## D. Simson



- [3] M. Auslander, Large modules over Artin algebras, in: A Collection of Papers in Honour of Samuel Eilenberg, Academic Press, 1975.
- [4] S. U. Chase, Direct product of modules, Trans. Amer. Math. Soc. 97 (1960), pp. 457-473.
- [5] S. E. Dicson, On algebras of finite representation type, Trans. Amer. Math. Soc. 135 (1969), np. 127-141.
- [6] V. Dlab and C. M. Ringel, Decomposition of modules over right uniserial rings, Math. Z. 129 (1972), pp. 207-230.
- [7] P. Freyd, Abelian Categories, Harper Row Publishers, New York-Evanston-London 1964.
- [8] P. Gabriel, Des catégories abeliennes, Bull. Soc. Math. France 90 (1962), pp. 323-448.
- [9] Indecomposable representations II, Symposia Math. Ist. Naz. di Alta Mat. 11 (1973), pp. 81-104.
- [10] L. Gruson and C. U. Jensen, Modules algébraiquement compact et foncteurs lim<sup>(1)</sup>
   C. R. Acad. Sci., Paris, Sér. A 276 (1973), pp. 1651-1653.
- [11] M. S. Menzin, Indecomposable modules over Artin local algebras, J. Algebra 32 (1974), pp. 207-214.
- [12] J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), pp. 211-264.
- [13] B. Mitchell, Rings with several objects, Advances in Math. 8 (1972), pp. 1-161.
- [14] U. Oberst and H. Rohrl, Flat and coherent functors, J. Algebra 14 (1970), pp. 91-105.
- [15] and H. J. Schneider, Die Struktur von projektiven Moduln, Inventiones Math. 13 (1971), pp. 295-304.
- [16] N. Popescu, Abelian Categories with Applications to Rings and Modules, Academic Press, New York-London 1973.
- [17] J. E. Roos, Locally noetherian categories and generalized linearly compact rings. Applications, Lecture Notes in Math., Springer-Verlag 92 (1969), pp. 197-277.
- [18] D. Simson, On colimits of injectives in Grothendieck categories, Arkiv f
  ör Matematik 12 (1974), pp. 161-165.
- [19] Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), pp. 375-380.
- [20] On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977), pp. 91-116.
- [21] and A. Skowroński, On the category of commutative connected graded Hopf algebras over a perfect field, Fund. Math. (to appear).
- [22] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970), pp. 323-329.
- [23] C. Schoeller, Etude de la catégorie des algébres de Hopf commutatives connexes sur un corps, Manuscripta Math. 3 (1970), pp. 133-155.

INSTITUTE OF MATHEMATICS, NICHOLAS COPERNICUS UNIVERSITY Toruń

Accepté par la Rédaction le 29, 3, 1976

## On a problem of Sikorski

by

## I. Juhász and William Weiss (Budapest)

Abstract. It is shown that the existence of an  $\omega_1$ -metrizable Lindelöf space of cardinality bigger than  $\omega_1$  is equivalent to the existence of a Kurepa tree with no Aronszajn subtree. Thus the problem whether such spaces exist (asked by Sikorski in [5]) turns out to be both consistent with and independent of the usual axioms of set theory.

Let us first recall the definition of  $\omega_{\mu}$ -metric. Let  $\mu$  be an ordinal and G an ordered abelian group such that  $\{g_{\xi}\colon \xi < \mu\}$  is a strictly decreasing sequence converging to the unit element  $0 \in G$ . Let X be a set and let  $\varrho \colon X \times X \to \{g \in G \colon g \geqslant 0\}$  be a function such that

(i) 
$$\rho(x, y) = 0 \leftrightarrow x = y$$
,

(ii) 
$$\varrho(x, y) \leq \varrho(x, z) + \varrho(y, z)$$
,

(iii) 
$$\varrho(x, y) = \varrho(y, x)$$
.

 $\varrho$  is called an  $\omega_{\mu}$ -metric on X. A topological space is called  $\omega_{\mu}$ -metrizable iff it has the topology generated by some  $\omega_{\mu}$ -metric. As is shown in [7], the  $\omega_0$ -metrizable spaces are the usual metrizable spaces. The  $\omega_1$ -metrizable spaces are the "metric" spaces for countable folks.

