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Some fixed point theorems in metric spaces
by

Shigeru Itoh (Tokyo)

Abstract. We will consider various fixed point theorems in metric spaces with some structure.
First, we will give theorems for multivalued mappings. Then applying these results, we will prove
common fixed point theorems for singlevalued mappings and multivalued mappings.

1. Introduction. Takahashi [11] considered metric spaces with some convex
structure and proved fixed point theorems for nonexpansive mappings. Machado [8]
further studied convex structures in metric spaces including the one initiated by
Takahashi (which Machado called W-convexity) and gave various fixed point
theorems. Takahashi or Machado’s main results were generalizations of known
fixed point theorems for amenable semigroups of nonexpansive mappings on
compact convex subsets or for commutative families of nonexpansive mappings on

sweakly compact convex subsets of Banach spaces respectively (cf. Takahashi [10],

Belluce—Kirk [1]). .
In this paper we will prove fixed point theorems for multivalued mappings
and common fixed point theorems for singlevalued and mnltivalued mappings in
W-starshaped and W-convex metric spaces.
The author wishes to express his thanks to Professors H. Umegaki and

'W. Takahashi for many suggestions and encouragements in preparing this paper.

2. Preliminaries. Let X be a complete metric space with the metric d. For any
Adc X and ¢>0, we denote d(x, A) = inf{d(x,y): ye 4} and

V(d,c) = {yeX: d(y, A)y<c}.

Let 2% be the family of 511 subsets of X, CB(X) all nonempty bounded closed
subsets of X, K(X) all nonempty compact subsets of X respectively. Let D be the
Hausdorff matric on CB(X) induced by d, that is, if 4, Be CB(X), then

D(A, B) = max{sup d(x, B), sup d(y, A)} .
\ xed veB

- DeFmiTIoN 1. For any nonempty bounded subset 4 of X, we define
y(4) = inf{c>0: 4 can be covered by a finite number of subsets of X whose
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diameters are less than or equal to c}. y(4) is called 'the (set-) measure of non-
compactness of A.

The idea of measure of noncompactness is due to Kuratowski (cf. [3]).

Let f be a mapping of X into X. f is said to be k-Lipschitz (k 20) if for every
x,ye X, d(fx,fy)<kd(x,y). k-Lipschitz mappings are called k-coniraction or
nonexpansive if 0<k<1 or k = 1 respectively. f is said to be quasi-nonexpansive
if F(f)={xe X: fx = x} is nonempty and for each xe€ X, ue F(f), d(fx,u)
<d(x, u). f is said to be asymptotically regular if for any x € X, d(f"x, "1 x)-0
as n—» 0. fis said to be condensing if f is continuous and for each 4 = X with y(4)>0,
P(7 () <7 (4). ‘

Let T be a mapping of X into CB(X). T is called k-Lipschitz (k>0) if for
any x, y€ X, D(Tx, Ty)<kd(x, y). When 0<k<1 or k = 1, k-Lipschitz mappings
are called k- contraction or nonexpansive respectively. T is called upper semicontinuous
if for every closed subset C of X, T™}(C) = {xe X: Cn Tx # @} is a closed
subs.et of X. When T is a k-Lipschitz mapping of X into K(X), then T is upper
semicontinuous. T is called condensing if T is upper semicontinuous and for any
AcX such that y(4)>0, y(T(A))<y(4), where T(4) = U {Tx: x e A}. T is called
asymptotically regular if for each x, e X, there exists a sequence {x,} =X such
that x,,., €Tx, (n=0,1,2,..) and d(x,, X,4+,)—0 as n—o0.

DEFINITION 2. A metric space X is said to be W-starshaped if there exist an
X, € X and a mapping #: X'x {xo} x [0, 11— X such that for each x, ye X, a [0, 1],

d(x, W(», xo, @))<ad(x, N+ (1 —-a)d(x, xo) .
A metric space X is said to be W-convex if there exists a mapping W: X'x X'x [0,1]—X
such that for every x, ¥, ze X, a€[0,1], '
d(x, W(y, z, a))<ad(x, ) +(1—a)d(x, z) .
A subset K of a W-convex metric space is said to be convex if for any x, ye K,
ael0,1}, W(x,y,a)e K. )
DEFINITION 3. A W-starshaped metric space X is said to satisfy condition (1) if
for any x,ye X, ae[0, 1],
d(W(x, xo, @), W(p, Xo, a))<ad(x, y) .
A W-convex metric space X is said to satisfy condition (I1) if for every x, y, z € X,
ael0,1], ' .
d(W(x, z,a), W(y, z, a))<ad(x, y) .

