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Some remarks on bicommutability
by

M. Artigue, E. Isambert, M. J. Perrin and A. Zalc (Paris)

Abstract. Given two languages L and £ and interpretations from L to ¢ and from £to L,
we define a strong equivalence relation between theories of Land { : Bicommutability. This definition
generalizes the well-known relationship between A, and ZFC-+V = HC.

We first give some examples and general properties of that notion, and then apply it to the case
of set theory and second order arithmetic with classical interpretations. We give examples of pairs
of weak subsystems of set theory and analysis which are bicommutable, and exhibit one of minimal
strength. We show that the theory KP of admissible sets has no bicommutable equivalent in second
order arithmetic.

Then we try to obtain the same type of results for set theory and third order arithmetic, and show
that, in that case, the answer depends on the choosen interpretations (“trees” or “graphs”). This
fact is closely related to the satisfaction of different weak forms of the axiom of choice.

We define here the notion of a bicommutable pair of theories which generalizes
the known relationship between A, and ZFC™+V = HC. We make some general
remarks on this relation and then investigate the subsystems of second order arithme-
tic and set theory which bicommute. We exhibit a pair of those which is “minimal”
for the notion of bicommutability. Finally, we examine the case of third order
arithmetic.

I. Definitions and generalities

A. Definitions. Let L and £ be two langnages (the equality symbols being con-
sidered as non logical ones), T'a theoryin L, 7 a theory in &, each of these containing
the axioms for equality, such that 7' is relatively interpretable in & and 7~ in T, by
fixed interpretations.

With a structure M for L (resp. 4 for &) we may therefore associate M°
(resp. ), the corresponding structure in & (resp. in L). We shall denote by ¢° the
translation in L of the formula ¢ of & (fesp. @™ the translation in & of the for-
mula ¢ in L).

We recall that we have then:

For every model M of T, (resp. J# of &) M°F T (resp. A" ET).

DerINITIONS. Let T and 7 be two theories which are mutually relatively inter-
pretable by the interpretations (°, *, :
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(i) T and 4 are bicommutable for these interpretations iff, for every model M
of T (resp. .# of I7) there exists an isomorphism j from M onto M °t definable in M
(resp. k from .4 onto . *° definable in ).

Note that isomorphism is understood here by respect to the equality of the
languages.

(i) T and 7 are weakly bicommutable for (°, *) iff, for every model M of T
and every model A of I :

Mt=M and M =M.

(iii) According to Montague (*), 7 and T are bilaterally interpretable for (°, *)
iff, for every formula @ of L (resp. ¢ of &):

TE®«@*° and

T F @ ° and

T (resp. ) is a conservative extension of J (resp. 7).
‘We shall say that 7" and & are bicommutable (vesp. weakly bicommutable), if and only
if there exist interpretations such that T and Z satisfy (i) (resp. (ii).

B. Remarks.

Bicommutability is an equivalence relation.

If T and 7 bicommute, then they obviously weakly bicommute.

Weak bicommutability is equivalent to bilateral interpretability.

If 7 and & bicommute by (°, ¥), let &(x,, ..., x,) be a formula of L with
Xis ., X, a5 free variables, Then, T+ ®(x;, ..., x) =P °(i(xy), ..., j(x,)).

Suppose we have two pairs of interpretations between L and % say (°, ©)
and (’, ¥) such that for each of them T and J bicommute. If for every model M
of T we have M°~M’, then for every model .# of 4 we have 4 ~.4*.

The same holds for T and &~ weakly bicommutable, replacing isomorphism by
elementary equivalence.

. C. Examples.

ExamrLE 1. Let L be the language of first order arithmetic: ({0, S, +,-, <, =}),
& the language of set theory: ({€, =}), T Peano’s arithmetic and 7~ SF+V = HF.
SF is ZF without the axiom of infinity and V = HF is the following axiom:

¥Yx3ndf [“n is a finite ordinal” A “f is a one-one mapping from x.onto n"].

Then 4 and T bicommute for the obvious interpretations.

ExAMPLE 2. Let L be the vector space’s equalitary language with two similarity
types denoted by (°) and (1) and interpreted respectively by scalars and vectors.

L= {O:Is +":0:@: X}-

(*) According to S. Feferman, this definition has been given by Montague in unpublished notes.
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Let & be the affine space’s language with three similarity types denoted by
©), @), (2) and interpreted respectively by ‘scalars, vectors and points.

L ={°1,+,,0,®, x,%}.

+is a function symbol with two arguments, the first of type (2), the second of type (1).
T'is the vector space’s theory and ° is the affine space’s theory obtained by
adding to T' the following axioms:

VX X0 =X,
VXVoVw X x (0@ w) = (X*0)xw,
VXV YRlvX k= Y.

7 and J° bicommute by the obvious interpretations.

ExampLg 3. Let T be a first order theory written in the language L with equality,
P an-place predicate symbol which does not belongto L. Let.# = L u {P}.Let P be
a formula of L with n free variables.

Then T and & = T U {Vxq .. Vo, (P(x1, s %) Py s x,))} bicommute.
For example, taking as before T' to be the vector space’s theory and P a two-places
predicate symbol and @ (v, w) the formula: Ix{x # 0Av == x x ], then 7~ describes
the projective spaces.

Exampre 4. Let L = & be the language { <y 8oy s Bys eves oy ey B e
T be the theory of dense linear orderings without endpoints with the following order-
ing of the constants of L: dp<a;< .. <&< o <b,< ... <by. .

7 be the theory of linear dense orderings with endpoints, a, and by being the
endpoints, and the same ‘ordering for the constants ‘of the language.

The interpretations are described as follows:

Start with M a model of T, cut its domain to the interval [a}, B¥] to get a model
M° of 7; d¥f and pY being the interpretations of a, and b, in M. .

