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On a problem of Sikorski
by ‘

I Juhisz and William Weiss (Budapest)

Abstract. It is shown that the existence of an w,-metrizable Lindelof space of cardinality
bigger than o, is equivalent to the existence of a Kurepa tree with no Aronszajn subtree'. Thus t_he
problem whether such spaces exist (asked by Sikorski in [5]) turns out to be both consistent with -
and independent of the usual axioms of set theory.

Let us first recall the definition of a)“-metric.i,et pbe an ordinal and Gan or:dered
abelian group such that {g,: £<p} is a strictly decreasing sequence converging to
the unit element 0 € G. Let X be a set and let 0 X'x X—{g e G: g =0} be a function
such that

(1) Q(xay) =0 x f—'_y’

() oCx, Y)<elx, D+e(y,2)

(iii) e(x, ) = e(r, %) . _

o is called an w,-metric on X. A topological space is called a),;metrzzab{e
iff it has the topology generated by some w,~metric, As is showP in [7], the wg-metri-
zable spaces are the usual metrizable spaces. The o,-metrizable spaces are the
“metric” spaces for countable folks. .

A topological space X is x-compact iff every open cover has a subcover o
cardinality <x. In 1950 R. Sikorski asked if there were w,,-.compact, a),,-mc.:tn-
zable spaces of cardinality >w,. In case y = 0 the answer is clearly yes since
the unit interval is such a space. Let us concentrate on th‘e cas'fs u=1 ar}d try
to find a “unit interval” for the countable folks, i.e., a Lindelof, w;-metrizable
space of cardinality > w;.

) A tree (T, <py is a partial order such that for each xeT the set
%= {teT: t<gx}

is well-ordered. If « is an ordinal, the ath level of (T, < _T) is {x € T: % is order iso-
morphic to the ordinal «}. If % is an ordinal and 4 1T a\l ca;'rdmal (T, <y is a

i : 0<|T <A
s, A)-tree if T = | {T,: a<x} and for all a<x, 4 -
v 3& branch b=T'is a 1:1axima1 chain of (T, <ry. A cofinal branch intersects each
level. An Aronszajn tree is an (o, w;)-tree with no cofinal branche§. A Kurepa tree
is an (wy, wy)-tree with 2w, cofinal branches. For further basic results about
trees, please consult [1] or {3].
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In [4], a Suslin line is derived from a Suslin tree. In a similar manner, but using
only cofinal branches, a linear order can be obtained from a Kurepa tree. We call
such a line a Kurepa line. The process is as follows.

Assume (K, <g) is a Kurepa tree. There exists another Kurepa tree {7, <>
such that

(i) !To[ =1,

() (Ye<w)(VxeT)({teT,: x<7t}| = w),

¢iii) every x e T lies on w, cofinal branches of T,

(iv) if B is a limit ordinal and x,ye T, and £ = § then x = y.

The proof of this statement is not difficult. First, eliminate those elements
of K which do not satisfy (iii). Add a “root” to the result to obtain a tree K’ satis-
fying (i) and (iif). Now, as in [1], page 45 “squash” K’ to obtain a subtree K" c K’

‘which satisfies (i), (i) and (iii). )

Let 7" be the “quotient tree” of K’ with respect to the following equivalence

relation:

x~y iff 3 limit ordinal § (x,yeT; and £ = 9).

T satisfies (iv) and has the same number of cofinal branches as K*, since if two
branches in K’ differed in' K,', they now differ in Ty.1. Thus T satisfies (i)-(iv),
and we call such a tree a very normal Kurepa tree.

The significance of such a tree is that, as in [4], a linear order < can b imposed
ontheset E = {bc T bisa cofinal branch of T} such that % = {U,: U, = {b: 1€ b}
and e T} is a basis for the order topology on E induced by <gz. The order <y is
obtained by first making {# e T,.y: x<rt} order isomorphic to the integers for
each xe T, and each o<, and then taking the lexicographic order on Ei

Lemma 1. If there exists a Kurepa tree, then there exists Kurepa line E such
that |E|Zw, and with respect to the order topology on E:

(i) there exists a base % for E of cardinality o, such that every open cover ¥
of E has a discrete refinement ¥ <%,

(i) E is w,-additive, i.e., G; subsets are open.

