Concerning locally homotopy negligible sets and characterization of l_2-manifolds

by

H. Toruńczyk (Warszawa)

Abstract. Let $A \subseteq X$ be a set such that for every open subset U of X the inclusion $U \setminus A \rightarrow U$ is a weak homotopy equivalence. The following two facts are shown: (A) If X is an ANR(3R)-space, then so is $X \setminus A$; (B) if A is closed in X, X is complete-metrizable and $X \setminus A$ is an l_2-manifold, then so is X. We apply (B) to prove that if X is a separable complete ANR(3R) without isolated points, then the space of paths in X forms an l_2-manifold.

Initially the paper was intended to present the proofs of the following two facts, which had been announced, or employed, in [31] and [32]:

(A) If X is a complete separable ANR(3R)-space and A is a countable union of Z-sets in X, then $X \setminus A \in$ ANR(3R), and

(B) If X is as above, A is a Z-set in X and $X \setminus A$ is an l_2-manifold, then X is also an l_2-manifold.

By a Z-set in X we mean here any closed set $A \subseteq X$ with the property that every map $f : [0, 1]^n \rightarrow X$ is a uniform limit of $X \setminus A$-valued maps.

If we use results of infinite-dimensional topology, (A) has a very short proof: by [31], the space $X \times l_2$ is an l_2-manifold which clearly contains $A \times l_2$ as a countable union of Z-sets; thus, by [2], $X \times X \setminus A \times l_2$ is homeomorphic to $X \times l_2$ and hence $(X \setminus A) \times l_2$ and $X \setminus A$ are ANR(3R)'s. However, the assumption of (A) seems to be too restrictive: for instance, (A) does not include the fact that if A is any subset of the boundary of the square $[0, 1]^2$ (and need not be of type G_δ), then $[0, 1]^2 \setminus A$ is an ANR(3R). (See Fox [15]). Therefore we prove here in § 3 a result more general than (A), namely

(A') If $X \in$ ANR(3R) and $A \subseteq X$ is locally homotopy negligible in X (i.e., for every open set $U \subseteq X$ the inclusion $U \setminus A \rightarrow U$ is a weak homotopy equivalence), then $X \setminus A \in$ ANR(3R).

* This paper was completed while the author was visiting the Amsterdam University and the Mathematical Centre, Amsterdam. It is registered as Math. Centre Report ZW 23/74, April 1974.

1 — Fundamenta Math., CI
Since the properties of non-closed locally homotopy negligible sets have never been explicitly formulated, we devote a section of the paper to presenting the basic facts concerning such sets (see § 2). We note that most of these facts and also of the methods used in their proofs are similar to those of Anderson [14], Ells and Kuiper [11] and Henderson [19] (see also Eilenberg and Wilder [12], Smale [29], Haver [16]); however, several technical changes have to be made if one wants to dispense with the assumption that \(A \) is closed and \(X \) is an ANR(39). The material of § 2 allows us to strengthen the results of [4], [22] and [23] on cell-like mappings of metric spaces (see the Appendix); also, we hope that the study of non-closed locally homotopy negligible sets in concrete spaces can be used to prove that these spaces are ANR(39)'s or infinite-dimensional manifolds.

The result (B), stated before, is proved in § 5 and then applied to show that, for \(Y \) a complete separable connected ANR(39) and \(K \) a polyhedron, the space of maps \(K \rightarrow Y \) is an \(1 \)-manifold.

In the paper we discuss also an elementary characterization of ANR(39)'s which is used in the proof of (A) (see § 1). Let us note that (A) can also be established by using a characterization of Dowker and Hanner [10]; nevertheless the result of § 1 seems to be of independent interest (for instance, it unifies earlier results of Wojdyslawski [34], Dugundji [9], Himmelberg [20] and others).

Note: By \(f \) we denote the interval \([0,1]\), by \(N \) the set of integers; continuous functions are called "maps". A homotypy \(h: X \rightarrow Y \) is often denoted by \((h) = h(x,t) \). All spaces are assumed to be normal, and if \(X \) is a metrizable space then \(g \) usually denotes a metric which induces the topology of \(X \).

For \(k \in N \cup \{0 \} \cup \{\infty\} \) and \(i \leq n+1 \) means "not if \(n \neq \infty \) and \(i \neq \infty \) if \(n = \infty \)."

§ 1. A characterization of ANR(39)'s. If \(\mathfrak{R} \) and \(\mathfrak{B} \) are families of subsets of \(X \) then by \(\mathfrak{R} \) we denote the family of all sets \(A \in \mathfrak{R} \) which refine \(\mathfrak{B} \).

Suppose that \(X \) and \(Z \) are spaces, \(\mathfrak{A} \) is a family of subsets of \(X \) and that to certain sets \(A \in \mathfrak{A} \) we have assigned a map \(f_A \) from a non-empty set \(\text{dom}(f_A) \subset Z \).

Given \(\mathfrak{R} \subset \text{cov}(X) \), we say that \(((f_A), Z) \) is a \(\mathfrak{B} \)-fine admissible approximation to \(\mathfrak{A} \) if there is a \(\mathfrak{B} \subset \text{cov}(X) \) such that the following conditions are satisfied:

(i) if \(A \in \mathfrak{R} \) then \(f_A \) is defined, \(\mathfrak{A} \cup \text{im}(f_A) \) refines \(\mathfrak{B} \) and \(F_A = \text{dom}(f_A) \)

is a homotopy trivial subset of \(Z \);

(ii) if \(\mathfrak{A} \subset \mathfrak{R} \) and \(A \subset B \) then \(f_A \subset f_B \).

We sometimes say that \(((f_A), Z) \) is a continuous approximation to \(\mathfrak{A} \) if it is \(\mathfrak{B} \)-fine for all \(\mathfrak{B} \subset \text{cov}(X) \).

If \(Z = X \) and each \(f_A \) is an inclusion, then we say that the approximation is trivial; trivial approximations will be denoted by \(\{F_A\} \), where \(F_A = \text{dom}(f_A) \subset X \).

The aim of this section is to prove the following:

1.1. Theorem. The following conditions are equivalent for a metric space \(X \):

(a) \(X \in \text{ANR}(39) \);

(b) there exists a space \(E \) such that \(X \times E \) has an open basis with all finite intersections of its members being homotopy trivial,

(c) there exist continuous admissible approximations to the family of all finite subsets of \(X \);

(d) there exist arbitrarily fine admissible approximations to the family of all finite subsets of \(X \times (0,1) \).

For simplicity the family of all finite subsets of \(X \) will be denoted by \(\mathcal{F}(X) \) and the family of all subsets of \(X \) by \(\mathcal{F}(X) \).

Remark. The implication (c)\(\Rightarrow\)(a) of 1.1 generalizes earlier results of Dugundji [9] and Himmelberg [20] stating that metric spaces which admit "nice" equiconnecting functions are ANR(39)'s; see also Milnor [24]. In fact, if \(\lambda \) is an equiconnecting function on \(X \), then, letting \(A_1 = A \) and inductively

\[A_{i+1} = \{\lambda(x,y,t) : x \in A_i, y \in A_i, t \in I\} \]

and \(F_A = \bigcup A_n \), we get a trivial approximation to \(\mathcal{F}(X) \) which is continuous in the situations considered in [9] and [20]. (Note that \(F_A \) is contractible whenever \(A \) is defined.)

