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A class of infinite-dimensional spaces
Part I: Dimension theory and Alexandroff’s Problem

by
David F. Addis and John H. Gresham (Fort Worth, Tex.)

Abstract. A class of spaces is introduced whose dimension like properties are investigated. The
class is Jarge enough to contain all finite dimensional and some infinite dimensional ones. A reason-
able dimension theory is worked out, examples and some limitations are noted. Contact is made
with Alexandroff’s Problem. ’

In part II, extensions of results in the theory of retracts to the infinite dimensional case will
be given.

0. Introduction. In the 1973 Topology Conference at Virginia Polytechnic
Tnstitute William Haver [4] defined a covering property for metric spaces which he
called property C (see the closing section here). He developed this concept in his
efforts to prove that the space of piecewise linear homeomorphisms of a compact PL
manifold onto itself is an ANR. Haver proved that a countable-dimensional metric
space has property C, and that a locally contractible metric space which is a coun-
table union of compact spaces each having property C is an ANR.

In this paper we have reformulated Haver’s definition of property C so that it
will have meaning in general topological spaces. We then consider property C as it
relates to the problem of classifying infinite-dimensional spaces, and we also state
(proof to appear elsewhere) an extension theorem which generalizes Haver’s results.
We are particularly concerned here with developing a satisfactory dimension theory
for spaces having property C, and we give examples which indicate some limitations.

. Also of interest to us is the relation of property C to Alexandroff’s Problem (see

Nagata [10], p. 162). Vainstein [14] has also studied this rather difficult question.

A word is in order now concerning definitions, conventions, and notations. We
follow the terminology found in Kelley, including the absence of blanket assumptions
of any separation axioms (but as in Kelley, a paracompact space is regular). We
reserve the word refinement for covers only and use the term weak refinement when
dealing with families which may not be covers. Ordinal spaces are written with interval
notation. Dimension means covering dimensions as defined in Nagata [10] or
Nagami [9].

1. SCN spaces. In order to establish a useful dimension theory for C-spaces,
the underlying space usually needs to satisfy a normality condition which we call
strong complete normality.
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1.1. DermviTiON. A family {F,: ¢ € A} of subsets of a space X is said to be
separated if for each o in 4, .
F,n(UF)=0 and Fn(UF)=9.
B#a AN BEa

1.2. DERINITION. A space X is strongly completely normal (SCN) if for every
separated family {F,: w4} in'X there exists a digjoint open family {U,: o€ 4}
such that F,= U, for each o in 4. . )

Recalling that a discrete family is a family in which each point of the space
has a neighborhood meeting at most one member of the family, and that a collec-
tionwise normal space is a space in which discrete families can be separated by open
sets, it is routine to verify the

1.3. THEOREM. A-space X is SCN if and only if it is hereditarily. collectionwise
normal. T . L : R RCES g

1.4. CORGLLARY. Strong complete normality is hereditary.

. 1.5. COROLLARY. Metric spaces are SCN. L

But the space or real numbers with the [, b) topology is a nonmetric SCN space.
n view of Theorem 1,3, Steen [13] has proved the following

1.6. THEOREM. An ordered topological space is, SCN.

Mary Ellen Rudin [12] has given an example of a collectionwise normal Dowker

space. It is not known whether this space is hereditarily collectionwise normal..

SCN spaces have also been studied by McAuley [8].

2. Dimension theory for é—spaces. Definition and elementary properﬁes. In this
section we define a class of topological spaces and establish dimension theory for
this class.

2.1. DEFINITION. -A. topological space X is said to be a C-space (to have
property C) if for every sequence {#}32, of open covers of X there exists a sequence
{2, of families such that

(1) each %, is a pairwise disjoint collection of open sets,

(2) for each i, if Ue%;, then U=G for some member G of %;, and

@
(3) the family U %; is a cover of X.
i=1

The sequence {#}2, is called a C-refinement of {#}i%;.

The following propopositions are easy consequences of the definition. Their
proofs are left to the reader.