A W-convex metric space X is said to satisfy condition (II) if for each x, y, u, v e X,
ael0, 1],

d(W(x, 5, @), W, v, )<ad(x, u)+(1~a)d(y, v).

W-starshaped metric spaces are generalizations of starshaped subsets of Banach
spaces, where a subset K of a Banach space is starshaped if there exists an x; in K such
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that for each xe KX, ae[0,1], ax+(1—a)xoe K. It is obvious that W-convex
metric spaces are W-starshaped, and W-convex mefric spaces satisfying con-
dition (1) satisfy condition (IT). When X is W-convex, we denote CK (X) the family
of all nonempty compact convex subsets of X.

Let X be a Hausdorff topological space, C(X) the Banach space of all bounded
real valued continuous functions on X with sup norm. Let A be a closed subspace
of C(X) containing 1y (the constant 1 function on X), A* its dual space. me A*
is called a mean on A if |jm]| = m(ly) = 1. : -

Let G be a semitopological semigroup, that is, G is a semigroup and a Hausdorff
topological space such that the semigroup operation of G is separately continuous.
G is said to act on a topological space X if there exists a mapping G X X— X such
that (sf)x = s(tx) for every s,1€G, xe X, where tx is the image of (¢, x). The
action is said to be separately continuous if the mapping Gx X— X is separately
continuous. The action of G on X is said to be equicontinuous if the family of
mappings {x—sx (xe X): se G} is equicontinuous. In particular, if X is a metric
space and the mappings {x—sx (xe X): s€ G} are nonexpansive, then the action
is called nonexpansive. '

For any se G, define operators I, r,: C(6)—~C(G) by (LR)() = h(s?) and
(rsh)(8) = h(ts) (he C(G), t € G). A subspace A of C(G) is called translation invariant
if for every s € G, I(4), r(4)=A. Let 4 be a translation invariant subspace contain-
ing 15, then a mean m on A is called a left invariant mean if m(I;h) = m(#) for any
ke C(G), seG. heC(G) is called almost periodic if OL(h) = {Lh: seG} is
precompact in C(G). Then AP(G) = {he C(G): his almost periodic} is a translation.
invariant closed subalgebra of C(G) containing 1. It is known that 2e AP(G) if
and only if OR(h) = {r,h: s e G} is precompact. If G is left reversible, then AP(G)
has a left invariant mean (cf. [4], [7]). :

3. Fixed point theorems for multivalued mappings. We will extend a result in [3]
to the case of multivalued mappings in the follwing way.

PROPOSITION 1. Let X be a complete metric space, T a condensing mapping of X
into CB(X ).'Suppo.Ve there is a nonempty bounded subset K of X such that T(K) is
bounded and inf{d(x, T(x)): x € K} = 0. Then there exisis a fixed point z e cl(K),
the closure of K, of T, i.e, zeTz. .

Proof. Choose a sequence {x,} =X such that d(x,, T(x,)<27" (n= 1,2, "
For each n, there exists a y, € T(x,) for which

d(%y, Yo <d(x,, T(x,))+27"<27"F1

For any ¢>0, take a N = N(¢) such that 27N+lge, then for each n>N, d(Xy; yu) <C-
Denote A4 = {x,}, B = {y,} and C = {x;, Xz, xy}, then V(B,)2ANC and

y(4) = y(ANO) <y (V(B, ))<y(B)+2¢.
As ¢ is arbitrary, we obtain :
A< (B)<y(T(A) -
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This implies 4 is precompact, since T"is condensing. Thus, there exists a subse-
quence {x,} of {x,} such that {x,} converges to some z e cl(X). Then {y,} con-
verges to z and, since 7" is upper semicontinuous, we have z € T(z). Q.E.D.

Now we will give a fixed point theorem in W-starshaped metric spaces.

THEOREM 1. Let X be a bounded complete W-starshaped metric space satisfying
condition (I). Let T be a nonexpansive condensing mapping of X into K(X), then there
exists a fixed point of T in X.