Remark. Admissible approximations to \(\mathcal{F} = \mathcal{F}(X) \) can be obtained as follows. Let \(\mathfrak{B} \subset \text{cov}(X) \), then \(K \) denote the simplicial complex of all \(\{x_1, \ldots, x_n\} \subset \mathfrak{B} \) and suppose that there is a given map \(f: |K| \rightarrow X \). Then, letting \(Z = |K| \) and \(f = f_0 \) for \(\sigma \in F = \mathfrak{B} \), we get an approximation to \(\mathcal{F} \) which is continuous if for each \(x \in X \) and a neighbourhood \(U \) of \(x \) there is a neighbourhood \(V \subset U \) of \(x \) such that \(f([\sigma]) \subset U \) for all \(\sigma = \{x_1, \ldots, x_n\} \subset V \).

In particular, "the convex structures" of [26] yield continuous approximations of this type and therefore 1.1 generalizes the results stating that spaces which admit convex (or similar) structures are ANR(39)'s (see Himmelberg [20] and Wojdyslawski [34]).

In the proof of 1.1 we need the following lemmas:

1.2. Lemma. Let \(Y \) be a metric space and \(Y_0 \) its dense subset. If there are arbitrarily fine admissible approximations to \(\mathcal{F}(Y_0) \), then there are also arbitrarily fine admissible approximations to \(\mathcal{F}(Y) \).

Proof. Fix \(\mathfrak{B} \subset \text{cov}(Y) \), let \(\mathfrak{B}_0 \subset \text{cov}(Y_0) \) be a star-refinement of \(\mathfrak{B} \) and let \(((f_A), Z) \) be a \(\mathfrak{B} \)-fine admissible approximation to \(\mathcal{F} = \mathcal{F}(Y) \). We assume without loss of generality that \(\mathfrak{B} \) refines \(\mathfrak{B}_0 \). Let \(\mathfrak{B} \subset \text{cov}(Y) \) be a locally finite star-refinement of \(\mathfrak{B} \) and let \(\mathfrak{B} \subset \text{cov}(Y) \)(B) be a refinement of \(\mathfrak{B} \) such that each element of \(\mathfrak{B} \) intersects only finitely many elements of \(\mathfrak{B} \). For each \(W \in \mathfrak{B} \) pick an \(y_W \in X_0 \cap W \) and, given \(S \subset \mathcal{F}_n \), let \(S = f_S \), where

\[S = \{y_W : W \in \mathfrak{B} \text{ and } W \cap S \neq \emptyset\}. \]
It is easy to see that \(\{(b_y; s \in \mathcal{F}_y), Z\} \) is a \(\mathcal{U} \)-fine approximation to the family \(\mathcal{F} \).

1.3. Lemma. Let \((Y, \mathcal{B})\) be a metric space such that there exist arbitrarily fine admissible approximations to \(\mathcal{F} = \mathcal{F}(Y) \). Then, given \(a: Y \rightarrow (0, \infty) \), there are simplicial complexes \(K \) and maps \(f: Y \rightarrow |K| \) and \(g: |K| \rightarrow Y \) such that \(g(\mathcal{F}(Y)) \subset \alpha(\mathcal{F}) \) for all \(y \in Y \).

Proof. Replacing, if necessary, \(\mathcal{B} \) by \(\mathcal{B} \), we may assume that \(|\mathcal{F}(Y)| \leq \alpha(\mathcal{F}) \). Let \(Y = \left\{ \{y_x, \hat{z}(x)\} \mid y \in Y \right\} \) be the cover of \(Y \) by open balls and let \(\{(j_x; s \in \mathcal{F}_y), Z\} \) be a \(\mathcal{U} \)-fine admissible approximation to \(\mathcal{F} \), \(\mathcal{B} \) being locally finite. Let \(K \) denote the nerve of \(\mathcal{B} \) and for each \(\sigma = \{V_1, \ldots, V_k\} \in K \) let

\[I(\sigma) = \left\{ \langle f_{r, \ldots, n}(s), \hat{z} \rangle \mid \begin{array}{c} x \in \text{dom}(f_{r, \ldots, n}(s)) \end{array} \right\} = Y \times Z. \]

Clearly, \(I(\sigma) \) is an anti-monotone function from \(K \) to the non-empty homotopy trivial subsets of \(Y \times Z \). Let \(\sigma \) be the subdivision map for each \(\sigma \in K \) we denote by \(\sigma \) its barycentric subet; \(\sigma \) is then a vertex of \(K \).

Sublemma. There is a map \(\eta: |K'| \rightarrow Y \times Z \) such that

\[\eta(\{r_1, \ldots, r_n\}) = I(\sigma). \]

Proof. For each vertex \(\delta \) of \(K' \) choose a point \(\hat{y}_\delta(\delta) \in I(\sigma) \). Let \((L, \tilde{\mathcal{B}})\) be a maximal pair (under the natural ordering) such that \(L \) is a subcomplex of \(K' \) containing all vertices of \(K' \) and \(\mathcal{B} \). Assume the contrary and let \(\sigma \in K \setminus L \) be maximal in minimal dimension. Then \(|\mathcal{B}| \in \{r_1, \ldots, r_n\} \), whence \(\eta(\delta) \in \mathcal{B} \) is well defined. Representing \(r \) as \(\{r_1, \ldots, r_n\} \), where \(\sigma r_1 \subset \sigma r_2 \subset \ldots \subset \sigma r_n \), we infer from (1) and the anti-monotony of \(I \) that \(\eta(\mathcal{B}) \in I(\sigma) \). Clearly, \(L \) is homotopy trivial, we may extend \(\eta(\mathcal{B}) \) to a \(g: |\mathcal{B}| \rightarrow \eta(\mathcal{B}) \), which is impossible; thus \(L = K' \) and \(g \) is as required.

Proof of 1.3 (continued). Let \(g = g = \hat{y} \). Given \(y \in Y \), let \(\{V_1, \ldots, V_n\} \in \mathcal{B} \). Observe that, by (1), we have

\[g(\{V_1, \ldots, V_n\}) = \bigcup_{i=1}^n I(F_i(\hat{z}(y))). \]

Since \(\text{im}(f_\hat{y}) \cup V_i \) defines \(\mathcal{U} \) for \(i = 1, 2, \ldots, n \), we infer that \(g(\{V_1, \ldots, V_n\}) \) is contained in the star of \(y \) in \(\mathcal{U} \). Therefore, if \(f: Y \rightarrow |K| \) is induced by a partition of unity \(\langle \mathcal{A}_y; s \in \mathcal{W} \rangle \) with each \(\mathcal{A}_y \) vanishing outside \(V \), then \(g(\mathcal{F}(Y)) \subset \alpha(\mathcal{F}) \) for all \(y \in Y \).

This easily yields \(g(\mathcal{F}(Y)) \subset \alpha(\mathcal{F}) \) for all \(y \in Y \).

(1) \(\hat{y} \) denotes the boundary of \(\mathcal{F} \).

The following lemma is actually a special case of a theorem of Dowker and Hanner (see [10], p. 105); however, we include a short proof of it, which will be used later.

