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Abstract. In work in shape theory, one often finds that insufficient detail is given in the cor-
responding results in algebra, This paper is the first of a series written with the aim of removing
this difficulty. By looking at some well known classical results on inverse limits from a'slightly
different viewpoint, we have managed to obtain more detail in these results and have been able to
generalize them in such a way as hopefully to be of interest algebraically and not just for their shape
theoretic applications.

1. Introduction. The concepts of stability and weak stability of inverse systems
have been introduced, in the topological context, in [12] and [13]. The first of these
properties, stability, was studied, under a different name, by Verdier [17] and
Duskin [4]. Here a start is made on studying the weakened form, the intention being
to provide more information on the class of inverse systems, M, satisfying the con-
dition: Eim“M = 0 for i>0,

Although many of the results are easily generalizable to pro-objects in a suitably
structured abelian category, A, we have chosen to restrict ourselves to the case of
modules over a ring, 2. The results obtained in Sections 5 and 6 are used in [13].

‘We assume that the ring, 2, is associative has a 1 # 0 and we denote by .#od-
the category of unitary right 2(-modules. A projective or inverse system of right
A-modules in a functor

M: S—Mod-UA

where £ is a small cofiltering category. A morphism from M: JS—.#od-U to
N: F—Mod-A is an element of the set

lim colim Hom o4 5(M (@), N @) -
PR .

pro(.#od-2) denotes the category thus formed and we shall refer to the objects
of pro(#od-;) as pro A-modules or A-systems for short, if no confusion will
arise from this use. More details of the structure of pro-categories, such as
pro(Aod-2), will be found in Grothe;dieek\[S], Duskin [4] and Artin and
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Mazur [1], Appendix. Of special note is that pro(#od-2) is abelian with enough
projectives but generally without enough injectives.
There is a full embedding

¢: Mod-U—pro(Mod-A)

and lim: pro(#od-W—s#od-A is right adjoint to ¢. A pro A-module is called
stable f it is isomorphic to some system. ¢(9%) for N in Aod-U. M is called essentially
epzmorphzc if it is isomorphic to a system in which all the structure maps (i.e. the
maps pf: M(j)—M() correspondmg to j—i in #) are epimorphisms and essentially
monomorphic if the pf’s are monomorphisms in some isomorphic pro 2(-module.

It is well known that M is essentially epimorphic if and only if it satisfies the
Mittag—Leffler condition?

Suppose M: S—#od-U then we say M satisfies (ML) if, given i in &, there

- is some f(i)=i such that for any j=f (i), the natural morphism

© Im (M) —-MO)—Tm (M (£ ()-M(@D)

is an isomorphism in Zod-2. (We use j>i to mean Hom,(j, ) # &.)

The proof of the equivalence between (ML) and “essentially epimorphic” is
well known and can be found, for instance, in Laudal [10] or [11], and in Duskin [4].

Verdier, in [16] p. 4951, gives an analogous condition, (EM), which is equiv—
alent to M being essentially monomorphic., Explicitly:

M: F—.#od-U is essentially monomorphic if any only if it satisfies the con-
dition: (EM) there is a i, in # such that given ]>10 there is some k>j so that the
natural map
Ker (M(l)—M (j))—->Ker (M(K)—M (i)
is an isomorphism. ' ‘

The proof is very similar to that of the previous result, see Duskin [4].

As well as these results, Verdier’s note, [17], mentions that M is stable if-and
only if it satisfies both (M) and (ML), and hence if and only if it is essentnlly both
monomorphic and epimorphic.

Remark. Perhaps at this stage a note on a difficulty in terminology is required.
The word “stable” is being used here for the situation called “essentially constant™
by Verdier. Our change of terminology is motivated by-its use in an algebraic topo-
logical context in [12] and [13] and also because Verdier’s term does not decline
nicely, e.g. stability, stabilizes, and so on. If this were the only terminological
difficulty it would not matter that much, however both Laudal, [11], and Jensen [9],
in quoting Laudal’s work, have used. “stable” to mean “essentially epimorphic”.
‘We therefore warn the reader against any possible confusion, but will continue to
use stable until a better term is suggested.

It is well known that the limit functor .

. lim: pro(#od-W—.#od- QI
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s left exact, but not right exact, and conSIderab]e study has been made of the right

derived functors, im®, of lim; see, for example, Jensen’s lecture notes, [8].

The results we use depend heavily on the functionality of the derived limits,
lim™: pro(Mod-W—.Mod-A .

The proof that these functors are definable on pro(.#od-) is not easy as
pro(#od-N) does not, in general, have enough injectives. The detailed proof is
beyond the scope of this short paper. Proofs do exist in the literature, for instance
in Duskin [4] and the author has an alternative method of proof which depends on
the work of Bousfield and Xan on homotopy limits. Here, however, we will merely
sketch the proof by mentioning some of the intermediate results. The central re-
sult is:

(i) Every M in pro(od-) has a resolution C*(M) in pro(#od-2) by
lim-acyclic promodules for which llm(“)M > H ‘I(llmC*(M)) for ¢g=0 and in fact
it M: $—Mod-N is a pro-module then for all n=0, hm(")Mth(")M (i.e. the

derivation depends only-on the pro-object and not on the partlcular representation
chosen).

To prove this one proves

@) If M is essentially zero (and hence isomorphic to zero).in pro(.#od-A)
then

Im™M =0 for all n>0.