Proof. There are an x,€ X and a mappmg W: Xx{xo}x[0,1]-X. For
any ke(0,1), define a mapping Tj: X—2% by Ty(x) = {W(y,xo, k): ye T(x)}
(x € X), then for any x € X, T(x) is nonempty compact and T} is k-contraction,
since X satisfies condition (I). Thus, by [9] there are a fixed point x), € X of T}, and
a y; € T(xy) such that x, = W(y,, xo, k). It follows that

¢

d(xk: T(xk))sd(xkf yi) = d(W(Yk’ X, k), J’k)g(l —k)d(xo, 1) -

Since X is bounded, d(x,, T(x;))—0 as k—1. By Proposition 1, there exists a fixed
point of T"in X. Q.E.D.

‘When X is compact, we can easily derive the following

COROLLARY 1. Let X be a compact W-starshaped metric space satisfying con-
dition (I). Let T be a nonexpansive mapping of X into K(; (X)), then there is a fixed point
of T in X.

For asymptotically regular mappings, the following theorem holds.

THEOREM 2. Let X be a bounded complete metric space, T an asymptotically regular,
condensing mapping of X into CB(X). Then there exists a fixed point of T in X.

Proof. Fix an element x, e X arbitrarily. Since 7 is asymptotically regular,
there is a sequence {x,} = X such that x,,, € Tx, (n = 0, 1, ...) and d(x,, X, +{)—0

as n—o0. Then we have d(x,, Tx,,)—>0 as n—oo. By Proposmon 1, there is a fixed
point of 7 in X. Q.E.D.

4. Common fixed point theorems. We w111 state a fundamental result which is

essentially contained in [7, p. 74]. For the sake of completeness we will give its proof.

PROPOSITION 2. Let X be a compact Hausdorff space, G a semitopological
semigroup ‘acting on X. Suppose the action of G on X is separately continuous and
equicontinuous. If AP(G) has a left invariant mean, then there exists a nonempty
compact subset M of X such that s(M) = M for any se G.

Proof. By Zorn’s lemma, there exists a minimal nonempty closed subset M
of X which is G-invariant, ie., for any seG, s(M)cM. Define a mapping
Q: XxC(M)—~C(G) by Q(x,h)(s) = h(sx) (xe X, he C(M), s€ G), then by [7]
the range of Q is contained in AP(G). Let m be a left invariant mean on AP(G)
and fix a point ye M. Define a mapping p: C(M)-R by p(h) = (Q(y,h))
(7 € C(), then p is a mean on C(M) and for every s & G, p(Lh) = p(h), where L, is
the operator on C(M) defined by (Lh)(x) = A(sx) (x € M). Thus, by Riesz’s théorem
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there is a probability measure P on M which is invariant under each se G. Put
My, = (| {F=M: F is closed and P(F) = 1}, then M, is nonempty closed and
G-invariant. Since M is minimal, M = M,. For each seG,

"P(s(M)) = P(s™'s(M)) = P(M) = 1 -

hence M>s(M)>M, = M and s(M) = M. Q.E.D.
The following theorem is an extension of a result in [8, p. 50]. The method of

‘the proof is a slight modification of those in [4, 8].

THEOREM 3. Let X be a bounded W-convex metric space satisfying condition
(), K a compact subset of X, G a semitopological semigroup dctioning on X.
Suppose the action of G on X is separately continuous and nonexpansive. If AP (G) has
a left invariant mean and if there is an element t € G such that t commutes with every
s€G and for any xe X, cl{f"x: n= 1,2, ..} contains a point of K, then there
exists a common fixed point ze K of G, i.e., sz = z for all s€G,

Proof. There exists a minimal nonempty closed convex G-invariant subset Y
of X, since each nonempty closed convex G-invariant subset of X intersects with K.
As in the proof of Theorem 1, inf{d(x, #x): x € ¥} = 0 because X satisfies con-
dition (II). For each xe X, cl{f"x: n=1,2,..} contains a point of K, thus
inf{d(x, tx): xe ¥} = min{d(x, tx): xe ¥ n K} and there is a fixed point of 7 in

¥~ K. Let Fbe the fixed point set of £in ¥ n K, then Fis G-invariant and compact.

