228

I. Roitman

- [R₃] M. E. Rudin, The box product of countably many compact metric spaces, Gen. Top. Appl. 2 (1972), pp. 293-298.
- [S] J. Schoenfield, Unramified forcing, Axiomatic set theory; proc. of symp. in pure math., 13 (I), pp. 357-382.
- [W] S. Williams, Is $\bigcap {}^{\omega}(\omega+1)$ paracompact?, preprint.

WELLESLEY COLLEGE DEPARTMENT OF MATHEMATICS Wellesley, Mass.

Accepté par la Rédaction le 20, 9, 1976

First countable and countable spaces all compactifications of which contain βN

by

Eric K. van Douwen (Athens. Oh.) and Teodor C. Przymusiński* (Warszawa)

Abstract. We construct the following examples.

Example 1. A first countable Lindelöf (even cosmic) space Δ all compactifications of which contain βN .

Example 2. A countable space Σ with one non-isolated point all compactifications of which contain βN .

Since βN has cardinality 2^c, uncountable tightness and is neither first countable nor scattered, the above examples in particular yield:

- (1) A first countable Lindelöf space with no first countable compactification.
- (2) A countable space all compactifications of which have cardinality 2^{c} and uncountable tightness.
 - (3) A scattered space with no scattered compactification.
- 1. Introduction. Throughout this paper all spaces are assumed to be regular, a cardinal is an (von Neumann) ordinal, cf(x) is the cofinality of x, and c is 2^{ω} . For undefined terms we refer to [E].

In this paper we construct the following two examples.

Example 1.1. A first countable Lindelöf (even cosmic) space Δ all compactifications of which contain a homeomorph of βN .

Example 1.2. A countable space Σ with one non-isolated point all compactifications of which contain a homeomorph of βN .

Recall that a space X is *cosmic* [Mi] if it has a countable network, i.e. a countable family $\mathscr A$ of subsets such that for each open $U \subset X$ and each $x \in U$ there is an $A \in \mathscr A$ with $x \in A \subset U$. Every cosmic space is hereditarily Lindelöf and hereditarily separable. Also recall that the *tightness* $\tau(X)$ of a space X, [AP], is the smallest cardinal x such that, whenever $A \subset X$ and $x \in \overline{A}$, there exists a $B \subset A$ such that $x \in \overline{B}$ and $|B| \leq x$. It is known that βN has cardinality 2^c [E, Theorem 3.6.12] and $\tau(\beta N) = c$

^{*} This paper was completed while the second author was visiting the University of Pittsburgh as a Mellon Postdoctoral Fellow.

231

(since we do not know a convenient reference to the latter fact we record it as Proposition 2.6). A space is *scattered* if it contains no dense-in-itself subspace, so Σ is scattered since it has only one non-isolated point, and no compactification of Σ is scattered since $\beta N \setminus N$ is dense-in-itself. Finally, recall that the cardinality of a separable space is not greater than 2^{ϵ} [E, Theorem 1.5.3].

It follows from the above discussion that Examples 1.1 and 1.2 also yield the following examples.

 ${\tt Example~1.3.~A~first~countable~Lindel\"{o}f~space~with~no~first~countable~compactification.}$

Example 1.4. A countable space all compactifications of which have cardinality 2^c and tightness equal to c.

Example 1.5. A scattered space with no scattered compactification.

These examples answer questions of V. I. Ponomarev, A. V. Arhangel'skii and Z. Semadeni respectively. Earlier V. M. Ul'janov, [U], had constructed a first countable Lindelöf space with no first countable compactification, B. A. Efimov, $[Ef_2]$, had constructed a countable space all compactifications of which have cardinality 2^c and subsequently V. I. Malyhin, $[M_2]$, had constructed a countable space all compactifications of which have cardinality 2^c and uncountable tightness, and P. J. Nyikos, [N], had constructed a scattered space with no scattered compactification. Our examples are much simpler, have better properties and are constructed in a unified way: Δ is the union of the closed unit interval and a countable set of isolated points and Σ is the quotient space Δ/I . Consequently Σ is a Fréchet space, being the closed image of a Fréchet space, [E, Exercise 2.4.G].

It is worth noting that the verification of the most interesting statements about all compactifications of Δ and Σ is very simple and does not require the fact that βN can be embedded in every compactification of either space: in Remark 2.3 we show that if K is any compactification of either Δ or Σ then K is not first countable, in fact $\tau(K) = c$, that |K| > c and that K is not scattered.