1.4. Lemma. Let \((X, \mathcal{B})\) be a metric space and assume that there are simplicial complexes \(K \) and maps \(f: X \rightarrow [0, 1] \) and \(g: |K| \rightarrow X \) such that \(g(\mathcal{F}(X)) \subset \alpha(\mathcal{F}) \) for all \((x, \alpha) \in X \times [0, 1] \). Then \(X \in \mathcal{ANR}(\mathcal{B}) \).

Proof. Let \(h: A \rightarrow X \) be a map of a closed set \(A \) of a metric space \((X, \mathcal{B}) \); we shall construct a neighbourhood extension of \(h \).

For this purpose let \(u = h \times id: A \times [0, 1] \rightarrow X \times [0, 1] \). Since simplicial complexes are neighbourhood extendors for metric spaces, \(f \times u \) admits an extension \(v: U \rightarrow |K| \), where \(U \subset B \times [0, 1] \) is an open set containing \(A \times [0, 1] \) (see [21], p. 105). Without loss of generality we may assume that \(U \) is contained in the set \(\{0, 1\} \times U \); there is an \(a \in A \) with \(g_{(a, b)}(b) < c \) and \(g_{(a, b)}(b, 1, h(b)) < t \), which, by our assumptions, is a neighbourhood of \(A \times [0, 1] \). Let \(\mathcal{B}: [0, 1] \rightarrow \mathcal{B} \) be such that \(\mathcal{B}(0) = 0 \) and \(\mathcal{B}(1) = \mathcal{B}(b, b) \subset U \cup (U \setminus \mathcal{B}(0)) \times \{1\} \). It can easily be constructed by using Klee's theorem and the fact that for each \(b \in [0, 1] \) there is a closed neighbourhood \(V \) of \(A \) in \(B \) with \(W \times [a_1, 1] = V \). We let \(v = (b \in B: \mathcal{B}(b) < 1) \) and define \(h: A \rightarrow X \) by

\[h(b) = \begin{cases} h(b), & b \in A, \\ g_{(b, \mathcal{B}(b))}(b, \mathcal{B}(b)), & b \in B \setminus \mathcal{B}(1). \end{cases} \]

It is easily seen that \(h \) is continuous.

Now we complete the proof of 1.1. To show that \((a) \Rightarrow (c) \) consider \(X \) as a closed subset of a convex set \(Z \) in a normed linear space \((Z, \mathcal{B}) \), p. 81) and for sufficiently small sets \(A \subset X \) let \(F_A = \mathcal{conv}(A) = Z \) and \(f_A = r \circ F_A \), where \(r \) is a neighbourhood retraction onto \(X \). \((c) \Rightarrow (d) \) is a consequence of the fact that any pair of continuous admissible approximations to \(\mathcal{F}(X) \) and to \(\mathcal{F}(Y) \) induces a continuous product approximation to \(\mathcal{F}(X \times Y) \). Further, \((d) \Rightarrow (a) \) by Lemmas 1.2.1-4, and \((a) \Rightarrow (b) \) by a result of [31] stating that if \(X \in \mathcal{ANR}(\mathcal{B}) \), then there exists a normed linear space \(E \) with \(X \subset E \) homeomorphic to an open subset of \(E \). Finally, \((b) \Rightarrow (a) \) follows from the implication \((c) \Rightarrow (a) \) and the following fact applied to \(Y = X \times E \).

Sublemma. If \(Y \) has a base \(\mathcal{B} \) with homotopy trivial intersections, then there exist trivial continuous approximations to \(\mathcal{F}(Y) \).

Proof. For each \(n \in \mathbb{N} \) let \(\mathcal{B}_n \in \mathcal{B}(X) \) be a locally finite refinement of \(\mathcal{B} \) with \(\text{diam}_{\mathcal{F}_n}(U) \leq 1/n \) for all \(U \in \mathcal{B}_n \). Let \(\mathcal{B} = \bigcup \mathcal{B}_n \), let \(U \rightarrow V \) be a function of \(B \) into \(H \) such that \(V \subset U \), for all \(V \in \mathcal{B} \), and for sufficiently small \(A \subset Y \) let

\[F_A = \bigcup_{V \in \mathcal{B}(A)} U, \quad \mathcal{B}(A) = \{V \in \mathcal{B} : A \subset V \}. \]

It is easy to see that \(\mathcal{B}(A) \) is finite for all \(A \subset Y \) and \(F_A \) is a continuous trivial approximation to \(\mathcal{F}(Y) \).
1.5. Corollary. Let X be a separable complete metric space which is I^{-}-stable (i.e., $X \times [0, 1] \cong X$). Suppose that there exist arbitrarily fine admissible approximations to $\mathcal{F}(X)$, where $X \subset X$ is a dense subset. Then X is an I^{-}-manifold.

Proof. By a theorem of Klee we have $I^{-}(\mathbb{N}) \subseteq (\mathbb{Q})$ (see [31]) and therefore $X \times [0, 1] \cong X \times [0, 1]$ and $X \times [0, 1] \cong X$. Hence, by 1.1 and 1.2, $X \in ANR^{\mathbb{N}}$ and thus, by [31], $X \times [0, 1]$ is an I^{-}-manifold. Since $X \times [0, 1] \cong X$, then result follows.

Clearly, the conditions of 1.5 are also necessary for a connected space X to be an I^{-}-manifold (recall that each separable I^{-}-manifold is I^{-}-stable and is homeomorphic to an open subset of I^{-}, see [3] and [31]).

§ 2. Locally homotopy negligible sets.

2.1. Definition. A set $A \subset X$ will be said to be locally n-negligible if, given $x \in X$, $k \geq n+1$ and a neighbourhood U of x, there is a neighbourhood $V \subset U$ of x such that for each $f: (I^k, \partial I^k) \to (V, \partial V)$ there is a homotopy $(h_t): (I^k, \partial I^k) \to (U, \partial U)$ with $h_0 = f$ and $h_1(I^k) \subset U \setminus A$. Locally ∞-negligible sets will also be called locally homotopy negligible (briefly: l. h. negligible).

The aim of this section is to discuss certain properties of l. h. negligible sets; we formulate the corresponding results for locally n-negligible sets with $n < \infty$ only if their proofs require no extra work.

2.2. Remark. Let A be a locally n-negligible set in X. Then

(a) For every space E, $A \times E$ is locally n-negligible in $X \times E$.

(b) For every open set $U \subset X$, $U \cap A$ is locally n-negligible in U.

2.3. Theorem. Let $A \subset X$, where X is normal. The following conditions are equivalent:

(a) A is locally n-negligible in X.

(b) Given $x \in X$, $n \geq 0$, a pseudometric q on X and a map $f: (K, |K|) \to (X, X \setminus A)$, where $|K| \to X$ is a finite simplicial pair with $\dim(|K|) < n + 1$, there is a homotopy $(h_t): |K| \to X$ such that $h_t = f, h_1(|K|) \subset X \setminus A, h_1(x) = f(x)$ for $(x, t) \in |K| \times I$, and $q(h_t(x), f(x)) < \varepsilon$ for $(x, t) \in |K| \times I$.

(c) Given a simplicial pair $(K, \partial K)$ with $\dim(K) \leq n$, a pseudometric q on X and maps $\alpha, \beta: |K| \to [0, \infty)$ and $f: |K| \times \{0\} \cup [0, \infty) \times I \to X$ with $q(f(x, t), f(x, 0)) < \alpha(x)$ and $f(x, 1) \notin \partial A$ for all $(x, t) \in |K| \times I$, such that $f(x, t) \in X$ which extends f and satisfies $q(f(x, t), f(x, 0)) < \varepsilon(x)$ and $f(x, 1) \notin \partial A$ for all $(x, t) \in |K| \times I$.