By Proposition 2 there exists a nonempty compact subset M of F such that for any
s G, s(M) = M. If M contains more than one point, then by [11, Proposition 5]
there is a we ¥ for which sup {d(u,x): xe M} = r<diam(M) (the diameter
of M). Put Y, = {ye ¥: d(x,y)<r for all xe M}, then ¥, is a nonempty closed
convex G-invariant proper subset of Y. This contradicts the minimality of Y.
Therefore M consists of a single point which is a fixed point of G. Q.E.D.

When X itself is compact, we have the following

THEOREM 4. Let X be a compact W-convex metric space, G a semitopological
semigroup acting on X. Suppose the action of G on X is separately continuous and
nonexpansive. If AP(G) has a left invariant meari, then there is a common fixed point
of Gin X.

Proof. Let K be any G-invariant compact convex subset of X then by Prop-

_osition 2 there exists a nonempty compact subset M of K such' that for each se G,

s(M) = M. Hence, by [11, Theorem 3] G has a common fixed point in X. Q.E.D.

Now we will give an interesting result- which will be used to prove a common
fixed point theorem for a semigroup of nonexpansive mappings and a multivalued
noncxpanswe mapping. A mapping  of a set X onto a subset of X is called a retrac-
tion if r?

PROPOSITION 3. Let X be a compact W-convex melric space satisfying con-

dition (II1), G a semitopological semigroup actjng on X. If the action of G on X is

separately contimious, nonexpansive and if AP(G) has a left invariant mean, then

3 — Fundamenta Mathematicae CII
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there exists u nonexpansive retraction ¥ of X onto F (G) (the fixed points of G in X)
such that every G-invariant closed convex subset of X is r-invariant. .
Proof. F(G') is nonempty compact by Theorem 4. Let §'= {f: X—X: fis
nonexpansive with F(f)> F(G) and every G-invariant closed convex subset of X is
f-invariant}, then S contains the mappings {x—sx (x € X): s€ G}, Fix an element
ue F(G). For any xe X, denote Hx = {ye X: d(y, ) <d(x, )}, then Hx>Gx
= {sx: se G} and Hx is compact convex. Hence, the product topological space

H = T] Hxis compact. S'is a semigroup with respect to the compositionof mappings.
xeX .
It is not difficult to show that S is closed in ‘H. Thus, S is compact in the topology

.of pointwise convérgence on X. Since X satisfies condition (ITI), for any xe X,
Sx = { fx: fe S} is G-invariant compact convex and has a fixed point of G which
is a fixed point of S by. Theorem 4. Therefore, by [2, Theorem 3] there exists a re-
traction r e S of X onto F(S) = F(G). Q.E.D. ‘

If X is strictly convex (i.e., for any x, y'€ X, where x # » and

d(x, z)+d(z; y) = d(x, ),

there is an a € (0, 1) such that z = W(x, y, 4)), then an analogous result holds for
quasi-nonexpansive mappings. In Banach spaces. similar results were given in [12].

PROPOSITION 4, Let X be a compact W-convex metric space which is strictly
convex and satisfies condition (II1Y. Let G be a family of quasi-nonexpansive mappings
on X such that G has common fixed points F(G) in X. Then there exists a quasi-
nonexpansive retraction r of X onto F(G) for which any closed convex G-invariant
subset of X is r-invariant.

~ Proof. Let 8= {f: X->X: F(f)>F(G), every G-invariant closed -convex
subset is f-invariant and for any xe X, ue F(G), d(fx,u)<d(x, u)}, then §5G
and § is a semigroup. Fix a point u € F(G). For each x e X, put

Hx = {ye X: d(y, )<d(x0)},
then Hx is compact convex and the product topological space H =] | Hx is compact.
xeX

Since § in closed in H, S is compact in the topology of pointwise convergence on X,
By condition (IIT) for each x € X, Sx is G-invariant compact convex. Hence, there
is a unique element v € Sx such that d(u, v) = min{d(u, y): y € Sx} by [8, p. 52].
For any fe S, foe Sx and d(fv,u)<d(v,u), hence fo = v and v is a fixed point
of S. Thus, by [2, Theorem 3] there exists a retraction r € § of X onto F(S) = F(G).
-Since F(r) = F(G), r is quasi-nonexpansive. Q.E.D.

