sup&(n). Then
4 n

n
¢<n and by Lemma 2.3 each E, is of type &, so by the inductive hypothesis £ is
of type £. To prove (i), let E, be of type 5 for each n, and E = | E,. Then each E, is

n
n-concentrated on a set A, of type &(m) for E(m)<n. By (i) for « =n,
A4 = | 4,is of type £ for some £ <. If G is open and G= 4, then G > A, for each n,

so ENG is v(n) for  some v(m)<y. Again by (i) for « =7,
ENG = U (E,\G) is of type v for some v<y. Thus E is n-concentrated on 4,

of - type

so E is of type n.

3. Property C.

DEerNITION 3.1. A set E has property C if for each sequence of positive num-
bers {a,} there is a sequence of sets {4,} such that E< |J 4, and d(4,)< a,, where
n

d(4,) is the diameter of 4,. The class of sets with property C we shall denote by €.
The next lemma is easy to prove:

LeMMA 3.2. The countable union of sets each with property C is a set with prop-
erty C.

DEerNITION 3.3. Suppose &/ is a class of sets. We define &/, to be the class of
sets E such that: there exists an 4 € & such that if G is open and Go A4, ENG e «.

icm
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(For example, #oc = @), We say o is obtained from of by concentration, 1f
Ao = o, we say o is closed under concentration.

THEOREM 3.4, G = €, i.e., € is closed under concentration.

Proof. Let E be a set such that there exists a set 4 with property C such that
if G is open and G2 A then ENG has property C. We must show that E has prop-
erty C. Let a sequence {a,} of positive numbers be given. As 4 has property C,
we have A | A, where d(4,,)<ay, for each n and where we may assume that

"

the sets A4, aré: open. Then (EN\U 4,,) also has property C, so there are sets {4, }
"

with d(Agy- ) Stz 8nd (ENU Az)e U Azy-y. Thus Ec ) 4, and d(4,)<a,

n n n .

for each n, and the.theorem is proved.

COROLLARY. For each o, #,=%.

Proof. Follows from Lemma 3.2 and Theorem 3.4 by transfinite induction,

DEFINITION 3.5. A set is called fotully imperfect if it has no non-empty perfect
subsets. .
TumoreM 3.6, A set of type «, for any o, is totally imperfect.

Proof. By [2], p. 529, Th. 9, a set with property C is totally imperfect. The result
follows from Theorem 3.4, corollary.

COROLLARY. An uncountable analytic set is not of type for any o.

Proof. Every uncountable analytic set contains a non-empty perfect set.

4. Sets of type «. The definition of a set of type « is different in the case where &
is 2 limit ordinal cofinal with w,. We could have de“ﬁ.ned a set E to be of type «
if E is o-concentrated on a set A of type & for some & <a. ]—Igwever, as we shall see
(Theorem 6.3), Theorem 2.4 would then no longer be true. Here we show that no
generality is lost with our definition. ) o

TreorEM 4.1, Let o be a limit ordinal cofinal with w,. Let E be a set which is
(a+1)-concentrated on o set A of type n for some n<do. Then E is of type o.

Proof. If G is open and Go 4, then ENG is of type «, so

ENG = U E™,
"

where E™ is of type ¢ for §<o o

Using CH, well order the open sets containing A as {R,(},,ml.‘ where o, is ch
first uncountable ordinal and where R = R. Then EN\R; = C, is of type o, and.
Ci=R,. For any A<w,, i

(ENRYN () Ry=C,
x<A
is of type «, and (< () R,. Then
x<A -

EcAdvu U

284wy

U C}t'

1€A<ay

En(( ﬂZRn)\R}.) =Au
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As a is cofinal with @, we can chdose a sequence {v(1)} of non-limit ordinals with
supv(n) = «, and express each C, as
n

C.=U Ci")
n

where C{” is of type v(n). ‘
Let E,=Au {J C{ for each n. Then

1€a<at

“Ecdu U G=4u U UCP=U@Eu U M= UE,.
1€2<0y 1<A<wy » ] 1&A<wy n

By Lemma 2.2 it will suffice to show that each E, is of type §(n) for é(n)<a.