(d) For each open $U \subset X$ and $n < \infty$ the relative homotopy group $\pi_n(U, \partial U) \to X$ vanishes.

(e) Each $x \in X$ has a basis \mathcal{U}_x of open neighbourhoods with $\pi_n(U, \partial U) = 0$ for all $U \in \mathcal{U}_x$ and $n < \infty + 1$.

Proof. (a) \Rightarrow (b). Let (b_n) denote the condition obtained from (b) with "$\dim(|K|) < n + 1" \ replaced by "$\dim(|K|) < n"; \ then \ we \ shall \ show \ that \ (a) \Rightarrow (b_n)$ for $0 \leq n < \infty + 1$. Assume that $(a) \Rightarrow (b_n)$ has been established (evidently $(a) \Rightarrow (b_0)$) and let $K, \partial K, f$ and be as in (b_n). Given $x \in (0, \mathbb{N})$, cover the compact set $f(|K|)$ by open sets V_1, \ldots, V_k such that for each $i \leq k$, there is a homotopy $h_i: (I^k, \partial I^k) \to (X, X \setminus A)$ with $h_0 = f, h_1(I^k) \cap A = \emptyset$ and $\text{diam}_m(h_i(x)) < \varepsilon$.

Let a subdivision $(K', \partial K')$ of $(K, \partial K)$ be so fine that $\{f(x) : x \in K'\}$ refines $\{V_1, \ldots, V_k\}$ (we identify K' with $[0, \infty)$, and for each $x \in K'$ let $\lambda_x: [0, \infty) \to [0, 1]$ be a map that is 1 on $f(x)$ and 0 outside a finite \mathbb{N}-sequence $\{V_1, \ldots, V_k\}$. Write

$$d(x, y) = \sum_{x \in K'} |\lambda_x(s) - \lambda_y(s)| + q(x, y)$$

for $x, y \in X$,

and let M be the union of U and the \mathbb{N}-sequence $\{V_1, \ldots, V_k\}$. By $(b_n)_1$, there is a homotopy $(f^M): |M| \to X$ such that $f_0 = f, f_1(|M|) \cap A = \emptyset$ and $\text{diam}_m(f^M(x)) < \varepsilon$ for all $(x, t) \in |M| \times I$.

Then for each $x \in K' \cap A$ let $\text{diam}_m(f^M(x)) < \varepsilon$ and $\text{diam}_m(f^M(x)) < \varepsilon$ for each $x \in K' \cap A$. Then the \mathbb{N}-sequence induces maps $f^M: |M| \times I \to X$ such that $h_0(T_x) = f^M, h_0(T_x) = f^M$ and $h_1(T_x) \to X$ such that $h_1(T_x) = f^M$ for $(x, 0) \in X \times I$ onto $T_x \times I$ such that $h_1(x) = (x, 0)$ for $x \in T_x \subset |M| \times I$ and $h_1(x) = (x, 0)$ for $x \in |M| \times I$. We let

$$h(x) = \begin{cases} h^M(x, t) & \text{if } x \in |M|, \\ f^M(x) & \text{if } x \in X \setminus |M|. \end{cases}$$

(b) \Rightarrow (a). By the Kuratowski-Zorn lemma it suffices to consider the case where $K = \sigma$ is a simplex and $\partial K = \partial \sigma$. Assume that σ is embedded in a euclidean space and for each $A \subset X$ denote by $\mathcal{L}(\sigma)$ the image of A under the λ-homotopy with respect to the barycenter 0 of σ. Let $x \in \mathcal{L}(\sigma)$ satisfy $\varepsilon = \min \{d(x) : x \in |A|\}$ and $\varepsilon = \min \{d(x) - d(f(x), f(x, 0)) : (x, t) \in |\sigma| \times I\}$. Set $T = \{x \times [0, \infty) \cup |\sigma| \times I\}$ and by (b) there is an ε-homotopy $w: T \times I \to X$ such that $w(T) \cap A = \emptyset$, $w_0 = f$ and $w_1(x) = f(x, 1)$ for $x \in |\sigma| \times I$. Now, for each $x \in |\sigma| \times I$ let

$$A(x) = \{(x, 0) : x \in |\sigma| \times I\} \cup \{(x, t) : x \in |\sigma| \times I\},$$

where $\mu \geq 1$ is chosen so that $\mu x \in |\sigma|$. Then the inequality

$$\sup \{q(f(x, y), f(x, 0)) : y \in A(x) \} < \varepsilon$$

holds for all $x \in |\sigma| \times I$ and therefore, by compactness, there is a $x \in \{0, 1\} \setminus \{x\}$ such that (1) holds for all $x \in |\sigma| \times I$.

Let $u_k: [0, \infty) \to |\sigma| \times I$ be such a homotopy:

(i) $u_k(x) = (x, t), 0 \leq x \leq I \times \emptyset \cup |\sigma| \times \{0\}$,

(ii) $u_k(x) = (x, 0), 0 \leq x \leq |\sigma| \times \{1\}$,

(iii) $u_k(x) = (x, t), 0 \leq x \leq |\sigma| \times \{1\}$,

(iv) $p \circ u_k(x) \in A(x)$ if $x \in \{0\} \setminus \{x\} \times 1$.

Then $f: |\sigma| \times I \to X$ is defined by $f(x, t) = w_k(x))$ is the required extension of f. The implications (b) \Rightarrow (a) and (a) \Rightarrow (b) are evident. To prove that (b) \Rightarrow (a), fix $f: (I^k, \partial I^k) \to (U, \partial U)$ where $U \subset X$ is open and \mathbb{N}-sequence 1. Let $\lambda: X \times I$ be a function that is 0 on $X \setminus U$ and 1 on $f(I)$ and let $(b_n): I^k \to X$ be a homotopy such that
Concerning locally homotopy neglectable sets

Proof. Fix \(\mathfrak{p} > 0\) and consider the space \(Y\) of all maps of \(I^* \times [0, 1] \) into \(X\), equipped with the "fine topology" generated by all sets

\[
V(g, \alpha) = \{ h \in Y : g(h(x), g(x)) < \alpha(x) \},
\]

where \(g\) is a fixed complete metric on \(X, g \in Y\) and \(\alpha\) is a map from \(I^* \times [0, 1] \) into \((0, \infty)\).

By 2.4, all the sets \(Y_\alpha = \{ g \in Y : \text{im}(g) \cap A_\alpha = \emptyset \}\) are dense and open in \(Y\). Moreover, it is easy to verify that \(Y\) has the Baire property (cf. [30]) and therefore \(Y_\alpha = \bigcap Y_\alpha\) is dense in \(Y\). For each \(f: I^* \to X\) there is a \(h \in Y_\alpha\) with

\[
g(h(x), f(x)) < \mathfrak{p}\text{ for all } (x, t) \in I^* \times [0, 1]\]

this easily completes the proof.