2.2. PROPOSITION. 4 C-space is screenable (every open coveir has a o-disjoint
open refinement). ‘

2.3. PROPOSITION. 4 closed subspace of a C-space is a C-space.

2.4. PROPOSITION. If every G; subspace of a space X has property C then every
subspace of X has property C,
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2.5. PROPOSITION. If X is a C-space, then so is its one-point compactification.
2.6. PROPOSITION. A free union of C-spaces is a C-space.

The following theorem is"of fundamental importance in establishing a’dimen-
sion theory for C-spaces. : :

2.7. TueoreM (Countable Sum Theoérem). Let X be an SCN space such thar
X = U1 X, and each X, is a C-space (in the relative topology). Then X is @ C—s)ace.

m=

Proof. Let {#,}i=; be a sequence of open covers of X. Let g: N xN—N be
a bijection (N = {1,2, 3, ...}) and let &, ;y denote the cover €. Fix an integer
and consider the family {%; ;}7-, as a sequence of open covers of X;. Since X; is
a C-space, there is a C-refinement {U i pyier of {€(,p}7=y relative to X;. Each
family % ; is a disjoint collection of relatively open subsets of X;, and therefore is
a separated family in X. Hence there is a disjoint family {F(U): Ue %,p} of ﬁpen
subsets of X such that U= F(U) for each Ue %;;. On the other hand, for each
Ue U there is a member G(U) of ,; which contains U. Let

; V(i,j) = {F(U) ﬂ G(U) Ue %(i,j)} .

A C-refinement  {#,};2; of {#}iz; is then defined by renumbe ing the
Vot Vap =W, where n-= g(@;j). Q.E.D.

The assumption of collectionwise normality cannot be omitted from the hypo-
thesis of the countable sum theorem, Bing’s example G is a normal, non-collection-
wise normal space which is the union of two subspaces which are relatively discrete.
However, this space is not screenable, and hénce not a C-space. This example was
pointed out by G. M. Reekie. .

2.8. COROLLARY. F, subspaces of SCN C-spaces have property C.

2.9. PROPOSITION. A paracompdct space X such that dimX =0 is a C-space.

Proof. In such spaces, arbitrary open covers have disjoint open refinements
which are covers. Q.E.D.

2.10. COROLLARY. A countable-dimensional hereditarily paracompact space is
a C-space. -

The decomposition theorem assures us that a finite-dimensional metric space
has property C. In fact, a finite-dimensional paracompact space has property C,
but an entirely different approach than that employed in the metric case must be used,

2.11. ProposirioN (Ostrand [11], p. 213). Let X be a normal space and

U = {U,: e A} a locally finite open cover of X of order <n+1. There exists for

each t, 1<t<n+1 a family ¥ = {Vint @ € A} of pairwise disjoint open sets such
nt+l

that ¥, shrinks % and \) ¥, covers X.
t=1

2.12. PROPOSITION. A paracompact space has dimension <n if and only if every
finite sequencé (€)X} of open covers of X has a finite C-refinement {1
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. n+1
Proof. (Necessity) Form the open cover # = {{) G;: G;e %, 1<i<n+1}.
i=1

Without loss of generality, this cover is locally finite and is of order <n-+1. Let
{# )3} be the disjoint open families provided by Ostrand’s proposition.

(Sufficiency) Given a finite open cover %, simply set €; = ¢ for each i. The
n+1l

cover. |J %, is a refinement of order <n+1. Q.E.D.
i=1
Property C in Lindelof spaces. In Lindeldf spaces we obtain a characterization
of property C which is analogous to the small inductive characterization of finite
dimension in separable metric spaces.

2.13. THEOREM. Ler X be a Lindeldf SCN space. The following statements are
equivalent.

() X is a C-space.

(b) X has a basis of open sets whose boundaries have property C.

(c) Every open cover of X has a refinement consisting of open sets whose boundaries
are C.

