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. all compactifications of which contain gV
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Abstract. We construct the following examples,

ExamrLe 1. A first countable Lindelsf (even cosmic) space 4 all compactifications of which
contain N. )

EXAMPLE 2. A countable space 2 with one non-isolated point all compactifications of which
contain N.

Since AN has cardinality 2, uncountable tightness and is neither first countable nor scattered,
the above examples in particular yield:

(1) A first countable Lindeldf space with no first countable compactification.

@ A countable space all compactifications of which have cardinality 2° and uncountable
tightness. '

(3) A scattered space with no scattered compactification.

1. Introduction. Throughout this paper all spaces are assumed to be regular,
a cardinal is an (von Neumann) ordinal, cf(x) is the cofinality of %, and c is 2°.
For undefined terms we refer to [E].

In this paper we construct the following two examples.

ExaMmpLE 1.1. A first countable Lindelsf (even cosmic) space 4 all compacti-

fications of which contain a homeomorph of BN. u

ExampLE 1.2. A countable space  with one non-isolated point all compacti-
fications of which contain a homeomorph of BN.

Recall that a space X is cosmic [Mi] if it has a countable network, i.e. a connt-
able family o of subsets such that for each open Uc X and each x € U there is
an A4 e o with x € A< U. Every cosmic space is hereditarily Lindelof and hereditarily
separable. Also recall that the tighiness t(X) of a space X, [AP], is the smallest
cardinal s such that, whenever 4 <X and x e 4, there exists a B< 4 such that x e B
and |B|<x. It is known that BN has cardinality 2°[E, Theorem 3.6.12] and t(fN) = ¢

* This paper was completed while the second author was visiting the University of Pittsburgh
as a Mellon Postdoctoral Fellow. '
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(since we do not know a convenient reference to the latter fact we record it as Prop-
osition 2.6). A space is scattered if it contains no dense-in-itself subspace, so X is
scattered since it has only one non-isolated point, and no compactification of X is
scattered since SN\N is dense-in-itself. Finally, recall that the cardinality of a separ-
able space is not greater than 2° [E, Theorem 1.5.3].

Tt follows from the above discussion that Examples 1.1 and 1.2 also yield the
following examples.

ExampLE 1.3. A first countable Lindeldf space with no first countable com-
pactification.

ExampLE 1.4. A countable space all compactifications of which have cardi-
nality 2° and tightness equal to «¢.

ExampLE 1.5. A scattered space with no scattered compactification.

These examples answer questions of V.I. Ponomarev, A.V. Arhangel’skii
and Z. Semadeni respectively. Earlier V. M. Ul’janov, [U], had constructed a first
countable Lindeldf space with no first countable compactification, B. A. Efimov,
[Ef,], had constructed a countable space all compactifications of which have cardi-
nality 2° and subsequently V. I. Malyhin, [M,], had constructed a countable space
all compactifications of which have cardinality 2° and uncountable tightness, and
P. J. Nyikos, [N], had constructed a scattered space with no scattered compac-
tification. Our examples are much simpler, have better properties and. are constructed
in a unified way: 4 is the union of the closed unit interval and a countable set of
isolated points and Z is the quotient space A/I. Consequently ¥ is a Fréchet space,
being the closed image of a Fréchet space, [E, Exercise 2.4.G].

It is worth noting that the verification of the most interesting statements about
all compactifications of 4 and ¥ is very simple and does not require the fact that SN
can be embedded in every compactification of either space: in Remark 2.3 we show
that if K is any compactification of either 4 or X then K is not first countable, in
fact 7(K) = ¢, that |K|>¢ and that K is not scattered.

Examples 1.1 and 1.2 are constructed in Section 2, the technique we use is the
same as the technique we used in [vDP] to construct a (consistent) example of a first
countable space of cardinality ¢ which cannot be embedded in any separable first
countable space (such an example cannot exist under CH). In Section 3 we discuss
a problem related to the construction of our examples.

2. Construction of the examples. Let I be the unit interval, let N be the set of

bositive integers and let Q be the set of rational numbers in I. Enumerate the family
of all subsets of N as {4;: se I}, and for each se and m e N choose a g (m)e 0
such that 0<|s—g,(m)|<1/m, and put O, = {g(m): me N}.

We topologize the set 4 =-Ix {0} U QXN as follows. Points of Qx N are
isolated, and basic neighborhoods of a point (s, 0) € I'x {0} have the form

B(s) = {(x,») ed: ]s‘——xl{ Ump(Q,x A, U {s}x N} for me N .
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One easily checks that this definition is correct, and that 4 is regular. Also,
the subspace topology on Ix {0} coincides with the usual topology on I x {0}. Since
O x N is countable it follows that 4 is cosmic.