We conclude this section by giving a condition for a set \(A \subset X\) to be locally \(n\)-negligible. Following [12], we say that \(B \subset L\) is \(L^*\text{-rel.} X\) at a point \(x \in L\) if, given \(k < n+2\) and a neighbourhood \(V \subset U\) of \(x\), there is a neighbourhood \(V \cap U\) of \(x\) such that each \(f: \mathbb{R}^k \to \mathbb{R} \) extending to \(A\) at \(x\).

2.8. Theorem (compare [12]). Let \(X\) be a metric space and \(A \subset X\) be a set such that \(X \\setminus A\) is dense in \(X\) and \(L^*\text{-rel.} X\) at each point of \(A\). If \(n < \infty\), then \(A\) is locally \(n\)-negligible in \(X\) and each map \(f: I^* \to X\) can be approximated by maps \(f^\varepsilon: I^* \to I^* \times A\) which coincide with \(f\) on an arbitrary given compact subset \(K\). (Compare [12].)

Proof. Let \(f: K \to X\) be a fixed map of a compact polyhedron \(K\). Writing \(L = f(K) \cap A\), let for any map \(g: Z \to X\) of a compact subset \(Z\)

\[
\delta(g) = \text{diam}_Z(g(Z)) + \|g(x) - \delta_l(x)\| = \|Z\|,
\]

and we say that \(g\) is \(L\)-small if \(\delta(g) < \beta\). By a standard compactness argument there exist \(\delta_0 > 0\) and a function \(\varepsilon: (0, \delta_0] \to (0, \infty)\) with \(\lim \varepsilon(\delta) = 0\) and such that each \(L\)-small \(g: \mathbb{R}^k \to \mathbb{R}\) extends \(g\) on an \(L\)-small extension \(\tilde{g}: \mathbb{R} \subset \mathbb{R}^k \) (\(k = 0, 1, \ldots, n+1\)). Without loss of generality we can assume \(\delta_0 > 3\) and that \(\varepsilon\) is non-decreasing.

Claim (A). If \(\text{dim}(K) \leq n + 1\) then, for every \(\mu \in [0, 1]\), there exists a \(g: K \setminus X \setminus A\) such that

\[
\delta(g) < \varepsilon(3\mu) + \mu \quad \text{and} \quad g(x) = f(x) \quad \text{if} \quad f(x) \neq g(x) \quad \text{if} \quad f(x) \setminus Z > 1\).
\]

Proof. We use induction on \(\text{dim}(K)\). Suppose that (A) holds true if \(\text{dim}(K) < \rho\) (it holds if \(\text{dim}(K) = 0\) and assume \(\text{dim}(K) = p + 1 > n+1\). Let \(T\) be a triangulation of \(K\) such that \(\text{diam}_{\mathbb{R}^k}(\text{int}(K)) < \mu\) for any simplex \(\sigma \in T\) and \(\delta\) denote the \(p\)-skeleton of \(T\). Let \(g_0: |S| \to X\) be a map such that \(g_0(f_0) \cap |S| < \mu\) and \(\text{diam}_{\mathbb{R}^k}(\text{int}(K)) < \mu\) if \(f_0\) lies in a simplex of \(T\) which is disjoint from \(f_0\). Now, let \(\sigma \in T\) be an \((p+1)\)-simplex. If \(|\sigma| \cap f^{-1}(\mathbb{R}) \neq \emptyset\), then \(g_0|\sigma| = 3\mu\text{-small}\) and therefore it admits an \(3\mu\text{-small}\) extension \(g_0^\varepsilon: |\sigma| \to X\). If \(|\sigma| \cap f^{-1}(\mathbb{R}) = \emptyset\), then put \(g^\varepsilon = f^\varepsilon|\sigma|\). Clearly, \(g_0\) and the \(g^\varepsilon\)'s induce the required \(g: K \setminus X \setminus A\).

Claim (B). If \(\text{dim}(K) \leq n\), then there is a homotopy \(h_0: K \to X\) with \(h_0 = f\) and \(h_0(K) \subset X \setminus A\) for \(t \in (0, 1)\).

(1) By \(\delta\) we denote the sup-metric induced by \(g\).
3.3. COROLLARY. Let \(X \in \text{LC}^c \) be a metric space. The following conditions on a closed set \(A \subseteq X \) are equivalent:

(a) \(X \setminus A \) is dense in \(X \) and is \(\text{LC}^{-1} \) rel. \(X \) at each \(x \in A \);

(b) \(A \) is a \(Z_n \)-set in \(X \);

(c) \(A \) is locally \(n \)-negligible in \(X \).

Proof. (a) \(\Rightarrow \) (b) follows from 2.8 and (c) \(\Rightarrow \) (a) is trivial. Finally, (b) \(\Rightarrow \) (c) by the well-known properties of \(\text{LC}^c \)-spaces (see [21], p. 160).

§ 4. Enlarging an ANR(\(\mathbb{R}^n \))-open questions and remarks. Let \(X \) be a locally contractible metric space and \(A \) its l. h. negligible subset. By 3.2, \(X \in \text{ANR}(\mathbb{R}^n) \) \(\Rightarrow X \setminus A \in \text{ANR}(\mathbb{R}^n) \). We do not know whether the converse implication is true (\(\ast \)).

In this connection let ut show:

4.1. PROPOSITION. Let \(X \) be a metric space and \(A \) its ANR(\(\mathbb{R}^n \))-subset. Then, \(A \) can be enlarged to an ANR(\(\mathbb{R}^n \))-set \(\bar{A} \subseteq X \) which is of type \(G_T \) in \(X \) and has the property that \(\text{A} \) \(\bar{A} \) in \(\mathbb{R}^n \).

Proof. By well-known properties of ANR(\(\mathbb{R}^n \))'s there is a \(U \subseteq \text{cov}(A \times 0 \times 1) \) and a map \(g : [X] \to A \), where \(K \) is the nerve of \(H \), such that if \(j : A \times 0 \times 1 \to [X] \) is any canonical map, then \(g(f(x, t, \cdot), \cdot, \cdot) \in \text{clos}(\mathbb{R}^n) \subseteq [X] \) for all \(x, t \in A \times 0 \times 1 \) (see [21], p. 158 or use the proof of 1.1). Let \(B \) be a family of open subsets of \(X \times 0 \times 1 \) such that \(A = \bigcup_{B \in \mathbb{B}} V \) \(\mathbb{B} \) is a family of \(V \subseteq X \times \mathbb{R}^n \). Let \(B \) be the nerve of \(\mathbb{B} \) and let \(f \) be a canonical map. Identifying \(K \) with a subcomplex of \(L \), we infer that \(C = f^{-1}(K) \) is a relatively closed subset of \(V \) and therefore the set \(B = \{ (x, t) : C \subseteq \text{clos}(\mathbb{R}^n) \} \) is of type \(G_T \) in \(X \times 0 \times 1 \) and contains \(A \subseteq 0 \times 1 \) (since \(0 \subseteq 0 \times 1 \) is compact, \(A = X \setminus \text{clos}(\mathbb{R}^n) \subseteq X \times 0 \times 1 \)).

