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Abstract. De Groot conjectured that if a finite-dimensional compact metric space is a suspension
about every pair of distinct points, thenitis a sphere. Szymanski proved this for dimensions strictly
less than 4. Here it is shown that such a space is a regular generalized manifold homotopy equiv-
alent to a sphere, and that any space about which it is a suspension is a generalized manifold
homotopy equivalent to a sphere. An analogous result is established for spaces which are open cones
about each point. These results are special cases of the Bing-Borsuk conjecture about locally

homogeneous ANR’s.
&

De Groot [5] has conjectured that if a finite-dimensional compact metric space
is a suspension about every pair of distinct points then it is a sphere. Szymanski [10]
proved this for dimensions up to 3. Here it is shown that such a space is always
a regular generalized manifold homotopy equivalent to a sphere, and that any space
about which it is a suspension is a generalized manifold homotopy equivalent to
a sphere. An analogous result is proved for spaces which are open cones about every
point. In both cases the spaces about which the space is a suspension or cone are
called links; it is shown that links need not be homeomorphic, but that their products
with the real line are necessarily homeomorphic. Notice that our main result is
a special casc of the Bing—Borsuk conjecture, [1], that 2 separable finite-dimensional
locally homogeneous ANR is a generalized manifold.

1 should like to thank Dr. A. Szymarski for a helpful letter concerning an earlier
version of this work.

DgriNrTions. The suspension sL of a space L is the quotient of Lx[0, 1]
obtained by identifying L x0 and Ix1 to distinct points, called the conepoints.

The open (closed) come on a space L, written ¢°L (cL), is the quotient of
Lx[0,1) (Lx[0, 1] obtained by identifying Lx0 to a point.

In all cases the point corresponding to (x, ) is written X A L. In sL, given § with
0<s<1, we write c’L = {xa1] xeL and 0< 1<s}.

A compact finite-dimensional metric space Y is called an absolute suspension (AS)
if for each pair of distinct points X, ¥ there is a space L(x, y) and a homeomorphism
from X to sL(x, y) carrying x to the bottom conepoint L x 0 and y to the top cone-

point L x 1.


Artur


242 W. J. R. Mitchell

A locally compact finite-dimensional metric space X is called an absolute cone
(AC) if for each x € X there is a space L(x) and a homeomorphism from X to ¢°L (x)
carrying x to the conepoint.

The 7-sphere S” is an example of an AS; Euclidean n-space R" is an example
of an AC.

A compact finite-dimensional metric pair (X, *) is called an A-space if for
each x ¢ * there is a space L(x) and a homeomorphism from X to sL(x) carrying x, *
to the bottom, top conepoints respectively. Clearly an AS is an A -space for any choice
of “top-point” *, while the one-point compactification of an AC is an 4-space when
the point at infinity is chosen as top-point. The notion of A-space allows simultaneous
treatment of the AC and AS cases in the theorems below. In an A-space X, the space
L(x) will be called the link of 'x; the term is also applied in the obvious way to an AC
or an AS.

The first lemma is essentially due to Szymasiski ([10] and letter).

LeMMA 1. An A-space X is a homogeneous ANR and each of its links is an ANR.
Moreover if x # y # * # x, there is a homeomorphism of X fixing * and throwing x
onto y.

Proof. As each point has a neighbourhood base of the form {c2L}, where L is
some link and §>0, X is locally contractible. As it is finite-dimensional it is an ANR
by a theorem of Borsuk [2]. For any x, the open subset X\{x, *} = L(x)x (0, 1)
is an ANR(W). Thus again by [2] the compact set L(x) is an ANR.

If x # *, writing L = L(x), we have h: (sL,Lx0,Lx1) & (X, x,*). The
map xAf »xA(l—1) is a homeomorphism of sL interchanging the conepoints.
Hence, conjugating by &, we get a homeomorphism of X swapping x and *. Now
if x # p % *, by reparametrising the “vertical” coordinate of sL we may assume
that /1(y) € L x 4. Thus the homeomorphism f of X fixes y. Similarly there is a homeo-
morphism g of X which fixed x and swaps y and *. The composite fgf fixes * and
swaps x and y. @

LemmaA 2. The homology sheaf of an A-space is the constant shedf R (X,

Proof. We use the notation of [3]. The homology sheaf 4, (X) is generated
by the presheaf UwH, (X, X—U). (Here H,( ) denotes Borel-Moore homology
and A,( ) denotes reduced Borel-Moore homology.)