Let X be the quotient space obtained from 4 by identifying Ix {0} to a point.
It is clear that ¥ is a T',-space with only one non-isolated point, hence X is regular.
Moreover, Z is a Fréchet space since the identification map is closed (even is perfect),
[E, Excercise 2.4.G].

Let K be an arbitrary compactification of 4 or X.

For each g e Q the subspace ¢,N = {g} x N of K will be considered as a com-
pactification of N (i.e. we identify (g, n> and » for each ne N). In order to show
that K contains a homeomorph of SN is suffices to show that some ¢gN contains
a homeomorph of SN.

DsrNITION 2.1. Let ¢N be a compactification of IV, and let 4 be a subset of N.
We say that cN separates A and NN\A if A0 N\A = &.

LemMMa 2.2. For each A< N there is a q € Q such that ¢,N separates 4 and N\A.

Proof. Assume that K is a compactification of 4. If K is a compactification
of Z the proof is analogous.

Choose an s & I such that 4 = 4, and an open Uc X such that U n 4 = B,(s).
There are an open VoK and an me N such that

B (HcVeVcU. @

If g = g(m) then {g}x A=K\U and {g} x (N\4)=B,(s)= V.

Hence {g} x4 n {g} x (N\4) = @ and therefore, in virtue of our identifica-
tion, ¢, N separates 4 and N\4. &

Remark 2.3. At this stage we can show already that one of the ¢,N’s, and
hence K, must be quite “large”. Let ¢N be the supremum of the family {c,N: ge Q}
of compactifications of N, [E, Theorem 3.5.9]. From Lemma 2.2 and the well-known
characterization of the Cech-Stone compactification it follows that ¢N = BN.

.Now ¢V can be embedded into ] ¢,N=X®, hence K“ contains a homeomorph

€0
of AN. But N is not first countable and |fN|>¢, therefore X is not first countable
either, and |K|>c(%).

Malyhin [M,] proved that a countable product of compact spaces with countable
tightness has countable tightness, see also [E, Problem 3.12.8], so X does not have
countable tightness. Tt is proved in ([RNT], Theorem 2) that for a compact scattered
space X we have |X|<w(X) the weight of X. But X is separable, hence w(K)<t¢
[E, Theorem 1.5.6] and therefore X i$ not scattered since |K|>c. H

We now prove that one of the ¢,N’s contains a homeomorph of BN. This

(*) It seems that we cannot prove that | K| = 2%in a similar way. For it is consistent with ZFC
that € =y, and (%) 2% = wy+1 for C<u<wy. Since M) >y for each cardinal x, (%) implies
(0)? = we+1, 50 |K| = wy<2° would seem possible.
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requires two more Lemmas. Lemma 2.5 is known (see e.g. [Ef,]), however, for the
sake of completeness, we include its short proof.
Let D be the two-point discrete space {0, 1}.
LEMMA 2.4. There exists a g € Q such that ¢, N can be mapped continuously onto D",
Proof. Let D* = [[ D,, where D, = D, for a<c, and let =,: DD, be the

projection. Since D° is separable , there is a mapping f N-»D° such that J(N) is
_ dense in DF. For each a e ¢ let B, = (m, o f)~1(0). Since the cofinality of ¢ is greater
than o, it follows from Lemma 2.2 that there is a & Q such that

S = {ne¢: ¢,N separates B, and N\B,}
has cardinality ¢. Let n: D= [] D, denote the projection.

aeS

We can define a map g: ¢,N—[] D, by
aesS

0 if
1 if

G, = xeB,

93 = x € N\B,

for a € . Tt is clear that g is continuous, and also that g(n) = =( f(n)) for each n e N.

The latter fact implies that g (V) is dense in ] D,. Since ¢, is compact, g maps ¢, N
: xes

onto [] D,. #
xS
Finally, note that D and [] D, are homeomorphic. B
xS

LemMMa 2.5. If a compact space X can be mapped onto D°, then it conrains
a homeomorph of BN.

Proof. Let f: X— D" be a be a continuous surjection. We may assume that SN
is a subspace of D Choose an x,e X such that f(x,) = n for each n. Then
{x,: ne N} is a discrete subspace of X, so we may assume that x, = n for each n.
Let BN = ClyN, and let g = f|bN. Then g maps bN onto SN, and is the identity
on N. Consequently, bN = BN, [E, Theorem 3.5.7]. W

It follows from Lemmas 2.4 and 2.5 that there exists a ge Q such that
BNcc¢,NcK. This completes the verification of the properties of the spaces 4
and Z. W

For the convenience of the reader we include below a short proof of the known
fact that t(fN) = c.