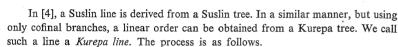
A topological space X is  $\varkappa$ -compact iff every open cover has a subcover of cardinality  $<\varkappa$ . In 1950 R. Sikorski asked if there were  $\omega_{\mu}$ -compact,  $\omega_{\mu}$ -metrizable spaces of cardinality  $>\omega_{\mu}$ . In case  $\mu=0$  the answer is clearly yes since the unit interval is such a space. Let us concentrate on the case  $\mu=1$  and try to find a "unit interval" for the countable folks, i.e., a Lindelöf,  $\omega_1$ -metrizable space of cardinality  $>\omega_1$ .

A tree  $\langle T, <_T \rangle$  is a partial order such that for each  $x \in T$  the set

$$\hat{x} = \{t \in T: \ t <_T x\}$$

is well-ordered. If  $\alpha$  is an ordinal, the  $\alpha$ th level of  $\langle T, <_T \rangle$  is  $\{x \in T : \hat{x} \text{ is order isomorphic to the ordinal } \alpha\}$ . If  $\kappa$  is an ordinal and  $\lambda$  is a cardinal  $\langle T, <_T \rangle$  is a  $(\kappa, \lambda)$ -tree iff  $T = \bigcup \{T_{\alpha} : \alpha < \kappa\}$  and for all  $\alpha < \kappa$ ,  $0 < |T_{\alpha}| < \lambda$ .

A branch  $b \subset T$  is a maximal chain of  $\langle T, <_T \rangle$ . A cofinal branch intersects each level. An *Aronszajn tree* is an  $(\omega_1, \omega_1)$ -tree with no cofinal branches. A *Kurepa tree* is an  $(\omega_1, \omega_1)$ -tree with  $\geqslant \omega_2$  cofinal branches. For further basic results about trees, please consult [1] or [3].



Assume  $\langle K, <_K \rangle$  is a Kurepa tree. There exists another Kurepa tree  $\langle T, <_T \rangle$  such that

- (i)  $|T_0| = 1$ ,
- (ii)  $(\forall \alpha < \omega_1)(\forall x \in T_\alpha)(|\{t \in T_{\alpha+1}: x < \tau t\}| = \omega),$
- (iii) every  $x \in T$  lies on  $\omega_2$  cofinal branches of T,
- (iv) if  $\beta$  is a limit ordinal and  $x, y \in T_{\beta}$  and  $\hat{x} = \hat{y}$  then x = y.

The proof of this statement is not difficult. First, eliminate those elements of K which do not satisfy (iii). Add a "root" to the result to obtain a tree K' satisfying (i) and (iii). Now, as in [1], page 45 "squash" K' to obtain a subtree  $K'' \subset K'$  which satisfies (i), (ii) and (iii).

Let T be the "quotient tree" of  $K^{\prime\prime}$  with respect to the following equivalence relation:

$$x \sim y$$
 iff  $\exists$  limit ordinal  $\beta$   $(x, y \in T_B \text{ and } \hat{x} = \hat{y})$ .

T satisfies (iv) and has the same number of cofinal branches as K'', since if two branches in K'' differed in  $K''_{\beta}$ , they now differ in  $T_{\beta+1}$ . Thus T satisfies (i)-(iv), and we call such a tree a very normal Kurepā tree.

The significance of such a tree is that, as in [4], a linear order  $<_E$  can be imposed on the set  $E=\{b\subset T\colon b \text{ is a cofinal branch of }T\}$  such that  $\mathscr{U}=\{U_t\colon U_t=\{b\colon t\in b\}$  and  $t\in T\}$  is a basis for the order topology on E induced by  $<_E$ . The order  $<_E$  is obtained by first making  $\{t\in T_{\alpha+1}\colon x<_T t\}$  order isomorphic to the integers for each  $x\in T_\alpha$  and each  $\alpha<\omega_1$ , and then taking the lexicographic order on E?

Lemma 1. If there exists a Kurepa tree, then there exists a Kurepa line E such that  $|E| \ge \omega_2$  and with respect to the order topology on E:

- (i) there exists a base  $\mathscr U$  for E of cardinality  $\omega_1$  such that every open cover  $\mathscr V$  of E has a discrete refinement  $\mathscr V'\subset \mathscr U$ .
  - (ii) E is  $\omega_1$ -additive, i.e.,  $G_\delta$  subsets are open.