Conversely, given .# a model of 7, to get A", cut the domain down b}; taking
off the interpretations of @, and by in . Then interpret do in.#* t(') ?e al, a, to
beay, ..., a,tobe a;’; . and do the same with the b;’s, the ordering remaining tht? same.

T and 7, with these interpretations weakly bicommute and one c.an easily see,
using the fact that these two theories admit the elimination of quantifiers, that x:g
interpretation can make them bicommute (the isomorphism between M and M
cannot be definable in M). ‘

We obtain as a consequence of this last result the fact that .tt}e notion of
bicommutability is strictly: stronger than that of weak bicommutability.

II. Bicommutable subsystems of analysis and set theory

From now on we shall consider the following languages_: . ot
L is the language of second order arithmetic with two similarity types, an the

non logical symbols: 0, S, +, *» <; & =
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& is the language of set theory with the non logical symbols: €, =
We shall work also in fixed intérpretations described as follows:

A. Interpretation of L in %. We define @7, the translation of a formula & in L,
by induction on the complexity of @. For & atomic, the constant 0, the predicates
y = 8x, z = x+y, z = x-y and x<y will be respectively interpreted by 0 and the
usual relations between finite ordinals. The membership relation and the equality
will be interpreted as in .. Then:

‘For & = -1, o =07

For & = &,V &,, o = B} v Py

For & = VxV, Pt = Vx(xew—-¥H).
For & = VXV, o7 = Vx(xcw—¥").

M* s then (o, p(@)*, 0,8, +,+, <,€,=).

B. Interpretation of % in L (cf. [17]). The subsystems of analysis that we shall
deal with, will always allow us to define a pairing function on integers denoted by:
x, y»{x, y>. Therefore a set of integers can be seen as a binary relation on integers.

DEFINITIONS. X being a set of integers, we define:

Fld(X): {xAy{{x,yp e Xv{y, x)y e x)},
Gr(X): VxVy[Vz(z, xp e X lz,> e X)ox =] A
AVY[Ax(xe YAYcFA(X))oIxe YVye Y1y, ) e x)]A
A3 z[re FIA(X) A Yu e FIA(X) (1, 65 ¢ XA
A(Vx eFld(X)—{r})As[Sq(s) /\Vi<lg(s)—‘ 1), D1e 1> € XA
Ao = xA(Digm-1 = 1].

If {x,y> € X, we may writ: x<y. If M is a realization for L and X a set of integers
X

in M such that M k Gr(X), we shall say that X is a graph of M. Such an X is, in M,
a well founded and extensional tree with a maximum element from which one can
reach each node in a finite decreasing X-chain.

We shall denote its maximum element by Max(X).

Gr(X) will be the predicate of relative interpretability.

F(X, Y) means: “There exists an isomorphism from the binary relation X onto
the binary relation ¥”.

J(X, Y) will interpret the equality relation. |
Z = X | nwill be a notation for: » e FId(X) and Z is the restriction of X to the
elements of FId(X) which are related to » by a finite increasing chain. Notice that:

ME [Gr(X)aneFld(X)]=[Gr(X ! n) AMax(X | n) = n] .

8(X,Y):AZAny [y = Max(Y)Aln, Yy e YAZ = ¥ I nas (X, V).
(X, Y) will interpret the membership relation.
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Therefore we have the following inductive definition of the translation ¢° of
a formula ¢ in Z: ,

For @: Xy = X, @1 J(Xy, X).

For ¢: x(€x,,  ¢°t (X1, Xp).

For ¢: 1Y, @ 1Y

For ¢: ¢V Py  €° @IV @,

For ¢: Yxo, @ VX[Gr(X)—¥°(X)]

Then M" is the structure <{X] Mk Gr(X)}, &,#) and we have:
MEp* - MFo.
From now on, we shall write “bicommutable” instead of “bicommutable for the
interpretations defined just above™.
C. Subsystems of second order arithmetic and set theory.

1. Subsystems of second order arithmetic. T will be the theory of L containing
the following axioms: .
Peano’s axioms for first order arithmetic with the induction scheme:

VX0 e XAVn(ne X—n+1leX)—VnneX)].

Axiom of extensionality.
Arithmetic comprehension scheme (z5,-CA):
Vo, .. Vo, VX, . VX AX YR e X)Xy, s X
whére ® is an arithmetic formula and X is not a free variable in .
! Bar Induction scheme (£i-Blo): for all ¥i-formula &
VX[“X has no infinite decreasing chain” A

n (Ve FACO[V3((, 3 € Xm0 () > (V5 e FIAN 29) ]

We shall consider extensions of T by adding one or several schemes among the
following:
Scheme of choice (ACq):

") .
VW Vo VX VX [VREXO @, Xy X5 e X)—3XVYud(n, X5, %y, s X))
where X™ = {mi{n, m) e X}
Comprehension scheme (CA):
Vo, o Vo VX VX, AX[Vn(ne Xy B (n, %1, s X
where X is not a free variable in ®.

% being a class of formulas, §-ACq; and §-CA. are respectively the restrictions
of ACy and CA to the formulas in &. ‘
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A; is the theory Ty +CA.
A, is the theory A; +AC,;.

RemarKs. If T} is the theory T; without Z1-Bly, we have:

T#+Zi-ACy, + 4;-CA,

T#+ACy, + CA,

T*+33-CA F 23-ACq, (see [8] and [17]),

T*+2i-CAF 31-BI,,

T#+AL-CA b 25-AC,, (see [8] and [17]),

T¥+3L-CAF ni-CA and T#+mi-CA b Zi-CA,

T# VX (“X well founded” «» “X has no infinite decreasing chain™) (see [8]).