Proof. Implications (a)=>(b) and (b)=-(c) being clear, we prove that (c)=(a).
Let {¢:}72, be a sequence of open covers of X. Let {U;: j =0,1,2, ...} be a coun~

table refinement of %, such that BAU; is a C-space for each j. Define sets ¥; induc-
tively by setting Vo = Uy, and ¥, = U,— {J U;. The family {V;: j=0,1,2,..}

j<m

is a disjoint open family which refines %, and it is not hard to show that the sets ¥;
w

cover all of X but at most |J BdUj, the latter being a C-space by the countable sum
i=0

‘ e

theorem. Now we consider the sequence {%}{, of open covers of {) BdU; and by
J=0

using the strong collectionwise normality of X as it was used in the proof of the

countable sum theorem, we obtain a sequence {%;};2, of disjoint open (in X)

w

collections in which members of %; are contained in members of ¢; and |J %, covers
@0 i=2
U BdU;. Thus {#;}i2, C-refines {¥}iZ;. Q.E.D.
j=0

2.14. ExaMpLE. [0, Q] is a C-space. [0, Q] is Lindelsf, SCN, and has a basis
of open and closed sets (sets with boundary &), Alternatively, note that dim [0, 2 ]= 04

2.15. ExaMPLE. [0, Q) is not a C-space since it is not screenable. Thus the

requirement that X be Lindeldf cannot be omitted from Theorem 2.13.

Property C in paracompact spaces. As in all good dimension theories, the prop-
erty is a local one, We prove:

2.16. LocAL THEOREM. Let X be a paracompact SCN spdace. Then X has prop-
erty C if and only'if every point of X has a neighbqrhaod which has property C.
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Proof. If X is C, then X is a neighborhood of each of its points which is
a C-space. ’

For the converse, first take note that every open cover of a paracompact space
has a o-discrete closed refinement. Now let % be a cover of X by neighborhoods
which are C-spaces. Let 7" = |J ¥, i€ N, be a o-discrete closed refinement of
with each ¥"; a discrete family of closed sets, all of which are C-spaces. We know
that the union of the members of each #7; is a C-space, and hence X, as a countable
union of these, is a C-space. Q.E.D.

This result leads to the

2.17. SuM THEOREM. Let X be a paracompact SCN space. If {F,: ae A} is
a locally countable cover of X by C-spaces, then X is a C-space.

Proof. For each x in X, let N(x) be a closed neighborhood of x meeting at most
countably many F,. As a closed subset of a countable union of C-spaces in an SCN
space, N(x) is also a C-space. The local theorem provides the last line of the proof.
Q.E.D.

2.18. Remarks. The hypothesis that X be paracompact is needed in both
results above. Consider the regular SCN space [0, Q). If « < Q, then [0, «] is an open
countable neighborhood of « and hence is a C-space, but [0, Q) itself is not
a C-space.

Furthermore if for each a< we let o* be the least limit ordinal strictly greater
than o, {[¢, «*): «<Q} is a locally countable cover of [0, 2) by C-spaces since
each [x, a*) is countable. Unfortunately, as before, [0, 2) is not C.

2.19, TueoreMm. Ler X be a regular SCN space. The following are equivalent.
(a) X is a paracompact C-space.

(b) Every open cover of X has an open o-discrete (c-locally finite) refinement
by open sets whose boundaries are C-spaces. .

(¢) Every open cover of X has an open locally finite refinement by sets whose
boundaries are C-spaces. )

Proof. Tt is clear that (a) implies (b) and that (a) implies (¢) and (c) implies the
second part of (b). Thus we now assume that every open cover of X has a o-locally
finite refinement by open sets whose boundaries are C-spaces and prove (a). From
this position it is well known that X is paracompact, so we proceed to prove prop-
erty C. Let {#}{, be a sequence of open covers of X. Consider %, and let
W = G W, be a g-locally finite refinement with the boundary of each Win #7,

m=1

a C-space. Next well order each #, and then well order # so thatif ¥V, We#
then V< W in case (1) We #; and Ve ¥, and j<k or (2) W, V are in #,, and
V< W in the ordering in # .. For each W in #', define

VW)= W= {U: Ue# and U<W}.
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Because ¥ is well ordered in such a way that every initial segment is closure pre-
serving, {V(W): We#'} is a weak open refinement of %, and

X—U (V(w): Wew}

is contained in ) {Bd W: We #}. This last union is, in a trivial way, given as
a locally countable union of C-spaces; hence by the Sum Theorem it is a C-space.
Now %5, #s, ... forms a sequence of covers of this union of boundaries and hence
a C-refinement of these covers together with {V'(W): We #7} forms a C-refine-
ment of {%;}i~;. Q.E.D.