Let GoA be open. Then G = R, for some A*<w,. We have C{?=C e Ry
for each n and A>A*. Thus

En\Rl*c U CS.") )
LIS

which is a countable union of sets each of type v(n). By Theorem 2.4 (i), E,\Rx
is of type v(n). As G was any open set containing 4, E, is (v(rn)+1)-concentrated
on A, the set A being of type n<a. We can choose ¢(n) such that

max(v(n)+1,n)<é@m) <o

and &(n) is a non-limit ordinal, for each n. Then E, is &(n)-concentrated on 4,
and 4 is of type n<é(n), so E, is of type £(n). This completes the proof.

COROLLARY. If « is a limit ordinal cofinal with wo, and E is o-concentrated on
a set of type E<a, then E is of type o.

It follows from this result and Theorem 2.4 that our classes 4,, as o varies,
contain.all sets which are obtainable from the countable sets under the operations
of concentration (as defined in 3.3) and taking countable unions. ‘

THEOREM 4.2. Let w, be the first ordinal whose power is greater than the power
of w,. Then B, = U %,.

a<wy
Proof. Suppose E e4,,. Then E is w,-concentrated on a set 4 of type & for
some £<w,.
Well order the open sets containing 4, using CH, as {R,}; ¢, With Ry == R.
Now put C; = EN\R, for each A with 1<A<w;. Then each C; is of type £(%)
for &) <w,. Now

n = sup {(H<w,,
A<wy
and by Lemma 2.3 each C; is of type 5. If G is open and G4, then G = R, for
some 2*<w,, and ENG = Cj, 50 ENG is of type . Choose a non-limit ordinal y
with max (¢, 1) <y<w,. Then E is p-concentrated on A4, which is of type £<y,
so E is of type y<w,. This proves the theorem.

As a corollary, we deduce that not all the classes &, are different.
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COROLLARY, %, = A, Jor azw;.

Proof. Tt follows from Theorem 4.2 that «-~concentration is equivalent to
w,-concentration for all «2w,.

TueoreM 4.3. The class By, is ‘ '

(@) closed under the operation of taking countable unions, and

(i) closed under concentration, i.e. (By;)e = Ha,.

Proof. (i) follows from Theorem 2.4,

(i) Let E € (#4,)c. Then there exists a set 4 € 4, such that G open and G4
imply that ENG € #,,. By Theorem 4.2, 4 is of type & for some ¢<w, and E\G
is of type y<w, for all G, so Ee,,.

5. Other classes of sets, Our inductive definition of sets of type o was motivated
by a desire for the class 4, to be as-large as possible at stage o Other intermediate
classes of sets can be distinguished, and we define and study some of those which
will be useful in the next section. ’

DERNITION 5.1, We shall say Ee#¥, for n20, if

al)olVGQDDoa DﬂVGl“::DlE] o HD,,_1]VG,,._L:>D,(_1

n-1

the set (E\ | G;) = D, is countable, where for each i (0<i<n—1), D; is countable
i= ,

and G, is open,
THEOREM 5.2. &, %%y .

Proof. The theorem is true for 7 = 0 and 1. Assume it holds for all n<k. Let
E be a set of type k. Then there is a set 4 of type k—1 such that G open and Go 4
imply that ENG is of type k—1.

By the inductive hypothesis the following statement is true:

HDOlVGODDOE s aDzlc—l_-zlvczk-i—z DDZ"‘"I""Z

2l .
the set AN ) G, = Dye-1- is countable, where for each i, D, is countable and G,
1=0

is open. S

Now let Gyi-iy be any open set with Gau-1y D Da-iny. Then G = Lyo G is

open and contains A, so ENG is of type k—1. Again by the inductive hypothesis the
following statement is true:

aDzlc—IIVGzh-ib.Dzh—xa e aDzlc_zlvc;zlc_zD D2b~2 ’

2k .
‘the set (BNG)\ |J G, = Dy is countable, where for each i, D; 1s countable
j=ok=1 '
and G, is open.

4 — Fundamenta Mathematicae CII
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' k-2 2k i
But (B\G\ U G, = E\ U G,. Thus the following statement is true:
i 1 i=0

i=2k-
EDOIVGODDOH ‘e HDZ:,_ZIVsz_ZD Dyxer
2k—-2
the set E\ {J G; = D,y is countable, where for each i, D, is countable and G, is
i=0

i
'

open.