2. Subsystems of set theory. E; will be the following theory of Z:

Extensionality + Pair + Union + Cartesian Product + Transitive clos-
ure + Axiom of infinity + Axiom of foundation + 4,-Separation.

For the definitions of thes¢ axioms and schemes, see [9] and [17].

We shall consider extensions of E; by adding one or several axioms and schemes
among: ‘

Collapsing (C):

Every extensional and well founded relation is isomorphic to a transitive set.

V = HC:

For all non empty x, there exists a mapping from w onto x.

4,~Collection (4,-coll):

VaVa, .. Va,[Vxeadyo(x,y,a;,..,a)—3bVxeadyebo(x,y, @y, .., &)

where ¢ defines a 4,-predicate.
2~ Separation (Z;-sep):

VaVa, ..Ya,AbVx[xebeorxeanp(x, ay, ..., a,)]

‘where ¢ is a X-formula and b is not a free variable in ¢.

Z~ is Zermelo’s set theory without the power set axiom.

ZFC~ is Zermelo Fraenkel set theory without power set axiom and with the
following scheme of choice: '

VYaVa, ..Va,[Vxeadyo(x,y, ¢;, ..., a)—AbYxcaBlye bo(x, y, dy, ..., a)].
Remarks. We have:
E;+A4,-coll 4,-sep ,
E,+3,-sep+dq-coll F (C) (see [3]),
E,+V = HCF AC.
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D. Theorem 1.
TueoreM 1. The following pairs of theories are bicommutable:

L £

1 Ay ZFC-+V = HC (see [8] and [16))

2 A; Z-+V = HC+dypcoll (see [10)

3| Ty L-CA Ey+Aycoll+ Z-sep+V = HC

4 Ty+ ZiACn Ey++ dgcoll+(C)+V = HC

We give here proof for 3 and 4.
Lemma I 1. There exist formulas 1,(X, ¥) and I,(X, Y) respectively wi and I
such that: :
T, +Z1-ACy, F Gr(Y) =(VX[(Gr(X) AS (X, ) I(X, V)IA
AVXIGI(X) AF (X, N LX, D))

Proof. We define the formula E(T, Xy, X;) by:

[T Fld (X,) % Fld (X)) A Vs e Fld(X,)V 1 e Fld(X,) s, DeT
T A (Fld(X; o) X Fld (X5 1)

is an isomorphism of X;,, onto Xn,”]/\[‘v’x!y(x,y> eT].
< <

Where X, is the restriction of X to Fld (X, ) —{x}.
<

E(T, X, X,)is an arithmetic formula meaning that T is a maximal isomorphism
between a transitive subset of X; and a transitive subset of X,. We claim that:

T, +31-ACy; F VX, Y X[Cr (X)) A Gr(X,)—ANTET, X;, X3)] .

The uniqueness is easily proved in T}, pointing out the fact that, if X is an exten-
sional well founded relation, there is no non-trivial z}u'tomorplusm of X.
The existence of such a T'is proved by using >1-Bl, with the formula:

O (x) = ATAXIX = Xy oA BT, X, X))

(*) W. Marek mentions us the two following corollaries of results 3 and 4:
Let Ly BV = HC then

(i) @ is non projectible «» Len p(@) E Z3-CA,

@ii) « is recursively inaccessible «» L () F A3-CA

(see the paper of Marek, same issue).
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(X, Y) and I,(X, Y) will be respectively the formulas:
VT35 [ET, X, Y)—s = Max(X) At = Max(Y)a<s, D eT],
73T [E(T, X, Y) As = Max(X) at = Max(¥)Als, D e TA
AVyeFld(Y)3x e FId(X)((x, y> e T].

COROLLARY I1.1. Let M be a model of T +ZI-ACO1 and ¢ be u formula of &,
then:

If @ is 4y in M°, then ¢° is Al in M.

If @ is Z, in M°, then ¢° is I3 in M.

LevmA 112, Let 4 be a model of E;+(C) and & a formula of L, then:

If@is =5 in M, & is Iy in M.

Proof. As @ is X} in 4%, there exists a primitive recursive predicate P such
that:

M E M) —AfYVgAmP(n, f, gm)).
Let T(n,f) = {s e 0/Vi<lg(®) 1 P(m, £, () --- (9)»)} and r<*s denote Church-

Kleene linear ordering on finite sequences of integers. One can easily see that
in J, ®* is equivalent to:

373a3¢pla is a transitive set A @ is an isomorphism from (a, €) onto
(T, ) <"1

Lemma I1.3 (Patching lemma). Jn a model M of Ty +21-ACq,, let Y be a set of
integers such that, for every n, Y™ is 4 graph. Then there exists a graph Z satisfying:

Vi [<n, Max(2) € Ze>ImI (Y™, Z, ) AVmAn[(n, Max(2)) e Z A
AF(Y,Z )]
Proof. One can assume that the graphs Y® are pairwise disjoint; otherwise
one replaces them by: Y’ = Y™ x {rn}. One then defines a mapping f whose
domain is U ¥® by:
FO) = pxEmIn(ye Y axe Y AL (YD), YID)].

According to Lemma 111, f has a A}-definition; so it is a set in M by 4 1-CA. (conse~
quence of Xi-ACq,).
The graph Z is defined by:
VaVa' [Kx, x> e ZoTyTy'anlf () = xAf(¥) = X' AL, ¥> e Y"lv
v(y = Max(Y") Af(y) = x AX" = a)]
where a is an integer not in {J ¥™. This definition of Z is n%, so Z is a set in M.

One verifies that it satisfies the required conditions.
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CoroLLARY 11.2.

(2) If METy, then M° ¥ Extensionality + Foundation + Union + Infinity.

by If MET, +31-ACy 1, then M®° ¥ Pdir + Cartesian Product + Ay-sep + (C) +
+V = HC.