PROPOSITION 2.6 T(fN) = ¢

Proof. 1(BN) < csince w(BN) = c¢. Also, T(BN) =1 (D) since BN can be mapped
continuously onto Df, [E, Theorem 3.6.11]. But D° contains a homeomorph of the

ordinal space x-+1, for each regular cardinal » with w<x<c¢, and clearly

7(%+1) = % for each regular %. Therefore 7(N)=t(D)=c. M
If follows from Proposition 2.6 that t(K) = c.

icm
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3. Final remarks. In Section 2 we showed that if ¢ is a countable collection of
compactifications of N such that for each 4 < N there is an ¢N € % which separates 4
and N\4, then

(1) sup% = BN, and
(2) some cN e ¥ contains a homeomorph of BN.

V.1 Malyhin proved (unpublished) that if J] X, contains a homeomorph

new

of BN then some X, contains a homeomorph of AN, from which it follows that (2) is
in fact a consequence of (1). Below we sketch the proof of a slight generalization of
Malyhin’s result.

TaEOREM (Malyhin). If [] X, contains a homeomorph of BN and »<cf(c)
. @Eex
then some X, contains a homeomorph of BN.

Sketch of proof. It is easy to prove this by induction for k< w, using the fact
that every infinite closed subspace of BN contains a homeomorph of SN [E, The-
orem 3.6.14]. .

Next consider an arbitrary x<cf(c). Assume that fNc [] X, and let
134

f: BN-»D* =[] D, be a continuos surjection. For a<c let n,: D°—>D, be the

projection. For each a € ¢ the sets (n, o)~ *(0) and (z, o )~ *(1) are disjoint com-
pact subsets of the Hausdorff space [] X,. Since »<cf(c) it easily follows that

aex

there is an Sc¢ with |[S| = ¢ and a finite F<x such that for each « € S there are
disjoint open U,, U, in [] X, such that

aeF

(e o N DU [] X,

aex\F

Let p: T] X, [] X, andp: J] D~ [] D, be the projections. Then one can
ack xeS

1:3 aEc

define a continuous surjection g: p(BN)— [] D, by requiring g(x), for x e p(BN),
aeS
to be the unique element-of n[f(p~*(x) N fN)]. Hence [] X, contains a homeo-
aeF

morph of BN by Lemma 2.5. But Fis finite, so some X, « € F, contains a homeo-
morph of BN, as noted at the beginning of this sketch. W

COROLLARY. Let {¢,N: a €%} be a family of compactifications of N. If »<cf(¢)
and sup{c,N: wex} = BN, then some c,N contains a homeomorph of BN.

Proof. Clearly BN = sup{c,N: « &%} can be embedded into ] ¢,N [E, The-
orem 3.5.9] and hence some ¢, N contains fN. W =

Remark. The condition % <cf(c) is essential in the theorem. Indeed, otherwise

one could write D¢ as D, where [A(w)|<c and ), [4(x)| = c. Then
. aeci(c) ped(x) aecf(c) '
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no [] D contains a homeomorph of BN since it has weight |4 (x)[<¢, but of

Bed(a) S. Banach, Oeuvres, Vol. I, 1967, p. 381, Vol. II, 1979, p. 470.

course D° contains a homcomorph Of BN. I S. Mazurkiewicz, Travaux de topologie et ses applications, 1969, p. 380.
A similar argument shows that the condition x < cf(c) is essential i in the corollary, W. Sierpiniski, Oeuvres choisies. Vol. I, 1974, p. 300; Vol. II, 1975, p. 780; Vol. III, 1976

since BN is the supremum of all two-point compactifications of N. p. 688.
J. P. Schauder, Oeuvres, 1978, p. 487,

]

Added in proof. The résult of V. 1. Malyhin referred to in the second paragraph of Sec-
tion 3 will appear in his paper “gN is prime”, Bull. Polon. Acad. Sci., in print.

Proceedings of the Symposium to honour Jerzy Neyman, 1977, p. 349.