Examples 1.1 and 1.2 are constructed in Section 2, the technique we use is the same as the technique we used in [vDP] to construct a (consistent) example of a first countable space of cardinality $\mathfrak c$ which cannot be embedded in any separable first countable space (such an example cannot exist under CH). In Section 3 we discuss a problem related to the construction of our examples.

2. Construction of the examples. Let I be the unit interval, let N be the set of positive integers and let Q be the set of rational numbers in I. Enumerate the family of all subsets of N as $\{A_s \colon s \in I\}$, and for each $s \in I$ and $m \in N$ choose a $q_s(m) \in Q$ such that $0 < |s - q_s(m)| < 1/m$, and put $Q_s = \{q_s(m) \colon m \in N\}$.

We topologize the set $\Delta = I \times \{0\} \cup Q \times N$ as follows. Points of $Q \times N$ are isolated, and basic neighborhoods of a point $(s,0) \in I \times \{0\}$ have the form

$$B_m(s) = \{(x, y) \in \Delta : |s - x| < 1/m\} \setminus (Q_s \times A_s \cup \{s\} \times N) \quad \text{for } m \in N.$$

One easily checks that this definition is correct, and that Δ is regular. Also, the subspace topology on $I \times \{0\}$ coincides with the usual topology on $I \times \{0\}$. Since $Q \times N$ is countable it follows that Δ is cosmic.

Let Σ be the quotient space obtained from Δ by identifying $I \times \{0\}$ to a point. It is clear that Σ is a T_1 -space with only one non-isolated point, hence Σ is regular. Moreover, Σ is a Fréchet space since the identification map is closed (even is perfect), [E, Excercise 2.4.G].

Let K be an arbitrary compactification of Δ or Σ .

For each $q \in Q$ the subspace $c_q N = \overline{\{q\} \times N}$ of K will be considered as a compactification of N (i.e. we identify $\langle q, n \rangle$ and n for each $n \in N$). In order to show that K contains a homeomorph of βN is suffices to show that some $c_q N$ contains a homeomorph of βN .

DEFINITION 2.1. Let cN be a compactification of N, and let A be a subset of N. We say that cN separates A and $N \setminus A$ if $\overline{A} \cap \overline{N \setminus A} = \emptyset$.

LEMMA 2.2. For each $A \subset N$ there is a $q \in Q$ such that $c_q N$ separates A and $N \setminus A$. Proof. Assume that K is a compactification of Δ . If K is a compactification of Σ the proof is analogous.

Choose an $s \in I$ such that $A = A_s$ and an open $U \subset K$ such that $U \cap \Delta = B_1(s)$. There are an open $V \subset K$ and an $m \in N$ such that

$$B_m(s) \subset V \subset \overline{V} \subset U$$
.

If $q = q_s(m)$ then $\{q\} \times A \subset K \setminus U$ and $\{q\} \times (N \setminus A) \subset B_m(s) \subset V$.

Hence $\overline{\{q\} \times A} \cap \overline{\{q\} \times (N \setminus A)} = \emptyset$ and therefore, in virtue of our identification, $c_q N$ separates A and $N \setminus A$.

Remark 2.3. At this stage we can show already that one of the c_qN 's, and hence K, must be quite "large". Let cN be the supremum of the family $\{c_qN: q \in Q\}$ of compactifications of N, [E, Theorem 3.5.9]. From Lemma 2.2 and the well-known characterization of the Čech-Stone compactification it follows that $cN = \beta N$. Now cN can be embedded into $\prod_{q \in Q} c_qN \subset K^\omega$, hence K^ω contains a homeomorph of βN . But βN is not first countable and $|\beta N| > c$, therefore K is not first countable either, and |K| > c (1).

Malyhin $[M_1]$ proved that a countable product of compact spaces with countable tightness has countable tightness, see also [E, Problem 3.12.8], so K does not have countable tightness. It is proved in ([RNT], Theorem 2) that for a compact scattered space K we have $|K| \leq w(K)$ the weight of K. But K is separable, hence $w(K) \leq c$ [E, Theorem 1.5.6] and therefore K is not scattered since |K| > c.

We now prove that one of the c_qN 's contains a homeomorph of βN . This

⁽¹⁾ It seems that we cannot prove that $|K|=2^c$ in a similar way. For it is consistent with ZFC that $\mathfrak{c}=\omega_1$ and (*) $2^{\varkappa}=\omega_{\omega+1}$ for $\mathfrak{c}\leqslant \varkappa\leqslant \omega_{\omega}$. Since $\varkappa^{\mathfrak{cl}(\varkappa)}>\varkappa$ for each cardinal \varkappa , (*) implies $(\omega_{\omega})^{\omega}=\omega_{\omega+1}$, so $|K|=\omega_{\omega}<2^c$ would seem possible.

requires two more Lemmas. Lemma 2.5 is known (see e.g. [Ef₁]), however, for the sake of completeness, we include its short proof.