This means E e %B%...

The next theorem is easily proved by induction:

THEOREM 5.3. The countable union of sets belonging to &Y also belongs to #Y.
Also, if Ec®B¥ and F<E, Fe @Y,

DerINITION 5.4 (Telgarsky, (7). Let B%* = #,. A set E is n-chain-concentrated
about a countable set D if there exist {E;: 0<i<n} such that

‘ E = Ey2E 2..2E =D

and E, is 1-concentrated on E,., for each 0<gign—1.

The class of n-chain-concentrated sets is now denoted by Z**,

THEOREM 5.5. The countable union of sets belonging to BX* also belongs to B¥*.

The proof by induction is straightforward. )

THEOREM 5.6. Let i, j, and n be natural numbers with | +i+j = n. If Ee #%*,

then there is a set A E'with A € BY* such that G open and G A imply that ENG € 1.
Proof. The theorem is true for n = 1, when { = j = 0. Suppose it is also true
for n<m. Let Ee #3* and 1+i+j = m. Then there exist {£;: 0<i<m} such that

*

E=E,2E2..0E, =D,

where D is countable and E; is 1-concentrated on E,,; for 0<i<m—1.

By definition the set E,_;ed%**. Suppose G is open and GoE, _ ;- Then
E,-j-1\G is countable. Now

E\GQEI\GQ--.QE,"_]'_j,\G .

Let G" be any open set containing E,, ;\G for some k with 0k <m— J—1. Then
G" v G is open and Eyyy =G’ U G, 50 EN(G' U G) is countable, that is, (ENG)NG'
is countable. Thus ENG is 1-concentrated on E,. ,\G for 0ksm—~j~2, and
s0 ENG e Bk ;| = #}*. Thus we may take 4 = Eyeje

THEOREM 5.7. #%F., <=4, .

Proof. The result is true for n = 1. Assume it is true for n <k, and let E e BEE,.
Take i = j = 2"~ 1. Then i+j+1 = 2*—1, so by Theorem 5.6 there exists a set
AeBy¥ ., with AcE such that G open and G= 4 imply that ENG e #5%...,.
But by the inductive hypothesis both 4 and ENG are of type k—1, so Eis of type k.

6. Existence theorems. It may be that for each <, there are sets of type a not.
of type & for any {<a«. However, we can only prove this for aKwy. To do this, we
must first show the existence of certain sets in the classes Brx,
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THEOREM G.1. Ler H be an uncountable Borel set. For each natural number n,
there exists d set in FH belonging to @¢* but not to BY.,.

Proof. If we interpret 4% , to be the class consisting of the empty set, then the
theorem is clearly true for n = 0. Suppose we have proved the theorem for n<k.
We construct a set in H belonging to #¥* but not to & .

As every uncountable Borel set contains a non-empty perfect subset, we may
assume that M is closed. Let D, be a countable set dense in #. Well order the open
sets containing D, a8 {R,}oex<w,» a0d the set of all countable sets as {Dy}1gx<w;
using CH. ‘

Let A be an ordinal with 1 <A <w,. The set ﬂ/1 R, n H is a Borel set, which by

<
the Baire category theorem applied to M is uncountable, being the countable inter-
section of sets open and dense in H. By the corollary to Theorem 3.6, it follows
that () R, N H)¢%;. So there exists an open set G, with D=, such that
®<A

Hy= () Ryn H)NG,
®<) .

is uncountable. Now A, is a Borel set, so by the inductive hypothesis there is a set C;,
belonging to @)%, but not to #f., with C;<H,.
Let E=D, v U ;. Then EcH.

1eli<wy

Now each C,e#}*,. So, for each A there are {C}: 0<igk—1}, with
= Cladlz..20,

C¥1 countable, and €} [~concentrated on C4* for 0< i<k —2. Now for each i with
0<gighk~1 put
E =D u U Cj.
CoA<an
Then clearly

E= E2ER.2E_2E =D .