4.2. REMARK. Let \(X \) be a compact PL-manifold, let \(H \) denote its homomorphic extension of compact-open topology and let \(P \) be the subgroup of \(H \) of PL-maps. It was shown by Haver [15, 17], that \(P \) is ANR(\(\mathbb{R}^n \)) and the closure \(G \) of \(P \) is an open subgroup of \(H \). Let \(G_\alpha \) be any ANR(\(\mathbb{R}^n \))-extension of \(P \) to a \(G_\alpha \)-subset of \(G \); since \(P \) is uniformly locally contractible (see [17]), we infer, by 2.9 and 2.6, that \(G \setminus G_\alpha \) is l. h. negligible in \(G \). Thus \(G \setminus G_\alpha \) contains an \(l_2 \)-manifold

\((\ast) \) Added in proof. It is not, without assuming \(X \) to be locally contractible, as is shown by Taylor's example (BAMS 81, p. 629) combined with 6.1 and 6.2.
Concerning locally homotopy negligible sets

(remind G2×I2, see [31]) with an i.h. negligible complement. Since H is a union of open cosets of G and since H×I2 ⊆ H (Geoghegan [14]), H also contains an I2-manifold with an i.h. negligible complement. It is however an open question if H is an ANR (98).

4.4. Remark. Similarly, it follows from [15] and 4.1 that if E is any separable complete linear metric space then E×K ⊆ AR(98) for some i.h. negligible Fσ-set K; it is though unknown if E ⊆ AR(98).

§ 5. Enlarging a manifold. In this section we show that if a complete ANR(98)-space X contains an I2-manifold whose complement is a Z-set in X, then X is necessarily an I2-manifold. We start with:

5.1. Proposition. Let E denote the Hilbert cube or a locally convex linear metric space such that E ⊆ E∞ or E ⊆ ∑E ⊆ {x ∈ E∞ : x = 0 for almost all i}; and let A be a Z-set in a metric space X. If X×E and X×A are E-manifolds, then X×E and X×A are E-manifolds.

The proof is divided into 3 steps and involves an idea of Cutler [see (7) and also [33], where some special cases of 5.1 are established].

1° If M is an E-manifold and K is a Z-set in M, then there is a homotopy (f0 : M → M such that f0 = id, f1(M) = int f0(M) if 0 < s < r ≤ 1, \(\bigcup_{t>0} f_t(M) = M×K \) and \((x,i) \mapsto (f_t(x),i) \) is a closed embedding of M×I into itself.

Proof. Under our assumptions there is a homomorphism h : M → M×I such that h(K) = M×{0} (see [30]). Let \(g_0 \) be any product metric on M×I; then for each \(\epsilon > 0 \) the formula

\[d_\epsilon(x,y) = \inf \{ t ≥ 0 : g_\epsilon(x,s), h(K)(y,t) ≥ t \} \]

defines a continuous function on M. We let \(f_t = h^{-1} g_\epsilon h \), where \(g_\epsilon(x,s) = (x,s) \) if \(s ≥ 2t \) and \(g_\epsilon(x,s) = (x,t) \) otherwise.

Given spaces Z and F and a closed set L⊂Z, we denote by \((Z×L)×F \cup L \) equipped with the topology generated by open subsets of \((Z×L)×F \) and by sets of the form \(U×L \cup (U×Z)×F \), where \(U⊂Z \) is open. \(CF \) denotes \((I×F)×I \), the cone over F.

2° Under the assumptions of 5.1, the spaces \(X×CE \) and \((X×CE)_A \) are homeomorphic.

Proof. Set \(M = X×E \) and \(K = A×E \) and let \(f_0 : M → M \) be the homotopy from 1°. Define \(h : X×CE → (X×CE)_A \) by the formula

\[h(x,y) = \begin{cases} (x,y) & \text{if } y = 0, \\ \left(p_x f_t(x), \frac{t}{\beta_f(x)}, t \right) & \text{if } y = (t,s) \text{ and } t > 0, \end{cases} \]

where \(\beta_f(x) = \sup \{ s ∈ I : (x,s) ∈ f_t(M) \} \). It is a matter of routine but tedious verification to show that \(h \) is a homeomorphism of \(X×CE \) onto \((X×CE)_A \).

Proof of 5.1. It is known that \(E \) and \(CE \) are homeomorphic (see [18] and [33]), and therefore \(X×E \) is homeomorphic to \(X×A \). Let \(\epsilon \) be any metric for \(X \). Since \(X×A \) is an E-manifold, there is a homeomorphism \(g : (X×A)×E → X×A \) such that \(g(\epsilon(x),p_\epsilon(x)) = g(p_\epsilon(x),A) \) for all \(x ∈ (X×A)×E \) (see [28]). Extending \(g \) by identity over \(A \), we get a homeomorphism of \((X×E)_A \) onto \(X \). Thus \(X×E \cong X \).

Combining 5.1 with the results of [32], we get

5.2. Theorem. Let \(X \) be an ANR(98)-space, let \(A \) be a Z-set in \(X \) and assume that \(X×A \) is a manifold modelled on a space \(E \) of any of the following cases:

(a) \(E \) is an infinite-dimensional Hilbert space and \(X \) is complete;
(b) \(E \) is a locally convex linear metric space with \(E \cong \sum E \) and \(X \) admits a closed embedding into \(E \).

For a discussion of certain special cases in which the condition (b) is satisfied see [31], §1.

In the remaining part of this section we apply 5.2 to show that certain function spaces are I2-manifolds. If \(X \) is a space and \(A \) is a compactum, then \(C(A×X) \) denotes the space of maps of \(A \) into \(X \) (compact-open topology), for \(x ∈ X \) we denote by \(\X \) the constant map with value \(x \), and we let \(\X = \{ x ∈ X \} \). \(C(A×A,
\X) \) has the usual meaning. We need two lemmas leading to the fact that if \(X ∈ ANR(98) \) has no isolated points, then one can continuously assign to each \(x ∈ X \) a non-constant path starting from \(x \).

5.3. Lemma. Let \(Y ∈ ANR(98) \), let \(A_0 ⊆ A \) be compact and let \(y_0 ∈ Y \). If neither \(y_0 \) nor \(A_0 \) are open, then the singleton \(\{ y_0 \} \) is a Z-set in \(S = C((A_0×A)/{(A_0×\X)} \).

Proof. Since every \(f ∈ S \) factorizes through a map of \(A(A_0×A) \) into \((Y,y_0) \), we may assume that \(A_0 = (a_0) \) is a one-point set. Consider \(A \) as a (nowhere-dense) subset of \(I_2 \) and let \((a_0) ∈ (A×A)_m \), \((z_0) ∈ (I_2×A)^{m} \) and \((y_0) ∈ (Y_{y_0})^{m} \) be sequences such that \(\lim_s(z_0) = a_0 \) and \(\lim_s(y_0) = y_0 \). Given \(f : A×I^m → Y \) with \(f((a_0)×I^m) = (y_0) \), extend \(f \) to \(f_1 : A∪(z_0)n×I^m → Y \) by letting \(f_1(z_0)t = (y_0) \), \(n ∈ N \), and extend \(f_1 \) to an \(f : U×I^m → Y \) where \(U⊂A∪\{z_0\}n×N \) is open in \(I_2 \). Let \((a_n) \) be a sequence of mappings \(g_n : A→U \) such that \(g_n(a_0) = a_0 \) and \(g_n(a_0) = a_n \) for all sufficiently big \(n \). The maps \(f_2 : A×I^m → Y \) defined by

\[f_2((a_n),(a),q) = g_n(a_0) \]

converge to \(f \) and have the property that, for each \(q ∈ I^m \), the map \(a→f(q)(a, q) \) belongs to \(S_{\{y_0}\} \). Since \(f : A×I^m → Y \) was induced by an arbitrary map of \(I^m \) into \(S \), the result follows.