(© If MET,+33-ACqy, then M° Ag-coll.

Proof. (a) is casy to prove using methods similar to those of [16] and [17].

(b) The axtoms of pair, cartesian product and V = HC are direct consequences
of Lemma IT.3.

dg-sep is obvious after Corollary TL1.

Let us show that M* satisfies (C):

Let » be a well-founded extensional relation in M°, therefore a graph of M whose
elements are represented by pairs [X, Y] (the relation Z' = [X, Y] being defined by:

Ao |V Vy (6, ) € Zerdx, yp € Xv<x, yd e YV ‘

v (¥ = Max(X) Ay = u)v (x = Max(X) Ay = v)v
v(x = Max(Y)Ay = 0)v(x = ury = Hv(x =vAy = )l

Z is a graph representing (X, ¥) of M°).

We associate with r the following relation S’ on the integers:

VaVy[Cr, p> e S'erAullu, Max()y e rarg, = [ 1o 1l -
Then we define a graph § in M by:
VxVy[(x, e Serlx, ypeS'v(xeFld(S) Ay = Max(r)] .

In M®, S is a transitive set and (S, €) is isomorphic to the relation r. There exists
a set Y in M such that:

Vix e FIA(S) Y® = [r,, S}l

and, Patching Lemma provides us with a graph Z which is in M°an isomorphism
from the relation r onto the transitive set S.

(c) Assume M° k Vx e adyo(x, ), p beinga Ay-formula, ¢ is a graph in M and:
MEVa[{n, Max(@)) e a—3Y[Gr(Y) A 0@ n D] -
Gr(Y)Ag"(dy, Y) is & Z3-formula, by Z1-AC,; We have:
MEAYYn[{n, Max(@) € a—{Gr(Y®) A p°(@yny YT .
Again, by the Patching Lemma, we obtain a set b in M° such that:
M°EVxeadyebo(x,).

Lemma I1.4.
(&) If M ¥ E,+A4,-sep, then M* F Peano’s Axioms + Extensionality + A3-CA.
(b) ]f M El’l‘Ao coll4+V = HC then ./l+ 3 Tl +21“A001
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©) If M Ey+45-coll+V = HC+(C), then MTE Ty +23-ACq,.
Proof. (a) is easy to prove. '

(b) Assume 4+ F ¥VnAX®(n, X) with & a n%,-formula. @* is a 4o-formula

and:
MEnewdre wd*(n,x).
By Ad,-coll:
HEdaVneoIxealxcondt(n, x)].
As 4 EV = HC, there exists in . a mapping f from ¢« onto a. So
MEVneoImenlfmacond*(n,fm)].

By 4,-sep, the following set X is in jl.:

X = {(n,pyAmew[p ef (m)A®*(n, f(m)AVg<mT o*(n, f @)} -
Finally 4% £ VYnd(, X™). :
(c) Suppose 4" E VnAX®(n, X) with AL in Mt as M satisfies (C), &* is

4, in 4 (Lemma IL2). Then, using Ag-coll and A;-sep we prove as above that:

Mt EIXVRE@m, XM). :
Proof of Theorem 1. (a) Let us show that: Ty = Ty +23-ACo, and E, = E; +
+ Ay-coll4-(C)+V = HC are bicommutable.
In view of the preceding lemmas, it is enough to show that if MET,
(tesp. . & Ey), then M°* ~ M (resp. A *o x ) with definable isomorphisms.

To define the isomorphism from M onto M°*, we associate to every set of in-

tegers in M X the graphs Z such that: Mk #(Z, X) where
VxVylx, vy e £oTnTmAp[(x = 0, np Ay =0, m) an<mam<pAape X)v
_ vix =<0,ppapeXay=<1,0)],
X can be considered as a canonical representation of X in M°.
Conversely, let 4/ satisfying E,. Take a belonging to .. There exists an injective
map ¢ from TC({a}) into o. This mapping induces on the integers a relation r iso-
morphic to (TC({a}), €). r is a graph in 4" and ¢(a) = Max(r).

Then, the isomorphism onto . *° is given associating to each ¢ in .4 all the
relations # on « such that:

A £ 3p(“p is an injective mapping from TC({a}) into w”A
Ar = o), 0(M)x, ye TCH{a) Axey)).

As  satisfies (C), every graph 4 of .#™" is isomorphic in 4 to a transitive set b by
a mapping ¥ and:

b = TC({¥(Max(4))}.

So A is associated to ¥'(Max(4)) in the above isomorphism.
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(b) In order to show that T;+23-CA and E,+dg-coll+X-sep+V = HC
bicommute it is enough to verify that, if Mk T, +23-CA, then M°F I;-sep and,
if JF E;+2-sep, then M7 T3-CA. These results are easy consequences of
Corollary 11.1 and Lemma 11.2, noting that:

E +Z -sep+4y-coll4-V = HCF (C) .

(6) In order to prove that Ay and Z~+V = HC+ 4,-coll are bicommutable,
we recall that:

ASF T, +54-ACy; and  Z™+V = HC+4,-collF Ey+(C)+V = HC.

It is then easy to state that, if Mk Az, then M° F Sep and, if A FZ7 +A44-coll+
+V = HC, then 4" k CA.
This result has been proved by W. Marek, using different methods.

E. Minimality. The results of Theorem 1 give us pairs of bicommutable theories
of decreasing strength. The following theorem shows that the fourth case of The-
orem 1 gives a pair of theories which are, in a way, minimal for the bicommutability.

TeroreM 2. Let 8 be a theory of &, and T a theory of L, such that:
 SEE+d;-sep and T Ti+ZRAC -
If S and T are weakly bicommutable (through the interpretations ° and *Y then:
SFE +dg-coll+(C)+V = HC and T+ Ty+Z3-ACo; 5

moreover S and T are bicommutable. .