Proof. Consider a very normal Kurepa tree, T, and the Kurepa line, £, derived
from the branches of T as above. % = {U,: te T} is, as above, a basis for the order
topology on E. Clearly %] = |T| = w,.

In order to prove (i) let #” be an open cover of E. We can assume %" <% and
-V ={U;: tel}, where I<T. Let ¥ = {U,: teJ}, where J = {tel: forno xel
is x<gf}. ¥ is a subcover: if b e E, since ¥ is a cover, there exists x e I such that
xeb; let x' be the <r-least such x, so that be Uy e¥”. v is pairwise disjofnt:
if be U, A U,, then x, t € b; thus X<ptori<pxorx =t butif x,teJ we must

have x = 7. Thus ¥ is a pairwise disjoint subcover of ¥" and hence a discrete open
refinement of ¥,

icm°®
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In order to prove (i) it suffices to show that () {U,: te I} is open, where I is
some countable subset of T. If be ( {U,: tel}, there exists x b such that for
all tel, t<px. Thus be Ugc N\ {Uy: tell.

It is known that the axiom of constructibility, V = L, implies there exists
a Kurepa tree. In fact, in [2] it is shown that V = L implies there exists a- Kurepa
tree with no Aronszajn subtree, and hence a very normal Kurepa tree with no
Aronszajn subtree. The relevance of this lies in the following:

LemMMA 2. Let T be a very normal Kurepa iree and let E be a Kurepa line associated
with T. E is Lindelof iff T has no Aronszajn subtree.

Proof. In order to prove sufficiency, we suppose E is Lindelof but T'contains
an Aronszajn subtree A<T; we derive a contradiction. For each be E, let
op = supf{a<wy: bnT, 4 s B}. Since 4 has no cofinal branches o,<w;.
For each beE, let f§, = sup{B: ay<f<m; and there exists xj, the <r-least
member of 4 such that the element of b T, is <g-less than xj}. The set
{x;’,: ay<B< Py} is contained in a single level of 4 because the set of predecessors
of each x in Ais b N A; therefore we musthave f,<w;. In other words, if we let
I = {te T there does not exist x € A such that t<x}, each be E contains an el-
ement of I. Thus ¥" = {U,: t€I} is an open cover of E and hence has a countable
subcover ¥, Since every x e T'lies on a b e E, we have A= {x e T: there exists € T
such that x<gt and U,e¥"}. Therefore 4 is countable and hence A4 has no
Aronszajn subtrees. :

Now suppose E is not Lindelof and so there exists an open cover # with no
countable subcover. Let ¥~ be a disjoint refinement of %" as in Lemma 1; ¥ must
then be uncountable. Let 4 = {x e T: there exists U,e?” such that x<r#}. In
order to show that 4 is an Aronszajn subtree, it suffices to show that 4 has no
uncountable branches. To this end, suppose b is an uncountable branch of 4; since 4
is closed under T-predecessors, we have b € E. Therefore, there exists U, €% such
that b e U,. Since ¥ is pairwise disjoint, U, ¢ ¥ for any x>t such that x e b.

Now pick y e b such that <ry; y € 4, hence there is x ¢ T’ such that y<rx
and U,e%", which contradicts the previous conclusion.

By the results of [7] the Xurepa line E is w,-metrizable, hence the existence
of a Kurepa tree with no Aronszajn subtree yields a solution to Sikorski’s problem
for the case p = 1. In fact, as follows from the next theorem, this strange-looking
tree is just the essence of that very natural problem.

THEOREM 3. The following are equivalent.

(i) There exists an ,-metrizable Lindelof space of cardinality >w;.

(ii) There exists an ,-metrizable Lindeldf space of cardinality >y which
has no isolated points.

(iil) There exists a Kurepa tree with no Aronszajn subtree.