Let D be the two-point discrete space $\{0, 1\}$.

LEMMA 2.4. There exists $a q \in Q$ such that $c_q N$ can be mapped continuously onto D^c . Proof. Let $D^c = \prod_{\alpha \in C} D_{\alpha}$, where $D_{\alpha} = D$, for $\alpha < c$, and let $\pi_{\alpha} : D^c \to D_{\alpha}$ be the lection. Since D^c is separable, there is a mapping $f : N \to D^c$ such that f(N) is

projection. Since D^c is separable, there is a mapping $f: N \to D^c$ such that f(N) is dense in D^c . For each $\alpha \in \mathfrak{c}$ let $B_{\alpha} = (\pi_{\alpha} \circ f)^{-1}(0)$. Since the cofinality of \mathfrak{c} is greater than ω , it follows from Lemma 2.2 that there is a $q \in Q$ such that

$$S = \{ \alpha \in \mathfrak{c} : c_{\alpha} N \text{ separates } B_{\alpha} \text{ and } N \backslash B_{\alpha} \}$$

has cardinality c. Let $\pi \colon D^c \to \prod_{\alpha \in S} D_\alpha$ denote the projection.

We can define a map $g: c_q N \rightarrow \prod_{\alpha \in S} D_{\alpha}$ by

$$g(x)_{\alpha} = \begin{cases} 0 & \text{if} & x \in \overline{B}_{\alpha} \\ 1 & \text{if} & x \in \overline{N \setminus B_{\alpha}} \end{cases}$$

for $\alpha \in S$. It is clear that g is continuous, and also that $g(n) = \pi(f(n))$ for each $n \in N$. The latter fact implies that g(N) is dense in $\prod_{\alpha \in S} D_{\alpha}$. Since c_qN is compact, g maps c_qN onto $\prod_{\alpha \in S} D_{\alpha}$.

Finally, note that D^c and $\prod_{\alpha \in S} D_{\alpha}$ are homeomorphic.

LEMMA 2.5. If a compact space X can be mapped onto D^c , then it contains a homeomorph of βN .

Proof. Let $f: X \to D^c$ be a be a continuous surjection. We may assume that βN is a subspace of D^c . Choose an $x_n \in X$ such that $f(x_n) = n$ for each n. Then $\{x_n: n \in N\}$ is a discrete subspace of X, so we may assume that $x_n = n$ for each n. Let $bN = \operatorname{Cl}_X N$, and let $g = f \mid bN$. Then g maps bN onto βN , and is the identity on N. Consequently, $bN = \beta N$, [E, Theorem 3.5.7].

It follows from Lemmas 2.4 and 2.5 that there exists a $q \in Q$ such that $\beta N = c_q N = K$. This completes the verification of the properties of the spaces Δ and Σ .

For the convenience of the reader we include below a short proof of the known fact that $\tau(\beta N) = c$.

Proposition 2.6 $\tau(\beta N) = c$.

Proof. $\tau(\beta N) \leq c$ since $w(\beta N) = c$. Also, $\tau(\beta N) \geq \tau(D^c)$ since βN can be mapped continuously onto D^c , [E, Theorem 3.6.11]. But D^c contains a homeomorph of the ordinal space $\varkappa+1$, for each regular cardinal \varkappa with $\omega \leq \varkappa \leq c$, and clearly $\tau(\varkappa+1) = \varkappa$ for each regular \varkappa . Therefore $\tau(\beta N) \geq \tau(D^c) \geq c$.

If follows from Proposition 2.6 that $\tau(K) = c$.

- (1) $\sup \mathscr{C} = \beta N$, and
- (2) some $cN \in \mathscr{C}$ contains a homeomorph of βN .
- V. I. Malyhin proved (unpublished) that if $\prod_{n \in \omega} X_n$ contains a homeomorph of βN then some X_n contains a homeomorph of βN , from which it follows that (2) is in fact a consequence of (1). Below we sketch the proof of a slight generalization of Malyhin's result.

THEOREM (Malyhin). If $\prod_{\alpha \in \mathcal{X}} X_{\alpha}$ contains a homeomorph of βN and $\alpha < cf(c)$ then some X_{α} contains a homeomorph of βN .

Sketch of proof. It is easy to prove this by induction for $k < \omega$, using the fact that every infinite closed subspace of βN contains a homeomorph of βN [E, Theorem 3.6.14].