Proof. Let .« be a model of S. Then, by hypothesis, M E T +E-AC,;.
Therefore (by Corollary 11.2) .4 *o g (C)+V = HC, and so does M, for M = M*°.
According to Lemma I1.2, if & is Alin T, ®* is 4, in S. So, if M is a model of T
M°k S and M°" E 43-CA which is equivalent to $1-AC,,. Therefore M F X3-ACoy
as well as T+ T +Z1-ACy, Corollary IT.2 shows that S F 4o-coll. Finally, as in
the proof of Theorem I, one shows that S and T are strongly bicommutable.

We now give an example of a theory of & which does not bicommute (by (°, )
with any theory of L.

THEOREM 3. No sibsystem of Ay wedkly bicommutes By (°, *) with KP+V = HC.

Proof, We shall display two models . and A~ of KP+V = HC such that:
M g M and N TP 5 A, The difference between M oand A is that 4% will bf
amodel of a weak subsystem of analysis (namely T; +21-ACy; + 151-CA) while
will be a model of full second order arithmetic.

ExampLe 1. Let 4" be a model of ZF such that  is standard in A" but &, 1js
not (see for example [6]), HCY', the set of hereditarily countable sets of A", is
a transitive model of ZFC™+V =HC. Let A be its standard part. Then
A EKP+V = HC (To show that 4" F do-coll, let o (x, ) be a 4o-formula of &
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such that A"k Vxeadyo(x,y). We apply in HCfW the reflexion principle to the
formula .

@@, ) AVz[rk (@) <rk(y)->T o, 2)] .

Moreover 4" F 71(C): for, let « be a countable non standard ordinal of A™; there
exists a subset X of o representing in A4 a well ordering of type «; Then X'e |4
because o is standard in 4, but X is not isomorphic to any transitive set of .4
(because o ¢ |A]). Moreover, &'t = A", so &k A, On the other hand,
N0 = HCY, which satisfies (C). So we have A % A

ExAMPLE 2. 0S¥ is the least non-recursive ordinal. Tt is well known (see for
example [12]) that: L,ex FKP+V = HC, and that the subsets of w in -Lo)‘fK are
exactly the hyperarithmetical subsets of .

Take / = Lyex. Then #* F Ty +21-ACq;+1Z;-CA (see [8]). The ordinals
of .# are isomorphic to the graphs of the type =<, (y,<q for ¢€0 (with the notations
of [5] and [7]). On the other hand, for all ¢€0*, <, ,<q is a pseudo-well ordering
(see [5]), so it is a linear ordered graph of ™, defining an ordinal in .#*°. That
remark shows that.#*° is not isomorphic to ., for in Lw?:lc every two well-orderings
are comparable which is not true for pseudo-well orderings in 4% = HA (see [S]).

Remark. The existence of two pseudo-well orderings in HA which are not
hyperarithmetically comparable allows us to show that, in HA, there do not exist
formulas I; (X, Y) and L(X, Y) satisfying the conditions of Lemma 11. 1. Therefore
the notion of isomorphism between graphs is not 4} in the theory T +21-ACy;.
That is why we need Z1-BI, in T}.

Let us prove that Lemma II.1 is not true in *: ,

Harrisson has proved the following theorem in [5]: If ¢ O*—0O and if § is
a X} subset of w such that 0= ScO* there exists in S an integer b such that:
< ppsa and <, p<p are not hyperarithmetically comparable.

Let A (resp. B) be a subset of w representing =< tosa (TESP. <) (yy<ny)- We
remark that 4 and B are graphs of HA. Put

X = {ne Fld(4)/Vm e Fld(B)"1F (4 bns By} o

If Lemma II.1 were true in HA, X would be hyperarithmetical, therefore it would
belong to the model HA. X is not empty, otherwise, in HA, 4 would be isomorphic
to an initial section of B; let 1, be a minimal element of X for 4. No integer n satisfies
{n,npy € ANF(A,,, B) in HA. So, by 4;-CA there exists 1y Which, for B, is a mini-
mal element of the subset ¥ defined by:

Y = {meFIdB)/Vn[(n, nyd> € A— F(d,,, B, o1}

4 and B are linear orderings, we should get: HA k & (A no» Bymo), Which is not
compatible with the definition of n,.
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Remark. The results proved by W. Marek in [10], permit an alternative proof
of the following fact: (La,€~x)-l-o # ngx.

Let us mention also the theorem proved by Gandy in [4]:

TrrorEM. No theory in L bicommutes with ZF™ +V = HC.

XII. Third oxder arithmetic

Now we treat the case of third order arithmetic and set theory, and we shall
show that the notion of bicommutability for some theories of those languages de;_x:nds
on the interpretation. Note that . Zbierski, in [16] using a slightly different inter-
pretation of the Janguage of arithmetic in set theory, studied the correspondence
between f-models of 4, and standard models of set theory.

A. Definitions and preliminaries.

1. Languages and axjoms. L? is the language of third order arithmetic, with 3
simildrity types; we shall use m, n, ... for first-order variables, x, Py s B, ... for
the second order and X, Y, ... for the third order. First order opjects are named
integers, second order objects are named reals and third order ob]‘e?ts sets ot.‘ reals.

The theories we consider will always allow us to define a pairing functmﬁn.on
the integers (resp. on the reals), noted n, m—{n, my (Tesp. x, y——>(x,.y>) :md an injec-
tive mapping from the countable sequences of reals into the reals: if x is a notation
for a sequence (1,) wo shall denote u, = (x),.

We define

X% = {y/x,»>e X} and Fld(X) = (xAy[<x, 3> € Xv{y, e X1} .