Now suppose / is such that 0igk—1. Let ¢ be any open set containing Ejq-
Then (o Dy, s0 G = Ry for some A*<w;. Thus

ENRpe U (CINRw) .
PP

Now, for each A, R = (="', as G £y, 50 Ci\Rys is countable for each 4.
It follows that £NR Ag is countable, so that E, is 1-concentrated on Ejpq for
0<igk~1. This means £'e #BE*.

Finally, we must show that E¢#}.,. i

Let T, be any countable set. Then Ty = D, for some n<w,. Now G, is an open
set containing D, such that ', R\G,, and C, does not belong to #¥_,. Set Uy = G-

So, ENU, ¢ 4% ,, by Theorem 5.3. Thus

VT]H Ul :DTJ IVTJ_E UZDTZ..-lVTk_za Uk—Z:’Tk—Z
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k=2 . . ‘
such that the set (E\NUp)\. U U, is uncountable, where each 7} is countable and U,
i=1
is open,
It follows (as T, was any countable set) that
vToan:’To]VTIa U1DTI...IVTk_zaUkWQDTkmz

k=2 k-2
such that the set (ENU)N U U, = E\ U U, is uncountable, But this implies
1= 1 {0

E¢ R .

Remark. Similar sets in product spaces are constructed by E. Michael [3].
Essentially it is shown there that the product of # copies of a set of type 1 need not
belong to %%, whilst in [7] it is shown that such a set must belong to g™,

THEOREM. 6.2. Let H be an uncountable Borel set. For each aKwy, there exists

a set in H of type o not of type & for any E<a.

Proof. It suffices to prove the theorem for o = n, a natural number; the
countable union (over ) of such sets is then of type @, but not of type » for any n.

Let E, be the set constructed in Theorem. 6.1 which belongs to #¥* but not
to Z}_,. Then Eya-. does not belong to %, 1> and 50 Eyn-1 is not of type n—1 by
Theorem 5.2. However E,.-1 belongs to #%% ., and 50 to A%\, so by Theorem 5.7,
En-yis of type n.

Finally we return to the remarks made at the beginning of Section 4 on the

- definition of .the classes #,, when « is 2 limit ordinal cofinal with w,. Here

we shall just take ¢ = w,.

We shall say a set Eis of type w if Eis @Wo-concentrated on a set 4 of type n < w,,.

THEOREM 6.3. There exists a sequence {E,} of sets each of type w§ whose union,
E, is not of type w. .

Proof. Let Z, be a sequence of pairwise disjoint open intervals, For each ,
let D, be a countable set dense in Z,, and choose disjoint closed infervals S,‘,f')

(n=1,2,..) in Z, with d(S3")~0, as m—~co (where d(E) denotes the diameter
of E)

oS, S 1) = inf{lx—): xe SP, y e SM V0 as

m m-> ,
and x™e S implies lim x™ = x™ ¢ D,.
m-r o0
For each  and m let H{” be a subset of S™ which is of type m but not of type

m—1, satisfying: if G is open and Go S A D,, then Hf,f")G is of type m—1. (This
can be done, as in Theorem 6.2, by constructing H® so ‘that HY e gphk. ),
Let E, = |J H® for each n. We first show that E, is of type w}. Let G be an
m
open set containing D,. Then x™ & G, so there exists an

N,(G) such that S™ <@
for m>N,, and thus H" <G for m>=N,. Then

ENG= | HD,

m<N,

which is of type N,. Thus E, is of type wf.
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Let E = U E,. We have to show that E is not of type w¥. Let A be any set of

k, for som"e k<w,. Let A, = Z, 1 A. Now H{ is not of typem—1, so foreachn
tyr:ie n;>k+1 we can choose an open set G(r,m) such that G(n, m)::A{, and
aillrl(”)\G(n m) is not of type m.—2. Tt follows that the open set G (n, n-+2) contains 4,

m 4 " X
G(n,n+2) is not of type .
e fgt\G(z U (G(1, n+2) 0 Z,). Then G is open, G=4, and

n

ENG = U (ENG(n, n+2) n Z)) = U (ENG(n, n+2)),

which is not of type n for any n<w. As A was arbitrary, we deduce that E is not
of type w¥.
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