Proof. Consider a very normal Kurepa tree, T, and the Kurepa line, E, derived from the branches of T as above.  $\mathcal{U} = \{U_t : t \in T\}$  is, as above, a basis for the order topology on E. Clearly  $|\mathcal{U}| = |T| = \omega_1$ .

In order to prove (i) let  $\mathscr V$  be an open cover of E. We can assume  $\mathscr V \subset \mathscr U$  and  $\mathscr V = \{U_t \colon t \in I\}$ , where  $I \subset T$ . Let  $\mathscr V' = \{U_t \colon t \in J\}$ , where  $J = \{t \in I \colon \text{for no } x \in I \text{ is } x <_T t\}$ .  $\mathscr V'$  is a subcover: if  $b \in E$ , since  $\mathscr V$  is a cover, there exists  $x \in I$  such that  $x \in b$ ; let x' be the  $<_T$ -least such x, so that  $b \in U_{x'} \in \mathscr V'$ .  $\mathscr V'$  is pairwise disjoint: if  $b \in U_x \cap U_t$ , then  $x, t \in b$ ; thus  $x <_T t$  or  $t <_T x$  or x = t, but if  $x, t \in J$  we must have x = t. Thus  $\mathscr V'$  is a pairwise disjoint subcover of  $\mathscr V$  and hence a discrete open refinement of  $\mathscr V$ .

In order to prove (ii) it suffices to show that  $\bigcap \{U_t: t \in I\}$  is open, where I is some countable subset of T. If  $b \in \bigcap \{U_t: t \in I\}$ , there exists  $x \in b$  such that for all  $t \in I$ ,  $t <_T x$ . Thus  $b \in U_x \subset \bigcap \{U_t: t \in I\}$ .

It is known that the axiom of constructibility, V = L, implies there exists a Kurepa tree. In fact, in [2] it is shown that V = L implies there exists a Kurepa tree with no Aronszajn subtree, and hence a very normal Kurepa tree with no Aronszajn subtree. The relevance of this lies in the following:

LEMMA 2. Let T be a very normal Kurepa tree and let E be a Kurepa line associated with T. E is Lindelöf iff T has no Aronszain subtree.

Proof. In order to prove sufficiency, we suppose E is Lindelöf but T contains an Aronszajn subtree  $A \subset T$ ; we derive a contradiction. For each  $b \in E$ , let  $\alpha_b = \sup \{\alpha < \omega_1 \colon b \cap T_\alpha \cap A \neq \emptyset\}$ . Since A has no cofinal branches  $\alpha_b < \omega_1$ . For each  $b \in E$ , let  $\beta_b = \sup \{\beta \colon \alpha_b < \beta < \omega_1 \text{ and there exists } x_\beta^b$ , the  $<_T$ -least member of A such that the element of  $b \cap T_\beta$  is  $<_T$ -less than  $x_\beta^b\}$ . The set  $\{x_\beta^b \colon \alpha_b < \beta \le \beta_b\}$  is contained in a single level of A because the set of predecessors of each  $x_\beta^b$  in A is  $b \cap A$ ; therefore we must have  $\beta_b < \omega_1$ . In other words, if we let  $I = \{t \in T \colon \text{there does not exist } x \in A \text{ such that } t \le_T x\}$ , each  $b \in E$  contains an element of I. Thus  $\mathscr{V} = \{U_i \colon i \in I\}$  is an open cover of E and hence has a countable subcover  $\mathscr{V}'$ . Since every  $x \in T$  lies on a  $b \in E$ , we have  $A \subset \{x \in T \colon \text{there exists } t \in T \text{ such that } x <_T t \text{ and } U_i \in \mathscr{V}'\}$ . Therefore A is countable and hence A has no Aronszajn subtrees.

Now suppose E is not Lindelöf and so there exists an open cover  $\mathscr W$  with no countable subcover. Let  $\mathscr V$  be a disjoint refinement of  $\mathscr W$  as in Lemma 1;  $\mathscr V$  must then be uncountable. Let  $A=\{x\in T\colon$  there exists  $U_t\in\mathscr V$  such that  $x\leqslant_T t\}$ . In order to show that A is an Aronszajn subtree, it suffices to show that A has no uncountable branches. To this end, suppose b is an uncountable branch of A; since A is closed under T-predecessors, we have  $b\in E$ . Therefore, there exists  $U_t\in\mathscr V$  such that  $b\in U_t$ . Since  $\mathscr V$  is pairwise disjoint,  $U_x\notin\mathscr V$  for any  $x>_T t$  such that  $x\in b$ .