A base for the topology consists of sets homecomorphic to c{L, where §>0
and L is a link. Any member of this base, U say, has a compact and contractible
complement, and so the exact sequence of a pair gives a natural isomorphism
H, (X)) Hy(X, X~U). Thus the presheaf sections over the whole space generate
each stalk by restriction, and the restriction maps are all monomorphisms. Thus
the associated sheaf is constant with the claimed stalks, M

THEOREM 1. An A -space of dimension n is a regular generalized manifold homotopy
equhialent to S". Each of its links is a generalized manifold homotopy equivalent to
S""‘ . . .
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Proof, By Lemma 1, H,(X) is finitely generated, Using Lemma 2 and taking
coefficients in a field, we see that the spectral sequence of [3], v. 8.1 reduces to

B2 H(X)@H - (X)=H_p-o(X) .

Clearly X is connected, so Ho(X) = 0. If N>n = dimX, Hy(X)=0. By
a result of Kodama [8] X has cohomological dimension  over any field. By [7] for
some %, H,(X), # 0. Thus H,(X) # 0.

Suppose inductively that 0 = " J(x) for j<p. Then HX)®H,(X) = 377
= E%77 is a summand in H,_(X). If p<n this is zero, so H,(X) = 0for * # n. The
spectral sequence collapses to

H(X)®H,(X) = Ey™" & EZ™ = Ho(X) .

Thus H,(X) = H,(X) is one-dimensional. By Lemma 1, X is locally contractible,
and so clc for any coefficients. Thus X is an n—gm, for any field k. Thus by [9] it
is an n—gmy and is clearly regular in the sense of [11].

If n<1, X is a sphere by Chapter IX of [11]. If n>1, by [10] L(x) is connected
and so 7(X) = 1. Thus by the Hurewicz and Whitehead theorems X = §".

Finally L(x)x (0, 1) = X\{x, *} is an open subset of an n—gm and so an
n—gm. Thus by the factorization theorem ([3], V. 15.8) L(x) is an (n—1)—gm.
Now H(L())2#4ri(SL(x)) = Hyss(X), so by the argument above
Lx) =81 &

COROLLARY 1. An n-dimensional AS X is a regular generalized n-manifold homo-
topy equivalent to S"; all its links are generalized (n—1) -manifolds homotopy equivalent
fo S"1 M

COROLLARY 2. An n-dimensional AC X is a regular generalized n-manifold proper
homotopy equivalent to R"; all its links are generalized (n—1)-manifolds homotopy
equivalent to S""*. W

Chapter IX of [11] yields

COROLLARY 3. In dimensions less than 4, each AS is a sphere and ‘each AC is
a Euclidean space. W

Tt is interesting to enquire just how far the links of an 4-space are determined.

TueoreM 2. If X is an A-space and x, yeX, L(x)x(0,1) = L(»)x(0,1).

Proof. By Lemma 2 there is a homeomorphism % of X swapping x and y and
fixing *. Thus

L) x (0, 1) & XN[x, *} 2 XNy, *} 2 L()*(0,1). B

This has the obvious corollary in each case. The theorem is best possible in the

following sense.
Exampre. In an AS or an AC, links need not be homeomorphic.
For the latter case there is constructed in [4] a generalized 3-manifold V" such
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that ¥ 2 S° but OV = R*. Thus V¥ is a possible link of R*, but is not homeomorphic
ha = A

to the link S°.

For the former case, a recent result of Edwards [6] provides a homeomorphism

55 & s(sM?), where M? is Mazur’s 3-manifold. Thus s'M 3 m‘xd‘ S;gm;,/]gml(l) }l)cei
links of S°, butsM?® 2 S* Indeed sM > isnotan AS. For if it were a.;l1 bu, 1 nwgt:

be the link of a conepoint, while the link of; any other pou})t V\:O.LI ; ‘tc l:m. ,ml?ly
equivalent to S°. But §3 & M3, in contradiction of T.hcorem 2. This ‘115.?' 901‘ vit'( 1
shows that there is no simple proof of de Groot’s conjecture by downwards 1nc uction

on dimension.
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