5.4. Lemma. Let \(Y \) be an ANR(98)-space without isolated points and let \(εₐ → 0 \).

There is \(a : Y → C(I,Y) \) such that \(a(y)(0) = y \) and \(αa(α(y),y) < ε \) for all \(y ∈ Y \).

(α denotes here the sup-metric induced by α).
Proof. $C(Y, Y)$ is an ANR(3)-space and therefore, by 2.4, 3.3 and elementary properties of ANR(3)'s, it suffices to show that $C(Y, Y)$ is LC* rel. $\Gamma(Y, Y)$ at each point $y \in Y$.

To this end let us fix $k \in N$, $y_0 \in Y$ and $\varepsilon_0 > 0$; we shall find a $\delta > 0$ such that, under the notation $S = C(Y, Y)$ and $f = \{1, 2, 3\}$, we have

1. $\exists \delta > 0$ such that $\forall y \in S, \exists \delta > 0$ for $x \in \partial S$.

First observe that, by 5.3 and 3.2, there is a $\delta > 0$ such that $g: \partial S \to C([0, 1], 2, (Y, y_0)) \setminus \{y_0\}$ with $g(\partial S(\partial S)) < \delta_0$, where $x \in \partial S$.

Indeed, $g(y)(x) = \frac{f(y)(x)}{f(\partial S(\partial S))^x}$ if $x \in [0, 1]$, $g(\partial S(\partial S)) = \frac{f(y)(x)^2}{f(\partial S(\partial S)))^4}$, and $g(y)(x) = \frac{f(y)(x)^3}{f(\partial S(\partial S)))^6}$. Letting $g(y)(x) = \frac{f(y)(x)}{f(\partial S(\partial S)))^x}$, we get a $g: \partial S \to C([0, 1], 2, (Y, y_0)) \setminus \{y_0\}$ with $g(\partial S(\partial S)) < \delta_0$, where $x \in \partial S$.

5.5. Theorem. Let $X \times X_1, \ldots, X_n \subset X$ be separable complete ANR(3)'s, let A be a compactum and A_1, \ldots, A_n be disjoint closed subsets, and let U be an open subset of X whose boundary is compact and collared in U. If either $U \cap A_1, \ldots, A_n = \emptyset$ and X has no isolated points or $U \cap A_1$ and X_1 has no isolated points, then the space $S = \{f \in C(A, X): f(A_1) = X_1 \}$ for $i = 1, 2, \ldots, n$ is an l^n-manifold.

Proof. Let $K = \{f \in S: f \neq \text{constant on } U\}$. It is known that ∂S is a complete separable ANR(3)-space (see [51], §4). Therefore it remains to show that K is a Z-set in S.

To this end fix $x \in U$ and $f: \Gamma^n \to X$ such that $f_0 = f_1(x) \in S$ for all $g \in \Gamma^n$. By assumption there exists a compactum C in U and a homotopy $(u_t): A \times [0, 1] \to C \times I$ such that $u_0(a) = (a, 0)$ if $a \notin U$ or $a = b$ and $u_1(A) = A \times [0, 1] \subset C \times [0, 1]$ for all $t \in I$. Define $f: \Gamma^n \times (A \times [0, 1]) \to X$ by $f(g, z) = \{f(g, z) \in \Gamma^n \times A \times [0, 1]:$ $g \in \Gamma^n, z \in A \times [0, 1], f_0 = f_1(x)$, $f_0 = f_1(x)$ for all $t \in I$. $\}$

where v satisfies 5.4 with $Y = X$ if $U \cap (A_1 \cup \ldots \cup A_n) = \emptyset$ and with $Y = X_1$ if $U \cap A_1$. Choose $\delta > 0$ such that $\rho(f(g, z), f(y)) < \varepsilon$ and define $g: \Gamma^n \times A \to X$ by $g(t, z) = \{f_0 = f_1(x)$, $t \in A \times [0, 1])$ for $u_0(a) = (a, 0)$, \}$

One easily verifies that $g_v = g(v, \cdot) \in S \times K$ and $\beta(g_v, f) < 2v$ for all $v \in \Gamma^n$. Thus this shows that K is a Z-set in S.

5.6. Corollary. Let $X \times X_1, \ldots, X_n \subset X$ be complete separable ANR(3)'s, where X has no isolated points. If A is a connected compact finite-dimensional manifold (with or without boundary), then for any closed mutually disjoint proper subsets A_1, \ldots, A_n of A the space $S = \{f \in C(A, X): f(A_i) \subset X_i \}, f = 1, 2, \ldots, n$, forms an l^n-manifold. In particular, the space of paths from X_1 to X_2 and the space of closed curves starting from X_1 are l^n-manifolds.

Appendix. Locally homotopy negligible sets and UV*-maps. We shall show here how the properties of i.e. negligible sets are related to the results of Armentrout–Price, Kozlowski and Lacher on cell-like mappings of metric spaces.

All spaces are assumed to be metrizable. If $X \times Y \times Z$ is a map, then by the mapping cylinder of f we mean the space $Z = X \times [0, 1]$ with the topology generated by open subsets of $X \times [0, 1]$ and by sets $f^{-1}(U) \times [0, 1] \cup U \times [0, 1]$, where $U \times [0, 1] \subset X \times Y \times Z$. Note that Z is metrizable; if we consider X and Y as bounded subsets of normed spaces E and F, respectively, then $Z \times (X \times Y) \times (X_1 \times Y) \times (X_2 \times Y_2) \times \cdots \times (X_n \times Y_n) \times (X_{n+1} \times Y_{n+1})$.

We identify X with $X_1 \times [0, 1]$, Y with $X_2 \times [0, 1]$, and we denote by $p: X \to Y$ and $q: X \to Y$ the collapse and projection, respectively.

A map $f: X \to Y$ will be said to be UV*-map if, given $x \in X$ and a neighborhood U of y, there is a neighborhood $V \subset U$ of y such that each $g: \Gamma^n \to Y$ extends to an $f: \Gamma^n \to f^{-1}(U)$. If f is a UV*-map at all $y \in Y$, then we say that X is a UV*-map. Similarly if the projection $X \to Y$ is UV*-map at Y, then we say that X is a UV*-subspace of Y.

6.1. Remark. If f is a UV*-map if $Z \times Y \times \Gamma^n$ is LC* rel. Z at each point of Y.

If all the $f^{-1}(y)$'s are compact and f is a surjection, then f is a UV*-map if all the $f^{-1}(y)$'s, $y \in Y$, are UV*-subsets of Y.

It is known that compacta of trivial shape are UV*-subsets of ANR(3)'s in which they lie (see [5])

6.2. Proposition (compare [27], [22], [4]). If $f: X \to Y$ is a UV*-map and $f(X)$ is dense in Y, then f induces an isomorphism of the nth homotopy group.

Proof. Apply 2.8 and the fact that f induces an isomorphism of the nth homotopy group if the inclusion $Z \times Y \to Z$ does so.