Next consider an arbitrary $\varkappa < cf(c)$. Assume that $\beta N \subset \prod_{\alpha \in \varkappa} X_{\alpha}$ and let $f: \beta N \to D^c = \prod_{\alpha \in c} D_{\alpha}$ be a continuous surjection. For $\alpha < c$ let $\pi_{\alpha} : D^c \to D_{\alpha}$ be the projection. For each $\alpha \in c$ the sets $(\pi_{\alpha} \circ f)^{-1}(0)$ and $(\pi_{\alpha} \circ f)^{-1}(1)$ are disjoint compact subsets of the Hausdorff space $\prod_{\alpha \in \varkappa} X_{\alpha}$. Since $\varkappa < cf(c)$ it easily follows that there is an $S \subset c$ with |S| = c and a finite $F \subset \varkappa$ such that for each $\alpha \in S$ there are disjoint open U_0 , U_1 in $\prod_{\alpha \in F} X_{\alpha}$ such that

$$(\pi_{\alpha} \circ f)^{-1}(i) \subset U_i \times \prod_{\alpha \in \kappa \setminus F} X_{\alpha}.$$

Let $p: \prod_{\alpha \in X} X_{\alpha} \to \prod_{\alpha \in F} X_{\alpha}$ and $p: \prod_{\alpha \in C} D_{\alpha} \to \prod_{\alpha \in S} D_{\alpha}$ be the projections. Then one can define a continuous surjection $g: p(\beta N) \to \prod_{\alpha \in S} D_{\alpha}$ by requiring g(x), for $x \in p(\beta N)$, to be the unique element of $\pi[f(p^{-1}(x) \cap \beta N)]$. Hence $\prod_{\alpha \in F} X_{\alpha}$ contains a homeomorph of βN by Lemma 2.5. But F is finite, so some X_{α} , $\alpha \in F$, contains a homeomorph of βN , as noted at the beginning of this sketch.

COROLLARY. Let $\{c_{\alpha}N: \alpha \in \varkappa\}$ be a family of compactifications of N. If $\varkappa < cf(\mathfrak{c})$ and $\sup\{c_{\alpha}N: \alpha \in \varkappa\} = \beta N$, then some $c_{\alpha}N$ contains a homeomorph of βN .

Proof. Clearly $\beta N = \sup\{c_{\alpha}N: \alpha \in \varkappa\}$ can be embedded into $\prod_{\alpha \in \varkappa} c_{\alpha}N$ [E, Theorem 3.5.9] and hence some $c_{\alpha}N$ contains βN .

Remark. The condition $\varkappa < \operatorname{cf}(\mathfrak{c})$ is essential in the theorem. Indeed, otherwise one could write $D^{\mathfrak{c}}$ as $\prod_{\alpha \in \operatorname{cf}(\mathfrak{c})} \prod_{\beta \in A(\alpha)} D_{\beta}$ where $|A(\alpha)| < \mathfrak{c}$ and $\sum_{\alpha \in \operatorname{cf}(\mathfrak{c})} |A(\alpha)| = \mathfrak{c}$. Then

F. K. van Douwen and T. C. Przymusiński

no $\prod_{\beta \in A(\alpha)} D_{\beta}$ contains a homeomorph of βN since it has weight $|A(\alpha)| < c$, but of course D^{c} contains a homeomorph of βN .

A similar argument shows that the condition $\varkappa < cf(\mathfrak{c})$ is essential in the corollary, since βN is the supremum of all two-point compactifications of N.

Added in proof. The result of V. I. Malyhin referred to in the second paragraph of Section 3 will appear in his paper " βN is prime", Bull. Polon. Acad. Sci., in print.