& being a class of formulas of L2, we define the following schemes of axioms:

%-AC,, is the scheme
Vi % o % [VXAXS(x, X)—AY VX E(x, YN
for all formulas @& §.
¥-BI, is the scheme
VX {{YaFix) (s> # X} A(Vax € Fld(X))
(VxIVp(<, %) € X ()@@ —(Vxe Fld (X))@ ()}

for all formulas & e &. _ )
PC, (principle of choice for the reals) is the axiom

VX[“X is an equivalence relation on the reals”
- YV x, e XAYE nl.

4 — Fundamenta Mathematicae CI
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For the language ., we shall use the axioms defined previously, adding the
following ones:

ACQy,3,): Vf{[*f is a function of domain p(w)” AYxe p(@)(f(x) # B
A () =p@)]—Tg [“g is a function of domain
P@)” AVxep)(g) ef@)).
Axiom of strong collapsing (C*)
Vr[“r is a well-founded relation” — b [“b is a transitivo set” A
A%f s an;i»homomorphism from r onto (b, €)"].
V = Hi : Vx3f “f maps p(w) onib x”

2, —I(E): Vx[(‘v’yex)¢(y)—a(p(x)j;»Vx(p(x) for all %;-formulas ¢,

2. Interpretations.

(i) Interpretation of L* in &. To the interpretation + defined previously for L,
we add the condition: :

if @ is VXP(X) then &% is Vx(xcp(w)—¥*()).

As before, it induces a mapping #—.4" from the structures of & to those
of I?, such that # F &% <> 4 k & for all sentences & of L2,

(i) Two different interpretations of % in L*. Tr(X) is the formula;

Vi [0, ()40 ¢ X1 A @1z € FAX))[(Vx € FIA(X) —{z))
@5)("s is a finite sequence of reals” A (Vi<lg(s))<(s), (41> € XA

/\(S)o = x/\(.s’)w(,)..l ="Z)] .
Similarly with the case of L, Gr(X) is the formula:

Tr(X) A(Vx e FIA(X))(Yy e FIA(X)) [Vz((z, %) € X:(z, ¥> & X)—x = y].

Let M De a structure for L; if M k Tr(X) (resp. Gr(X)) we shall call X a tree
(vesp. a graph) of M. The unique maximal element of & tree (or a graph) X will be
denoted by Max(X). If x e FId(X), we define X px as before.

The interpretation p—¢° from % into L? is defined as before, using the new
definition of the predicate Gr; # and & will again denote the predicates interpreting

equality and membership. Thence we get a mapping M—M° from the structures
of L? to those of &.

Let F, #, & be the following formulas:
F(Xy, X5, T): Tr(X) ATr(X,) AVxVy{(x, »> e T+ [xeFld(X) A
Ay €Fld(Xp) AVs[(s, Xy € X—T1(Ct, 3> € X, A s, ) e T)] A
AViKe, e X—Hs((s, neX ALs, e T)]]} ’
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H(Xy, ) ATIF(X,, X,, T) A(Max(X,), Max(X,)) e T] ,
F (X, X3): Ax[{x, Max (X)) e Xondt (X, X1l

We now define the interpretation p—¢* by induction on the length of the for-
mula ¢ in Z.

If ¢ is x; = x, @* is H(Xy, X)),

If @ is x &x, o* is F (X1, X,).

If @ is vy o* is vk

If @ is "y @* is "1

If ¢ is Axp(x) o* is AX[Tr(X) Ay*XD))

This interpretation induces a mapping M—M* from the structures of L? to
those of %,

From now on, we shall write that Tand &, two theories of L? and & bicommute
through trees (resp. through graphs) if the pair of interpretations (¥,*) (resp.
(*, ®) makes them. bicommute.

B. Results of bicommutability. T; will be the theory of L? containing the follow-
ing axioms:

Peano’s axioms for first order,

Extensionality for second and third order,

A%CA and Z3-BI,.

E; is the theory defined in II.

Lemma TIT 1. If M is a model of T, there exists a graph R of M such that:

M*ER=p) and M°FR=p(0).
Proof. The graph R is defined by: '

Vi, y{<x, > € Rer3ndmx = ({0}, {n}) Ay = <{0}, {m})> An<m]v
vAnTz[x = {0}, {mp Ay = {1}, D Anezly
vazx = ({1}, 2 Ay = {2}, (O]}

Lumma TI1.2. In T44-33-AC,, we have:

@) VX, VX, [Te(X)ATe(X,)—3ITF(X,, X,, T)],

b) VX, VX, [Gx,‘(X,) AGH(X) —(# (X, Xy S (X, X))

Proof. The proof of (a) is analogous to that of Lemma IT. 1.

The proof of (b) is casy, pointing out the fact that, if Xy and X, are graphs,
and if we have F(X,, Xs, T), then T is an isomorphism between a transitive part
of X, and a transitive part of X,, and that, conversely, if T is an isomorphism
between X, and X, we have F(X;, X,, T).

COROLLARY IIT.1. Let M be « model of Ty+53-AC,.

The predicates # and F are A} on M. '

If o is dy on M* (resp. M®), ¢* (resp. ¢°) is A2 on M.

4%
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If ¢ is 2, (kz1) on M* (resp. M), ¢* (resp. ®°) is Zf on M.

Levma IIL3. B -+ACQy, 3)+V = Hi F AC(3y).

Proof. In a model of E,+AC(31, 2)+V = Hiy, let f be a function of
domain p(w) such that (Vxes:)(ou)) f(x) # @. There exists a nllapping g from
@(w) onto U Rge(f). We define a function 2 from @(w) into pE(w) by
h(x) = {y/g(y) ef(¥)}. Then, we have (Vx e p(@)h(x) # @ and, by ACQy, 1),
there exists a function j of domain p(w) satisfying (Vx & p(@))j(x) e h(x). Put
k = goj. One can easily see that (Vxep@)k(x) e f(x).