Note that the Sum Theorem is employed here in a manner similar to that in
which the Countable Sum Theorem is used in Theorem 2.13.

Property C in metric spaces. Using the standard metrization theorems, charac-
terizations of metric C-spaces are easily produced. For example:

2.20. TaEOREM. The following are equivalent conditions on X.

() X is @ metrizable C-space.

(b) X is a regular Ty space with a o-locally finite (a-discrete) base of open sets
whose boundaries are C.

The spirit of dimension theory appears next in the form of large inductive di-
mension.

291, TuEOREM. Let X be a metric space. X is a C-space if and only if for every
disjoint pair {A, B} of closed sets in X, there exists an open set U such that
AcUcX»/B and BAU is a C-space.

©

Proof. In the nontrivial direction let # = ) %; be a o-discrete base for X.
i=1

Each Ue®; can be written as U = U F(U,j) with each F(U,j) closed in X be-
j=t

cause X is perfectly normal. By assumption there exists open sets V(U,J) ‘with
F(U,j)eV(U,j)<U with BAV(U,j) a C-space. It is clear that

Vap = VU N: Uel}

is a discrete family and that {¥"(; : i, j€ N'} is a g-discrete base of open sets with C
boundaries. From above X is a C-space. Q.E.D.

Products of C-spaces. The last effort in our dimension theory is to produce

a product theorem. It is clear that if X'x ¥ is a C-space then the factors X and Y
" must also be C-spaces. Unfortunately the converse of this observation is false in
general.

2.22. ExaMPILE. Let X be the set of real numbers with the topology generated
by the set of right half-open intervals. Each svch interval is both open and closed,
hence X is a regular Lindelof space with ind X = 0. Standard arguments show that X
is SCN, and we know these conditions imply that X is a C-space. Next we show that
X 'x X is not a C-space by showing that X x X is not screenable, To this end, let ¢ be
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the cover of X'x X given by {(x,3):y # —x}u {[x, —x+1)x[x, —x+1): xe X}.
Now suppose a screening exists for this sequence, say {%;: i € N'}. Bach neighborhood
of a point (x, —x) must contain a set of the form [x, —x+&)x [x, —x--&) which
we call an e-square at x. Since the members of %, are pairwise disjoint, each Ue%;
can contain at most one g-square with a given vertex (x, —x). It follows that for
a fixed >0, there are at most countably many e-squates refining %;, and therefore
as ¢ ranges through 1, %, %, ..., %; contains only countable many members meeting

the line y = —¥. As i ranges through N, U {#;: ie N} can cover only a countable
subset of the line y = —x. Evidently Xx X is not screenable and hence not
a C-space. :

On the other hand, we are able to show the following

e

2.23. THEOREM. Let X be a C-space such that every open cover of X has a precise
open F, refinement. Let Y be a compact C-space such that

(a) Xx Y is SCN.
(b) There is a basis B for Y such that for all Be # X xBdB is a C-space.
Then Xx Y is a C-space.

Remark. Both G; spaces and paracompact spaces satisfy the covering con-
dition specified on X. Thus when X and ¥ are metric C-spaces all that is required is
that ¥ be compact and satisfy (b) an “ind” condition. In particular, the hypotheses
are satisfied when X is metric and ¥ = J, the unit interval.