The followings are common fixed point theorems for singlevalued mappings
and multivalued mappings. Let X be a set, f a mapping of X into X, G a family of
mappings of X into X, T a mapping of X into 2%, fand T are said to commute if for
any x € ,X? F(Tx)=T(fx). G and T are said to commute if every s € G and T commute.
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If G is a semigroup acting on X, then G and T are said to commute whenever the
semigroup of mappings {x—ssx (xe X): se G} and T commute.

THEOREM 4. Let X be a compact W-convex metric space satisfying condition (IT1), '
G « semitopological semigroup acting on X. Suppose the action of G on X is separately
continuous, nonexpansive and AP(G) has a left invariant mean. Let T be a nonex-
pansive mapping of X into CK(X). If G and T commute, then there exists an element
ze X such that sz = ze Tz for all seG.

Proof. By Proposition 3 there exists a nonexpansive retraction » of X onto F(G)
such that any G-invariant compact convex subset of X is r-invariant. Define
a mapping S: X—CK(X) by Sx = T(rx) (x € X), then S.is nonexpansive and has
a fixed point ve X by Corollary 1. Since G and T commute, Sv is G-invariant,
hence r-invariant. In particular, rv e Sv. Denote z = rv, then we have sz = ze Tz
for all se G. Q.E.D. '

THEOREM 5. Let X be a bounded complete W-starshaped metric space satisfying
condition (Y), f an asymptotically regular, condensing mapping of X into X, T a non-
expansive condensing mapping of X into K(X). If [ and T commute, then there exists
a ze X for which fz = zeTz. ' '

Proof. There is a fixed point v e X of T. Since f and T commute, f"v € T(f™v)
(n=1,2,..). {f"} is precompact because f is condensing. Thus, there is a sub-
sequence { f™v} of {f"v} such that { f"v} converges to some z € X. Since f is asymp-
totically regular and 7' is upper semicontinuous, {f™*'v} converges to z and
fz=2zeTz. QE.D. :

If T is asymptotically regular, then in complete metric spaces a similar result
holds. The proof can be obtained by the same method of Theorem 5 using
Theorem 2 instead of Theorem 1, hence we omit the proof.

THEOREM 6. Let X be a bounded complete metric space, f an asymptotically regular,
condensing mapping of X into X, T an asymptotically regular, condensing mapping
of X into CB(X). If f and T commute, then there exists a point z € X such that
fz=zeTz i

If X is strictly convex, then for quasi-nonexpansive mappings and multivalued
nonexpansive mappings we have a similar result to Theorem 4.

TugoreMm 7. Let X be a compact W-convex metric space which is strictly convex

" and satisfies condition (11). Ler G be a family of quasi-nonexpansive mappings on X such

that G has common fixed points F(G) in X. Let T be a nonexpansive mapping of X
into CK(X). If G and T commute, then there exists a ze X such that sz = ze€ Tz
Jor all seG. ' )

Proof. Since X is strictly convex, F(G) is convex as il_i the proof of [1'1, The-
orem 2]. For any x € F(G), s € G, s(Tx)=T(sx) = Tx, hence there is a fixed point
of G in Tx. In fact, take a unique u & T'x, nearest to x, then d(su, x)<d(u, x) and
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su = u. Define a mapping S of F(G) into CK(F(G)) by Sx =
then for each x,y e F(G),

F(G) n Tx (x & F(G)),

Il

D(Sx, Sy) max{sup d(v, Sy),sup d(w, Sx)}

vesSx

max {sup d(v, Ty),sup d(w, Tx)}.

veSx

max {sup d(v, Ty), sup d(w, Tx)}

veTx

= D(Tx, Ty)<d(x,y)'

n

Thus S is nonexpansive and has a fixed point z e F(G) by Corollary 1. For this z,
we have sz = ze Tz for all seG. Q.E.D.

In the case that X is not compact, then the following holds.

THEOREM 8. Let X be a bounded complete W-convex metric space which is strictly
convex .and satisfies condition (IT). Let f be a nonexpansive condensing mapping of X
into X, T a nonexpansive mapping of X into CK(X)..If f ond T commute, then there
exists an element z € X such that fz = z e Tz.

- Proof. F(f) is nonempty compact by Theorem 1 and convex because X is
strictly convex. Define a mapping S of F(f) into CK(F(f)) by Sx = F(f)n Tx
(x € F(f)), then as in the proof of Theorem 7, S is nonexpansive and has a fixed
point z& F(f) by Corollary 1. It follows that fz = ze Tz. Q.E.D. -
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