THEOREM 4. (2) Put E; = E1+El-1(e)+A(-sep-f-Ao-coll+(C*)-|~ AC(Q, 5+
+V = H)+3x(x = ga(w)) and Ty =T; +3%AC,,. Then Ej dand Ty bicommute
through trees. .

(b) The theories T4+PC and E5+AC bicommute through trees.

Proof. It has been proved in [17] that:

MET, = M*F E,+4-sep+dg-coll+3x(x = (@)
and that:
MEE, =M ET,.

One proves, by methods analogous to those employed in the proof of Cor-
ollary II.2, that if Mk T, then

MY E(CY+V = Hi +Z,-1(e) -

Let us show now that, if Mk T, then M*E AC(3;, 22):

Tn M*, let f be a function of domain g (w) such that Vxe §J(w)(f (x) # D).
As the formula of &, z = (x, y) is 4,, there exists a A} formula of L, C(X, Y, Z),
such. that if X, Y, Z are trees of M, then

MECX,Y,Z)«M*EZ = (X, Y).
The function f is a tree of M such that
MEVze Fld(f){(z, Max(f)) e f~3X3 Y[(Tr(X) AT () ACX, Y. f, D) A
ATlx(x e FId(R) A {x, Max(R)) e RAK (%, Ry ) AFi(<1, Max(Y)) e A
AVx e Fld(R){{x, Max(R)y € R—TtAXF YAz [Tr(X) ATr(Y) A C(X, Y i) A
A (X, Ry AL Max(Y)) € YACz, Max(f)) €1}

where R is the graph defined in Lemma IIL 1.
‘We apply Z2-AC,, to the second member of the above conjunction and obtain

AZVx e FId(R){<x, Max(R)) & R-At[Z% = £, A3 X YAz(Tr(X) ATr(Y) A

AC(X, Y, f, )N K (X, R, )AF(ZD, ) Az, Max(f)) ef)]} -
Now we define a tree G in M by:
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VsVi{<s, © € GoxTuTo{ls = ({0}, ) At = ({0}, D Au, v) € Ry, ]V
vis = {1}, wyat = {1}, ) Ay, 0> € Z¥]v [s = ({0}, 2y at = ({2}, ]V
vis = ({1}, Max(Z®)) a1 = {3}, ]v s = {0}, At = ({3}, D]V
vis = {2}, x> At = {4}, v s = {4}, x) At = ({5}, Max (DT} -
G is constructed so that Mk VX[F (X, G)=IxC(R,, Z®, X)] and in M*,
we have “G is a function of domain p(w)” and Yx e p(w)G(x) £ (x).
To define the isomorphism between M and M**:
With every integer # of M, we associate the trees Y such that
ME R, qormys Y
With every real x of M, we associate the trees Y such that
ME AR 105 V-
With every set of reals X of M, we associate the trees ¥ such that
ME# (R, V), where X is defined as follows:
VsVi{(s, 1y e Rodx e X[(s, e Ry ) V(s = {1}, 0 At = Max(R))]} .

We define the isomorphism between 4 and .#**:
Let @ be an element of ., f a mapping from g (w) onto TC({a}) and x, such
that f (xp) = a. A(a,f, xo) is the tree defined as follows:

VsVi{¢s, e da, [, x) e [sepate p@al(f@OefOAaf()e TC(@) A
‘ v(f(®eant = x)I]}-
One checks that, if f and g are two mappings from @ () onto TC({a}) and if
g(x) = f(x) = ¢, then we have # [A(a,f, x,), A(a, g, ¥)]. The isomorphism
is given by associating with every a in ., the trees ¥ of ./ * such that:
A Ax,[*f maps @ (w) onto TC({g})” Af (xo) = anH (Y, A(a.f, xo))] -

For the second part of the theorem, take A a model of T,+PC. We show that
M*E AC. .

Let a be a non-empty set of M*, such that Vx € a(x # @) a is a tree of M and
we have:
ME Axdx, Max(@)p € a A Vx[{x, Max(@)y e a—3y{y, xp ea] .
Then we define, on a subset of Fld(a), the following equivalence relation
SCr, ) ifF AuTe[¢u, Max(@) € a Ao, Max(@)) e a A H (@ @) A
Ax,up eandy,veal.

By 42-CA, § can be considered as a set of reals of M. Applying PC; we easily display @
tree b of M such that

‘ M*EVxeadlyyebnx. ,
Conversely, it is obvious that, if 4 k Es+AC, then M EPC. »
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C. Comparison between bicomﬁmtability through trees and through graphs.
Similarly, we could have defined a notion of bicommutability through trees for
theories of L and . In fact, as soon as T contains T and g contains E, it is
equivalent for T and & to bicommute through graphs or through trees.

Now we give some results which show that those notions of bicommutability

are not equivalent for L? and Z.
We recall that the properties of the bicommutability through graphs are
essentially based upon the validity of Patching Lemma (PL):

VY{VxGr(¥™)—3Z[Gr(Z)AVs (s, Max(2)y e Z—Ax I (Z 5, Y)Y A
AVx3s (¢, Max(Z)y € ZAF (Zys, Y}
Leva TIL4. Ty+PLF YX[Tr(X)—3 ¥ (Gr(¥) A # (X, Y))] .