Proof. We can assume that {#}i%, is 2 sequence of gpen covers of X'x Y all
of whose elements are of the form V' x B where ¥ is open in X and B e 4. We call
such sets boxes and the factors ¥ and B, x-sides and y-sides respectively. Now for
a given n e N and x in X, {x}x ¥ can be covered by finitely many boxes from %,,.
We fix such a cover for each x and let U(x, ) be the intersection of the x-sides.
The collection 9, = {U(x,n): xe X} is an open cover of X and hence there is
a C-refinement {%,: n odd} for the sequence {Z,: n odd}. Without loss of generality
we can suppose that each element U of %, is an F, set for every n. Consequently if
Be % then UxBdB is a C-space because of the countable sum theorem and con-
dition (b). To exhibit a C-refinement consider Ue%, and choose some x in X
with U= U(x, n). Now {x} x Y is covered by finitely many boxes previously fixed,
say {V;x B}L;, in such a way that ‘

U{UxB;: 1<ism}c U {V;xB;: 1<i<m}.
Next set W, = Ux B, and for x>2, set

W, = UxB,—J UxB;.
i<k

Some routine set containments show that

Ux Y- {W,: 1<k<m}c ) {UxBdB;: 1<j<my,


Artur


202 D. F.. Addis and J. H. Gresham

this last. union being a C-space. Note the collection of. W’s weakly refine %,. Let-
ting U now vary through %, the entire collection %, of W’s produced, will be
a weak refinement of &, covering allof Y {UxY: Ue 9, except for a C-subspace
in Xx ¥. Thus, since | {#,: n odd} covers X, the family | {#,: n odd} covers all
of X x Y except for at most a C-space. Using {#,: n even} as a sequence of covers
for the residual C-space it is easy to fill out the W -sequence to {# ,:ne N } achieving
the required refinement. Q.E.D.

As a result of the product theorem we obtain the following catalogue of product
C-spaces. :

294 COROLLARY. Suppose that X is-a C-space for which every open cover has
precise open F, refinement. For any space Y such that X x Y is SCN, X x Yis a C-space
provided

(1) Y is a countable union of discrete subspaces, or

(2) Y is o-compact and indY =0, or

(3) Y is a locally compact finite-dimensional metric space.

Proof, The first conclusion follows directly from the Sum Theorem for SCN
C-spaces. In the second case if ¥ = U {¥,: ne N} with each Y, compact, we see
that ind ¥, = 0 for each n and hence we can use the Product Theorem and the Sum
Theorem again. Finally for the third case, use of the Sum Theorem shows that X'x ¥’
is a C-space whenever Y is a closed subset of R" (i.e. a finite-dimensional locally
compact separable metric space) since it holds for [0, 1] (by the Product Theorem).
From Dugundji ([2], p. 241) we have that every locally compact paracompact space
is a free-union of g-compact locally compact subspaces and hence that Y is a free
union of locally compact finite-dimensional separable metric spaces, say Y=UY,.

But X»x ¥ = |J Xx Y, and thus Xx ¥ is a C-space. Q.E.D.
p :

3. Property C and Alexandroff’s Problem.

3.1. DEFINITION.. A space X is said to be weakly infinite-dimensional in the sense
of Alexandroff (in the sense of Smirnov) if for every sequence {(4;, B)}{%, of disjoint
pairs of closed sets there exists a sequence {U}2, of open sets such that 4,=U;

k

« X— B, for each i and ) BdU; = @ (respectively, () BdU, = & for some positive
i=1 i=1

integer k). Weak infinite-dimensionality will always be understood to be in the sense

Alexandroff unless stated. explicitly otherwise.

Note that in compact spaces, the two notions of weak infinite-dimensionality
are equivalent.

3.2. THEOREM. A normal C-space is weakly infinite-dimensional.

Proof. Assume, to the contrary, that a normal C-space X is not weakly infinite-
dimensional. Then there exists a sequence {(4;, B}, of disjoint pairs of closed
sets such that whenever {U}}{2, is a sequence of open sets with 4,cU;= X — B, for

icm

A class of infinite-dimensional spaces 203

© B
all i, then EQ! BdU; # @. For each i we define a cover %; of X as follows: let ¥; be

an open set containing B; such that V; n 4; = @ and set €, = {V';, X—B,}. Let
{#), be a C-refinement of {%;}{L;. For each i define sets U;, W; by
U=Ufde;: AcX-B}u (X-7)
and
W,=U{4de¥: AnB, # &} .
Now we observe:
(1) U, is an open set with 4,c U;:X—Bi.