(iv) There exists an wy-additive Lindelsf linearly ordered topological space with
weight w; and cardinality > ;.
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Proof. (i)—(ii). Let X be a space as given in (i). We first claim that w(X) = w,.
Let {gs: é<w} be as in the definition of the w,-metric. For each ¢<wy, let
Wy = {Ngx): x e X}, where Ny(x) = {y e X: o(x, y)<g,}. Let #°; be a countable
subcover of #7. It is now straightforward to show that % = | {#;: é<w,}
is a basis for X of cardinality ;. Now a Cantor-Bendixon type of argument will
show that X has a closed subset X* of cardinality |X'| and with no isolated points.

(if)—(iii). Suppose X is a space given by (ii). Since X is w,-metrizable it is also
zero-dimensional. We construct a Kurepa tree 7" from the clopen subsets of X with
inclusion as <g. Let {g;: é<wy} be as in the definition of w,-metric. We first
note that if U is a clopen subset of X, there exists a countable collection (U, &)
of pairwise disjoint clopen subsets of U of diameter <g, such that {J (U, &) = U.
To see this, cover U with clopen subsets of diameter <ge, take a countable subcover
and “disjointify”.

Now let Ty = {X}. If T, has been defined and is a countable collection of clopen
subsets of X, define 7., = U {#(U, f+1): UeTy}. If T; has been defined for
all <2 and 1 is a limit ordinal, let ¥ = {{ B: B is a branch of U {T}: f<A}}.
Since X is w,-additive ¥” is a clopen cover of X. ¥ is disjoint, hence countable.
Let T = ¥\{@}.

Let T = () {Ty: f<w,} and let <p be set inclusion. Suppose B is a branch
of T; since X is Lindelof () B # &. Since diam(B n Tp:1)<gp+1» (B must be
a single point. Thus the number of cofinal branches of T = | X, which is >, and
so T'is a Kurepa tree. Furthermore, it is now straightforward to show that topologi-
cally X is a Kurepa line associated with the Kurepa tree 7. Thus, by Lemma 2, T can
have no Aronszajn subtree.

(iil)—»(iv) is clear from Lemmas 1 and 2.

()—@. In [5] it is shown that a regular w,-additive space with weight W,
is w;-metrizable. .

The following corollary answers the question of Sikorski.

COROLLARY. The existence of an w-meirizable Lindeldf space of cardinality >,
is consistent with and independent of the usual axioms of set theory.

Proof. As mentioned before, it is shown in [2] that V = L implies (1) of the
theorem. In fact, since V = L implies GCH, we can have an wy-metrizable Lindelsf
space of cardinality 2”!, which is of course the largest possible cardinality for such
a space. However, in [6] it is shown that it is consistent with the usual axioms of set
theory and with the assumption of a large cardinal to assume that there are no
Kurepa trees.

Theorem 3 may be generalized. Note that if o, s singular and X'is w,~metrizable,
then the intersection of w, open sets in o, is open. Thus, if X is also @,~compact,
it is easy to show that X must be a discrete space of cardinality <w,. We therefore
generalize Theorem 3 for regular cardinals only.
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THEOREM 4. If w, is regular and x>0, then the followfng are equivalent.

(i) There exists an w,-metrizable, w,-compact space of cardinality x.

(i) There exists an (w,, w,)-tree T with x cofinal branches such that any
(0,, ©,) subtree of T has a branch (of cardinality ®,).

Proof is similar to Theorem 3.

‘We mention that the following known result is also an immediate consequence
of this theorem.

COROLLARY. If w, is a weakly compact cardinal, then there exists an ,~metri-
zable, w,-compact space of cardinality 2°*. -

Proof. o, is weakly compact iff w, is inaccessible and every (o, w,)-tree has
a cofinal branch. Consider the tree T' = 2= {s: s is a function from « into 2 for
some o< ,} with the order <r as set inclusion. (T, <) satisfies (ii) of the theorem.

Let us now look back to see if we have constructed a unit interval for the count-
able folks. We have, assuming V = L, been able to construct an w4-metrizable,
w,~compact linearly ordered zero-dimensional space of cardinality 2°*. This is the
Cantor set for the countable folks and this is the best we can do for them since
every w;-metrizable space is zero-dimensional.
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