References

- [AP] A. V. Arhangel'skiĭ and V. V. Ponomariev, On dyadic bicompacta, Dokl. Akad. Nauk SSSR 182 (1968), pp. 993-996.
- [vDP] E. K. van Douwen and T. C. Przymusiński, Separable extensions of first countable spaces, to appear in Fund. Math.
- [E] R. Engelking, General Topology, Warszawa 1977.
- [Ef₁] B. A. Efimov, Extremally disconnected compact spaces and absolutes, Trudy Moskov. Mat. Obšč. 23 (1970), pp. 235-276 (= Trans. Moscow Math. Soc. 23 (1970), pp. 243-285).
- [Ef₂] On the imbedding of extremally disconnected spaces into bicompacta, Proc. Third Prague Top. Conf. 1971, Prague 1973, pp. 103-107.
- [M₁] V. I. Malyhin, On tightness and Suslin number in exp X and in a product of spaces, Dokl. Akad. Nauk SSSR 203 (1972), pp. 1001-1003 (= Soviet Math. Dokl. 13 (1972), pp. 496-499).
- [M_s] On countable spaces having no bicompactification of countable tightness, Dokl. Akad. Nauk SSSR 206 (1972), pp. 1293-1296, (Sov. Math. Dokl. 13 (1972), pp. 1407-1411).
- [Mi] E. Michael, No-spaces, J. Math. and Mech. 15 (1966), pp. 983-1002.
- [N] P. J. Nyikos, Not every scattered space has a scattered compactification, Notices AMS 6 (1974), Abstract #A570.
- [RNT] C. Ryll-Nardzewski and R. Telgársky, On the scattered compactification, Bull. Acad. Polon. Sci. 18 (1970), pp. 233-234.
- [S] Z. Semadeni, Sur les ensembles clairsemés, Dissertationes Math. 19, Warszawa 1959.
- [U] V. M. Ul'janov, Examples of Lindelöf spaces having no compact extensions of countable character, Dokl. Akad. Nauk SSSR 220 (1975), pp. 1282-1285 (= Sov. Math. Dokl. 16 (1975), pp. 257-261).

INSTITUTE FOR MEDICINE AND MATHEMATICS, MATHEMATICS BUILDING OHIO UNIVERSITY

Athens, Oh.

234

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES Warszawa

Accepté par la Rédaction le 23, 9, 1976

LIVRES PUBLIÉS PAR L'INSTITUT MATHÉMATIQUE DE L'ACADÉMIE POLONAISE DES SCIENCES

- S. Banach, Oeuvres, Vol. I, 1967, p. 381, Vol. II, 1979, p. 470.
- S. Mazurkiewicz, Travaux de topologie et ses applications, 1969, p. 380.
- W. Sierpiński, Oeuvres choisies. Vol. I, 1974, p. 300; Vol. II, 1975, p. 780; Vol. III, 1976 p. 688.
- J. P. Schauder, Oeuvres, 1978, p. 487.

Proceedings of the Symposium to honour Jerzy Neyman, 1977, p. 349.

MONOGRAFIE MATEMATYCZNE

- 27. K. Kuratowski i A. Mostowski, Teoria mnogości, 5-eme éd., 1978, p. 470.
- H. Rasiowa and R. Sikorski, The mathematics of metamathematics, 3-ème éd. corrigée, 1970, p. 520.
- 43. J. Szarski, Differential inequalities, 2-ème éd., 1967, p. 256.
- 44. K. Borsuk, Theory of retracts, 1967, p. 251.
- 45. K. Maurin, Methods of Hilbert spaces, 2-ème éd., 1972, p. 552.
- 47. D. Przeworska-Rolewicz and S. Rolewicz, Equations in linear spaces, 1968, p. 380.
- 50. K. Borsuk, Multidimensional analytic geometry, 1969, p. 443.
- 51. R. Sikorski, Advanced calculus, Functions of several variables, 1969, p. 460.
- 52. W. Ślebodziński, Exterior forms and their applications, 1970, p. 427.
- 53. M. Krzyżański. Partial differential equations of second order I. 1971, p. 562.
- 54. M. Krzyżański, Partial differential equations of second order II, 1971, p. 407.
- 57. W. Narkiewicz, Elementary and analytic theory of algebraic numbers, 1974, p. 630.
- 58. C. Bessaga and A. Pełczyński. Selected topics in infinite-dimensional topology, 1975. p. 353
- 59. K. Borsuk, Theory of shape, 1975, p. 379.
- 60. R. Engelking, General topology, 1977, p. 626.
- 61. J. Dugundii and A. Granas, Fixed-point theory, Vol. 1 (sous presse).

DISSERTATIONES MATHEMATICAE

- CLV. J. Tabor, Algebraic objects over a small category, 1978, p. 66.
- CLVI. J. Dvdak. The Whitehead and Smale theorems in shape theory, 1978, p. 55.
- CLVII. S. Goldberg, P. Irwin, Weakly almost periodic vector-valued functions, 1978, p. 46.

BANACH CENTER PUBLICATIONS

- Vol. 1. Mathematical control theory, 1976, p. 166
- Vol. 2. Mathematical foundations of computer science, 1977, p. 259.
- Vol. 3. Mathematical models and numerical methods, 1978, p. 391.
- Vol. 4. Approximation theory (sous presse).
- Vol. 5. Probability theory (sous presse).
- Vol. 6. Mathematical statistics (sous presse).

Sprzedaż numerów bieżących i archiwalnych w księgarni Ośrodka Rozpowszechniania Wydawnictw Naukowych PAN, ORPAN, Palac Kultury i Nauki, 00-901 Warszawa.