: References e
[AP] A.V. Arhangel'skil and V. V. ?onomariev, On dyadic bicompacta, Dokl, Akad. ’ MONOGRAFIE MATEMATYCZNE
Nauk SSSR 182 (1968), .pp. 993-996. o o 27. X. Kuratowski i A. Mostowski, Teoria mnogosci, 5-eme éd., 1978, p. 470.
[vDP] E.K. van Douwen and T.C. Przymusifiski, Separable ex of first ¢ 41. H. Rasiowa and R. Sikorski, The mathematics of metamathematics, 3-éme &d. corrigée,
spaces, to appear in Fund. Math, 1970, p. 520.
[E] R. Engelking, General Topology, Warszawa 1977. 43. 1. Szarski, Differential inequalities, 2-tme &d., 1967, p. 256.
[Efi] B. A. Efimov, Extremally disconnected compact spaces and absolutes, Trudy Moskov. 44. K. Borsuk, Theory of retracts, 1967, p. 251,
Mat. Obsg. 23 (1970), pp. 235-276 (= Trans. Moscow Math. Soc. 23 (1970), pp. 243-285). 45. K. Maurin, Methods of Hilbert spaces, 2-¢me 6d,, 1972, p. 552,
[Efy]  — On the imbedding of extremally disconnected spaces into bicompacta, Proc. Third Prague 47. D. Przeworska-Rolewicz and'S. Rolewicz, Equations in liniear spaces, 1968, p. 380.
Top. Conf. 1971, Prague 1973, pp. 103-107. 50. K. Borsuk, Multidimensional analytic geometry, 1969, p. 443.
M4] V. 1. Malyhin, On tightness and Suslin number in exp X and in a product of spaces, Dokl. 51. R. Sikorski, Advanced calculus. Functions of several variables, 1969, p. 460.
Akad. Nauk SSSR 203 (1972), pp. 1001-1003 (= Soviet Math. Dokl 13 (1972), 52. W. Slebodzifiski, Exterior forms and their applications, 1970, p. 427.
pp. 496-499). ] ) 53. M. Krzyzanski, Partial differential equations of second order I, 1971, p. 562.
[Ms]  — On countable spaces having no bicompactification of countable tightness, Dokl. Akad, 54. M. Krzyzafiski, Partial differential equations of second order II, 1971, p. 407.
Nauk SSSR. 206 .(1972), pp. 1293-1296, (Sov. Math. Dokl 13 (1972), pp. 1407-1411). 57. W. Narkiewicz, Elementary and analytic theory of algebraic numbers, 1974, p. 630.

Mi] E. Michael, No-spaces, J. Math. and Mech. 15 (1966), pp. 983-1002.

[N] P. ]. Nyikos, Not every scattered space has a scattered compactification, Notices AMS 6
(1974), Abstract 3A570.

[RNT] C.Ryll-Nardzewski and R. Telgarsky, On the scatrered compactification, Bull. Acad.
Polon. Sci. 18 (1970), pp. 233-234.

58. C.Bessaga and A. Pelczyriski, Selected topics in infinite-dimensional topology, 1975, p. 353
59. K. Borsuk, Theory of shape, 1975, p. 379.

60. R. Engelking, General topology, 1977, p. 626.

61. J. Dugundji and A. Granas, Fixed-point theory, Vol. 1 (sous presse).

[S] Z. Semadeni, Sur les ensembles. clairsemds, Dissertationes Math. 19, Warszawa 1959,
] V.M. Ulljanov, Examples of Lindeldf spaces having no pact ex ions of co bl DISSERTATIONES MATHEMATICAE
character, Dokl. Akad. Nauk SSSR 220 (1975), PP. 1282-1285 (= Sov. Math. Dokl. 16 CLV. J. Tabor, Algebraic ObjCClS over ‘a small category, 1978, p. 66.
(1975), pp. 257-261), . CLVI. J. Dydak, The Whitchead and Smale theorems in shape theory, 1978, p. 55.

CLV1I, S. Goldberg, P. Irwin, Weakly almost periodic vector-valued functions, 1978, p. 46.
INSTITUTE FOR MEDICINE AND MATHEMATICS, MATHEMATICS BUILDING

OHIO UNIVERSITY

Athens, Oh. ' BANACH CENTER PUBLICATIONS
INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCBS
Warszawa Vol. 1. Mathematical control theory, 1976, p 166.
. Vol. 2. Mathematical foundations of computer science, 1977, p. 259.
Accenté par la Rédaction le 23. 9. 1976 Vol. 3. Mathematical models and numerical methods, 1978, p. 391,

Vol. 4, Approximation theory (sous presse),
Vol. 5. Probability theory (sous presse).
Vol. 6. Mathematical statistics (sous presse).

Sprzedaz numeréw biezacych i archiwalnych w ksiegarni Ofrodka Rozpowszechniania
| Wydawnictw Naukowych PAN, ORPAN, Patac Kultury i Nauki, 00-901 Warszawa.


Artur