(2) W;is an open set with Wi V;; if 4e%; and 4 N B; # & then A¢ X~ B;
and so by the C-refinement property, A<V;.

(3) U, n W, = @. This follows from the disjointness of the family %;. Because

s

%, is a cover of X, we have

)
e

X=yUuuyw.
i=1 =1

Since X is not weakly infinite-dimensional, () BdU; # &, let xe N BdU;.
=1

i=1 i=
@
Then x¢ i!1Ui since each U, is open. Hence for some j, x € W; and thus

BAU; n W, # @. Since W, is open, U; n W; # @ a contradiction to (é). Hence X
must be weakly infinite-dimensional. Q.E.D.

3.3. COROLLARY. Hilbert Cube I® is not a C-space.

Proof. Nagata [10], pp. 164-165, shows that Hilbert Cube is not weakly infinite-
dimensional. Q.E.D. '

The question of whether the concepts of countable dimensionally and weak

infinite dimensionality are equivalent in compact metric space is known as Alexan-
droff’s Problem [1]. We have shown that in metric spaces,

countable = Property C = weak infinite
dimensionality perty dimensionality

The reversibility of either implication is an open question.

4. Applications. The principal application of the foregoing theory is the follow-
ing general extension theorem. The proof involves techniques using nerves of carefully
chosen covers and will be presented in a separate paper.

4.1. THEOREM. Let Y be a metrizable locally contractible space. Suppose that X is
a metrizable space, A a closed subspace of X such that BdA has property C, and
f: A—Y amap. Then there exists aneighborhood U of A in X and a continuous exten-
sion F: U—Y of f. If ¥ is also contractible, we may take U = X.

3 — Fundamenta Mathematicae CI
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4.2. COROLLARY. A locally coritractible metrizable countable-dimensional space
is an ANR.

This theorem generalizes results of Haver [3], [4]. The theory of C-spaces and
these methods can also be developed to yield some somewhat specialized results
about the existence of near-selections and selections. See [4], p. 5, and [5].

5, Comments and open problems. The results in this paper indicate that the theory

of C-spaces is a dimension theory for a large class of spaces. The examples show that

for the most part propositions are as general as can be expected. But there are obvious
questions and difficulties arising in nice surroundings.

For one, a dimension concept on a space X, should be inhereted by all sub-
spaces. By example this is not true if X = [0, 2]. The situation is unknown for
metric spaces and this uncertainty could be resolved either way. Metric C-spaces,
being more general than finite- or countable-dimensional spaces but less general than
weakly infinite-dimensional spaces, are found between a class in which dimension is
hereditary and one in which dimension shares some of the characteristics of prop-
erty C. See Vainstein [14].

ProBLEM 1. Is property C hereditary in metrizable C-spaces?

The difficulty is in part revealed by a retreat to Haver’s [4] original definition
of C-space which we paraphrase: A metric space (X, d) is a “C” space if for each
sequence {¢;}i=, of positive numbers there is a C-refinement (in the sense of this
paper) for the sequence whose nth cover is the open cover of X by e,-neighborhoods
at each point. It is a trivial observation that this property is hereditary to all metrio
subspaces. The authors have generalized this definition .in the natural way and
defined the concept on uniform spaces. The uniformly C (UC) concept is hereditary
to subspaces with the induced uniformity. However, [0, Q] rises again with its unique
uniformity yielding a UC space, implying that [0, Q) is UC but not C.

PROBLEM 2. Is there a metrizable space X with metrics D and d so that (X, D)
is UC but (X, d) is not UC? (4 negative answer settles Alexandroff’s Problem.)

Ancther difficulty arises in attempting to achieve a product theorem. The prod-
uct of two countable-dimensional spaces is agam countable-dimensional. By example
this is not true for general C-spaces.

ProBrLEM 3. Is the product of a metrizable C-space and the set of irrational real
numbers again a C-space?

ProsLEM 4. Is the product of any two metrizable C-spaces again a C-space?
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