Proof. Let M be a model of T,+PL and 4 be a tree of M by induction on the
well-founded relation 4, we construct a graph B verifying M F # (4, B). Let & (x)
be the formula

xeFld(A)AACIGL(CYAH (C, A, )]

Suppose there exists x in Fld(4) such that M'F 1@ (x). Then by 2%-BI, there exists
an element x, in Fld(4) such that

MEABx)AYY Iy, X0 € A=B(Y)] -
By 32-AC,,, theré exists Y such that
Vy[(p, %) € A (Gr(YP) Ao (Y, 4,,))] -

One may take, for example, Y9 = {0} if (¥, xo)> ¢ 4.
Applying Patching Lemma to Y, we obtain a graph Z verifying #(Z, 4 4,)
which contradicts the definition of x.
So, Mk VxeFld(4)®(x) and therefore Mk &(Max(d4)) which proves the
existence of the graph B.
THEOREM 5. Let T and T be theories of L* and & respéctively, such that T and
T~ bicommute through trees, T> Ty and I o Ey. Then the followings are equivalent:
i) T FAC,
(iiy T+ PC,
(i) T PL, ,
(iv) T and T bicommute through graphs.
Proof. The equivalence of (i) and (i) is ah immediate consequence of
Theorem 4 (b).
(ii)=>(ii): Let, in M, ¥ be a set of reals such that YxGr(Y®). We define the
. following equivalence relation S on the reals:

S(s, 1) iff IyFz[s e FIA(YP) A1 e FIA(YP) A s (YD), Y]
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By PC, there exists a set &’ having exactly one element in each equivalence class
of S. We may assume, for example, that O ¢ X. We define a graph Z as follows:

VxVy{¢x, »» € Ze[[y = 0Ax € X A3z8(x, Max(Y#)]v
vixe XAye Xadz3z (x e FU(YP) Ay e FIA(YE) A (T, YEDTI)} -

px2
One verifies that Z is the desired “patched” graph.
(fid)=-(iv): Suppose¢ T’k T4+PL. Let M be a model of T. By Lemma IIL4,
there exists at least one graph in each equivalence class of the relation 5# defined on

“the trees of A, and according to Lemma IIT, 2 the graph of a given class for 3#° con-

stitutes an equivalence class for 7. Therefore M° and M* are isomorphic relatively
to the equality relations # and J, As T and ~ bicommute by the interpretations
(*,*) the same is true for the interpretations .. :

(iv)=>(): Actually, we show that if T=T, and I > E; and if they bicommute
through graphs, then 7 F AC. Let  be a model of 77; there exists a model M
of T such that .# is isomorphic to M°, Let a be an element of .4 such that

MEa#BAYxea(x # D)
and A be a graph of M corresponding to « by the above isomorphism. Then we have
ME Ve Fld(A) [<x, Max(d)) € A—AYAy(y, x> e AA T = {yD].
By 23-AC,.,
MEIZVx e Fld(A)[Cx, Max(A)) € 4A-Tp(Z5 = {3} ALy, x> e A)].
So there exists X in M such that
MEVx & Fld(4)[<x, Max(4)) € A—Aly(y e XAy, xp e 4)].
Then, we define a graph B as follows: '
VsVi{<s, ) e Ber[s & XAt = Max(4) Adx[{x, Max(A)) € An{s, xp e AT]v
v3pAxly e Xalx, Max(A)) e Any, x> e Anls, hed 01t
I b is the element of .# which corresponds to B, we have
MEYxeadyxnb={y).

Remark. The last part of the preceding proof shows in fact that T, and Es
are minimal theories for the bicommutability through graphs, in the sense of IL.C.
We have not been able to give a similar result for the bicommutability through trees.

CoroLLARY 111.2. There exists a pair of theories of L? and % which bicommute
through trees and do not bicommute through graphs. i

Proof, Those theories are respectively Ty+1PC and E5+7 AC. Their con-
sistency is a consequence of the following result, proved by J. K. Truss [15]:
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If ZF is consistent, so is the theory: ZF+AC(1,, )+ 1CR where CR is the
following weak axiom of choice:
Vrcgag)(w)[Vx-e r¥yer(x=yvxny=0)
' »Jacp(@Vxer(x# O-Axna={)].

If A is a model of that theory, #" is a model of T,+"1PC.

Post-script. Independently, W, Marek, using the interpretation of second order arithmetic in
set theory given here and in [L1], gets some results on w-models of second order arithmetic corre-
sponding to sets Ly, for some countable a. These results are in print in Fund. Math. [10].
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Some comments on the paper by
Axtigue, Isambert, Perrin, and Zalc

by

W. Marek (Warszawa)

DEFINITION. (a){J,} sc0n is the Jensen splitting of constructible sets into a hierarchy.
C(b) J, is projectible iff there is a 1-1 >le function on J, into some x €J,.
k The following is well known although no proof of it has appeared.

TueoreM | (Kripke). The following conditions are equivalent for admissible
J, (w>w):

(8) J, is non-projectible,

(b) J, satisfies the X\-separation scheme,

(c) J, possesses o cofinal tower of 3y-elementary transitive subsystems.

Using the following proposition of Artigue, Isambert, Perrin and Zale.

PROPOSITION. Theories Z3-CA and KP+2,-separation + V = HC are bicom-
mutable by means of well-founded trees and restrictions to p (©).

We find that )

Tarorem 2. If J,kV = HC, then the following conditions are equivalent:

@) Jy 0 g (w) k 53-CA,

(b) J, 18 non=projectible,

(¢) 4, satisfies the X ~separation scheme,

(d) J, possesses u cofinal tower of I,-elementary fransitive subsystems.

Woe notice that (d) implies that J, n @(w) is a f-model. As a corollary we

find that 1
1J, A g (w) b 25-CA, thenJ, n () possesses a cofinal tower of Z;-elementary

subsystems (cach satislying thus 43-CA).
Using another proposition of Artigue, =
PropoSITION. Theories AL-CA  and KP+“Mostowski Contraction  lemma
+V = HC are bicommutable.
We get

Tsambert, Perrin and Zale, namely



Artur