6.3. Proposition. Let $f: X \to Y$ be a UV*-map with a dense image and let $M \in ANR(3)$. Then, given $u: M \to X$ and $\tau: M \times [0, 1] \to (0, \infty), there is
a : M×(0, 1)→K such that \(q(f_{\alpha}(x), u(x)) < \alpha(x, t) \) for \((x, t) \in M \times (0, 1)\). If, in addition, \(K \subset X \) is a closed set, \(U \) is its neighbourhood and \(v : U \rightarrow X \) is any lifting of \(v(U) \), then \(g \) may be constructed in such a way that \(g(1, K) = v\) for all \(t \).

Proof. Put on \(Z \), a metric \(d \) in which the collapse \(y : (Z', d') \rightarrow (Y, \rho) \) is a contraction and let \(\lambda : M \rightarrow [0, 1] \) satisfy \(\lambda(K) = 1 \) and \(M \cup U = \lambda^{-1}(0) \). Define \(w : M \rightarrow Z \) by

\[
(\alpha(x), \psi(x)) = \begin{cases} \\
(\alpha(x), \psi(x)) \in X \times (0, 1] & \text{if } \lambda(x) > 0, \\
(\alpha(x), 0) & \text{if } \lambda(x) = 0.
\end{cases}
\]

Since, by 2.8, \(Y \) is l.h. negligible in \(Z \), there exists an \(\alpha \)-homotopy \(h_{\alpha} : M \rightarrow Z \) such that \(h_{\alpha}(M) \subset Z \setminus Y \) and \(h_{\alpha}(K) = w \) for all \(t \). We let \(g \equiv h_{\alpha} \).

6.4. PROPOSITION. Let \(f : X \rightarrow Y \) be an UV\(\alpha\)-map of ANR(08)'s and assume that \(f(X) \) is dense in \(Y \). Then, given \(\varepsilon \) : \(X \times (0, 1) \rightarrow (0, \infty) \), there exist \(g : X \times (0, 1) \rightarrow X \) and a homotopy \(h_{\varepsilon} : X \rightarrow X \) such that \(h_{\varepsilon}(0, 1) = h_{\varepsilon} \) and \(\varepsilon(f_{\alpha}(x), f(x)) < \alpha(x, t) \) for all \((x, t) \in X \times (0, 1] \), \(x \in X \) and \(y \in Y \).

Proof. Let \(\lambda \) be any increasing homeomorphism of \([-1, 0] \) onto \([0, 1] \). By 6.3 there is a \(g : X \times (0, 1) \rightarrow X \) such that, for all \((y, t) \in X \times (0, 1] \),

\[
q(f_{\alpha}(x), u(x)) < \min(\alpha(x, t), t, \chi_{\alpha}(y), \inf(\alpha(y, s) : s \in \lambda([-1, 0])))
\]

Let \(M = X \times [-1, 2], K = X \times \{1, 2\}, U = X \times [-1, 0) \cup (1, 2] \), and define \(w : M \rightarrow Y \) by

\[
u_{\varepsilon} = \begin{cases} f & \text{if } t \in [-1, 0], \\
\varepsilon(f, \varepsilon) & \text{if } t \in (0, 1],
\end{cases}
\]

Using 6.3 again, construct \(h_{\varepsilon} : M \rightarrow X \) with \(h_{\varepsilon}(x) \equiv \lambda(1) \), \(h_{\varepsilon} \equiv g_{1}f \) and

\[
q(f_{\alpha}(x), u(x)) < \chi_{\alpha}(\varepsilon(f(x))) \quad \text{for } (x, t) \in M \times [-1, 2].
\]

Finally, let \(h_{\alpha} = h_{\chi_{\alpha}} \).

6.5. Remark. Let \(f : X \rightarrow Y \) be a UV\(\alpha\)-map with a dense image and assume that \(X \) is an LC\(\alpha\)-space and \(\dim(Y) \leq \alpha < \infty \). It easily follows from 6.1 and 2.8 that \(Y \) is LC\(\alpha\) and therefore \(y \) is ANR(08) by [6], p. 222.

6.6. Remark. Let \(f : X \rightarrow Y \) be an UV\(\alpha\)-map with a dense image and assume that \(X \) and \(Y \) are ANR(08)'s and \(\dim(X), \dim(Y) \leq \alpha < \infty \). Then, \(\dim(Z) \leq \alpha \) and \(Z \) is locally contractible, and therefore \(Z \in \text{ANR}(08) \) (see [21], p. 168). Hence, by 3.2, \(Y \) is l.h. negligible in \(Z \) and \(f \) is actually a UV\(\alpha\)-map; thus 6.4 applies.

We also observe that if \(X \) and \(Y \) are locally compact spaces and \(f \) is a proper map, then the homotopies \(f_{\alpha} \cup \varphi_{\alpha} = (h_{\alpha} \cup f_{\alpha}) \) of 6.4 are proper if \(\alpha \) is taken sufficiently small (slightly weaker versions of 6.5 and 6.6 form the theorems of Lacher [23]).
Hilbert cube modulo an arc

by

Zvonko Čerin (Baton Rouge, La.)

Abstract. Let Q denote the Hilbert cube and let $\alpha, \beta \subset Q$ be arcs. Adapting methods of Bing-Andrews-Curtis-Kwun-Bryant we prove that $Q/\alpha \times I$ and $Q/\beta \times Q/\beta$ are homeomorphic with Q, where I is a closed interval and Q/α is a space obtained from Q by shrinking α to a point. The same method applies equally well to the case when arcs are replaced with finite-dimensional cells or their intersections.

I. Introduction. We use Q to represent the Hilbert cube (the countable-infinite product of closed intervals). A closed subset $X \subset Q$ is called a Z-set if for any non-empty, homotopically trivial open set $U \subset Q$, $U - X$ is also non-empty and homotopically trivial. This concept was introduced by R. D. Anderson in [1] and in the infinite-dimensional topology plays a role analogous to a role of tameness conditions in the finite-dimensional topology. Chapman [7] showed that a Z-set $X \subset Q$ has a trivial shape if and only if the space Q/X, obtained from Q by shrinking X to a point, is homeomorphic to Q (in notation, $Q/X \simeq Q$). If X is of a trivial shape but not a Z-set, then Q/X may fail to be locally like Q at the point $\hat{X} = p(X)$, where $p: Q \to Q/X$ is a natural projection. Indeed, Wong [14] constructed a copy of the Cantor set with non-simply connected complement in Q. By a standard technique we can pass an arc a through it such that $Q - a$ is also not simply connected. If Q/α were locally Q at the point $\hat{\alpha}$, then Q/α being a contractible Q-manifold would be homeomorphic to Q [5]. But in Q the complement of every point is simply connected.

The problem SC 1 in [2] asks (in analogy with a similar result for Euclidean spaces established earlier by Andrews and Curtis [3]) whether for any arc $a \subset Q$ multiplying Q/a by the unit interval $I = [0, 1]$ gives the Hilbert cube. In Section 2 of this note we will present a detailed proof, adapting techniques from [3] to the Hilbert cube case, of the following theorem that confirms this conjecture.

Theorem 1. For any arc $a \subset Q$, $(Q/a) \times I$ is homeomorphic with Q.

Next, in Section 3, we first prove that $A \times B$ is a Z-set in $Q \times Q$ whenever A and B are finite-dimensional closed subsets of Q and then, following Kwun's method [10], establish

Theorem 2. Let $\alpha, \beta \subset Q$ be arbitrary arcs. Then $(Q/\alpha) \times (Q/\beta)$ is homeomorphic with Q.