Now pick  $y \in b$  such that  $t <_T y$ ;  $y \in A$ , hence there is  $x \in T$  such that  $y \le_T x$  and  $U_x \in \mathscr{V}$ , which contradicts the previous conclusion.

By the results of [7] the Kurepa line E is  $\omega_1$ -metrizable, hence the existence of a Kurepa tree with no Aronszajn subtree yields a solution to Sikorski's problem for the case  $\mu=1$ . In fact, as follows from the next theorem, this strange-looking tree is just the essence of that very natural problem.

THEOREM 3. The following are equivalent.

- (i) There exists an  $\omega_1$ -metrizable Lindelöf space of cardinality  $> \omega_1$ .
- (ii) There exists an  $\omega_1$ -metrizable Lindelöf space of cardinality  $> \omega_1$  which has no isolated points.
  - (iii) There exists a Kurepa tree with no Aronszajn subtree.
- (iv) There exists an  $\omega_1$ -additive Lindelöf linearly ordered topological space with weight  $\omega_1$  and cardinality  $>\omega_1$ .



Proof. (i)—(ii). Let X be a space as given in (i). We first claim that  $w(X) = \omega_1$ . Let  $\{g_\xi\colon \xi<\omega_1\}$  be as in the definition of the  $\omega_1$ -metric. For each  $\xi<\omega_1$ , let  $\mathscr{W}_\xi=\{N_\xi(x)\colon x\in X\}$ , where  $N_\xi(x)=\{y\in X\colon \varrho(x,y)< g_\xi\}$ . Let  $\mathscr{W}'_\xi$  be a countable subcover of  $\mathscr{W}_\xi$ . It is now straightforward to show that  $\mathscr{W}=\bigcup\{\mathscr{W}'_\xi\colon \xi<\omega_1\}$  is a basis for X of cardinality  $\omega_1$ . Now a Cantor-Bendixon type of argument will show that X has a closed subset  $X^*$  of cardinality |X| and with no isolated points.

(ii)  $\rightarrow$  (iii). Suppose X is a space given by (ii). Since X is  $\omega_1$ -metrizable it is also zero-dimensional. We construct a Kurepa tree T from the clopen subsets of X with inclusion as  $<_T$ . Let  $\{g_\xi\colon \xi<\omega_1\}$  be as in the definition of  $\omega_1$ -metric. We first note that if U is a clopen subset of X, there exists a countable collection  $\mathscr{C}(U,\xi)$  of pairwise disjoint clopen subsets of U of diameter  $< g_\xi$  such that  $\bigcup \mathscr{C}(U,\xi) = U$ . To see this, cover U with clopen subsets of diameter  $< g_\xi$ , take a countable subcover and "disjointify".

Now let  $T_0 = \{X\}$ . If  $T_{\beta}$  has been defined and is a countable collection of clopen subsets of X, define  $T_{\beta+1} = \bigcup \{\mathscr{C}(U, \beta+1): U \in T_{\beta}\}$ . If  $T_{\beta}$  has been defined for all  $\beta < \lambda$  and  $\lambda$  is a limit ordinal, let  $\mathscr{V} = \{ \cap B: B \text{ is a branch of } \bigcup \{T_{\beta}: \beta < \lambda \} \}$ . Since X is  $\omega_1$ -additive  $\mathscr{V}$  is a clopen cover of X.  $\mathscr{V}$  is disjoint, hence countable. Let  $T = \mathscr{V} \setminus \{\emptyset\}$ .

Let  $T=\bigcup\{T_{\beta}\colon \beta<\omega_1\}$  and let  $<_T$  be set inclusion. Suppose B is a branch of T; since X is Lindelöf  $\bigcap B\neq\varnothing$ . Since  $\operatorname{diam}(B\cap T_{\beta+1})\leqslant g_{\beta+1},\ \bigcap B$  must be a single point. Thus the number of cofinal branches of T=|X|, which is  $>\omega_1$  and so T is a Kurepa tree. Furthermore, it is now straightforward to show that topologically X is a Kurepa line associated with the Kurepa tree T. Thus, by Lemma 2, T can have no Aronszain subtree.

- (iii)→(iv) is clear from Lemmas 1 and 2.
- (iv) $\rightarrow$ (i). In [5] it is shown that a regular  $\omega_1$ -additive space with weight  $\omega_1$  is  $\omega_1$ -metrizable.

The following corollary answers the question of Sikorski.

COROLLARY. The existence of an  $\omega_1$ -metrizable Lindelöf space of cardinality  $> \omega_1$  is consistent with and independent of the usual axioms of set theory.

Proof. As mentioned before, it is shown in [2] that V=L implies (iii) of the theorem. In fact, since V=L implies GCH, we can have an  $\omega_1$ -metrizable Lindelöf space of cardinality  $2^{\omega_1}$ , which is of course the largest possible cardinality for such a space. However, in [6] it is shown that it is consistent with the usual axioms of set theory and with the assumption of a large cardinal to assume that there are no Kurepa trees.

Theorem 3 may be generalized. Note that if  $\omega_{\mu}$  is singular and X is  $\omega_{\mu}$ -metrizable, then the intersection of  $\omega_{\mu}$  open sets in  $\omega_{\mu}$  is open. Thus, if X is also  $\omega_{\mu}$ -compact, it is easy to show that X must be a discrete space of cardinality  $<\omega_{\mu}$ . We therefore generalize Theorem 3 for regular cardinals only.

THEOREM 4. If  $\omega_{\mu}$  is regular and  $\varkappa>0$ , then the following are equivalent.

- (i) There exists an  $\omega_{\mu}$ -metrizable,  $\omega_{\mu}$ -compact space of cardinality  $\varkappa$ .
- (ii) There exists an  $(\omega_{\mu}, \omega_{\mu})$ -tree T with  $\varkappa$  cofinal branches such that any  $(\omega_{\mu}, \omega_{\mu})$  subtree of T has a branch (of cardinality  $\omega_{\mu}$ ).

Proof is similar to Theorem 3.

We mention that the following known result is also an immediate consequence of this theorem.

COROLLARY. If  $\omega_{\mu}$  is a weakly compact cardinal, then there exists an  $\omega_{\mu}$ -metrizable,  $\omega_{\mu}$ -compact space of cardinality  $2^{\omega_{\mu}}$ .

Proof.  $\omega_{\mu}$  is weakly compact iff  $\omega_{\mu}$  is inaccessible and every  $(\omega_{\mu}, \omega_{\mu})$ -tree has a cofinal branch. Consider the tree  $T = 2^{\omega_{\mu}} = \{s: s \text{ is a function from } \alpha \text{ into 2 for some } \alpha < \omega_{\mu} \}$  with the order  $<_T$  as set inclusion.  $\langle T, <_T \rangle$  satisfies (ii) of the theorem.

Let us now look back to see if we have constructed a unit interval for the countable folks. We have, assuming V = L, been able to construct an  $\omega_1$ -metrizable,  $\omega_1$ -compact linearly ordered zero-dimensional space of cardinality  $2^{\omega_1}$ . This is the Cantor set for the countable folks and this is the best we can do for them since every  $\omega_1$ -metrizable space is zero-dimensional.

## References

- K. J. Devlin, Aspects of constructibility, Lecture Notes in Mathematics 354, Springer-Verlag, New York 1973.
- [2] Order types, trees, and a problem of Erdös and Hajnal, Periodica Math. Hung. 5 (2) (1974), pp. 153-160.
- [3] T. J. Jech, Trees, J. Symbolic Logic 36 (1971), pp. 1-14.
- [4] E. W. Miller, A note on Souslin's problem, Amer. J. Math. 65 (1943), pp. 673-678.
- [5] R. Sikorski, Remarks on some topological spaces of high power, Fund. Math. 37 (1950), pp. 125-136.
- [6] J. H. Silver, The independence of Kurepa's conjecture and two-cardinal conjectures in model theory, AMS Proc. Symp. in Pure Math. XIII Part 1, pp. 383-390.
- [7] Wang Shu-Tang, Remarks on  $\omega_{\mu}$ -additive spaces, Fund. Math. 55 (1964), pp. 101-112.

Accepté par la Rédaction le 5. 4. 1976