Finally, to prove (ii) one needs
(i) If ¢: #F—7 is cofinal and M: F—.#od-U then

lim ™M 21im™ Mo
Ed F k

for all n=0.

The hard part of the proof is the derivation of (i) from (ii) as this involves some
deep results on derived categories — again due to Verdier. (The author’s alternative
proof avoids this section but only by replacing it with another equally hard).

It is convenient here to recall two facts and some related problems.

(i) If 9 is a field and dimM(f) is finite for each i in .#, then

EmPM =0 for all p>0.

(i) If & is countable and M is essentially epimorphic, then

Lm®M =0  for all p>0.

A quick check shows that, in situation (i), M always satisfies (ML), but
Em®M = 0, p>0 irrespective of whether # is countable or not. M does not in
general satisfy (EM) in this situation and so is not stable; hence there is a possibility
that such systems have some additional property which forces im®M to be zero.
In fact, it is easy enough to show that, if dimM(7) is ‘bounded, then M is stable and
PAd
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hence that for M an arbitrary inverse system of finite dimensional vector spaces,
M is a direct limit of its stable subsystems.

This fact raises the possibility of recursively generating new systems satisfying
lim®M = 0, given the class of stable systems, and it is this generation process we
study in this paper.

In Section 2, we show that the class %, of pro 2-modules, defined by

% = {Me ob(pro(#od-MW))| imPM =0 for all p>0},
is closed under direct limits, extensions and a restricted class of inverse limits, It
thus almost forms a torsion class in the abelian category pro(./od-2); however,
since & is not closed under quotients, no associated torsion theory gives information
relevant to our enquiry. .

Since the class, &, of stable objects is a sub-class of &£, we can generate a larger
subclass, W', of & using direct limits and extensions; the restrictions on the use
of inverse limits makes their use at this stage impractical. The systems in #"% will
be called weakly stable systems; thus any inverse system of finite dimensional vector
spaces is weakly stable.

In Section 3, we examine some of the properties of the class; #°%, especially
under a change of rings situation,

¢: U-B,

particularly nice information being available if ¢ is a flat epimorphism.

In Section 4, we study the possibility of using %" to form a torsion class, but
again #' is not closed under quotients. We must therefore restrict to an even
smaller class. If we denote by & the class of simple stable pro %-modules, then
we can define weakly stable “semi-simple” systems by the extension and colimit
processes and study the resulting class, ¥ &&. More precisely, we define, in the
terminology of [15], an associated idempotent preradical on pro(.#od-20), form
the corresponding radical and this process will give us a maximal #"%% -subobject
of any pro 2%-module, M. Using this machinery we produce several results which
improve, to some degree, on the corresponding results, obtained by homological
methods, by Jensen and others. We investigate the interpretation of some fairly
standard torsion theoretic results in this context in a sequel to this note.

2. & is closed under direct limits, extensions, et cetera. If M: F—.#od- is
an inverse system of 2-module, we can construct from M a cochain complex whose
(co)-homology will give the 2-modules, lim® M. Define

[TM =TI MGy, ..i),
o€ .S
where M(i, ..., i) = M(i,), and

& TIM-TT M
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by
. n+i .
&) (fo» v nss) = Pis(I sy o5 Tns))+ Zl(—l)’@(io, wees By ves By g)
i=
for m = (m(is ..., i) € [I'M.
Tt is easily checked that "t 4" = 0 and that the (co)-homology groups

satisfy
H([*M)= LHm®P M ‘

for p0. Dually, if M: S —.#od-U is-an injective system, then we define
M = Y @M, ..

oS Sk

where M(iy, .-, i) = M(ip), and

» ik) H]

1+4n
F(ligs ves i) = iy, wr B)PIMA gjl (= 1)y wres Tgs wers i)

for m e M(iy), where j(ig, ..., i,) is the natural monomorphism from Mgy o5 By)
into Y"M as the (i, ..., 7,)-th summand.

Again 8" 1od" =0 and H,(Y*M) = colimM. Since colim is exact,
H,(*M) =0 for k>0.

Now assume that M is in pro (#od-2r) and that there is a family of subobjects
of M, {M,},. 4, satisfying the following M: F—oMod-A, M, F—rMod-U,

(i) 4 is directed,

(ii) M = colimM, in pro(#od-W), with f,= F for all we 4,

aed

(iif) for each e 4, and each p>0, imPM, =0. .
We shall say, in this case, that M is the special direct limit of {M.}.
TueoreM 2.1. L is closed under special (filtered) direct limits.

Proof. Let M = colimA, in pro(./Zod-2) where A is directed.
aed

Combining the two constructions, [[* and }*, both of which are functorial,
we get a double complex

C** = H* Z*{Mu(l)} ’

c = {H_" YUM )} for p<0, g>0,

where

P00 otherwise.

As usual Cy, gives rise to two spectral sequences. Using the notation of Hilton and
Stammbach, [6], we get, for B = TotC: :

JEPY = H,,(Hq-»p(B: ", 8’) = ]:Ifl(-p)colliim(up){Ma(i)}

‘and ~ v S

LEPS = H(H, (B, &), 8") = colim™ PHm(**P{M D)}
A s
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Using the facts that, for each o, and p>0, HmPM, = 0 and that colim js exact,
these two spectral sequences degenerate to give

Em©PM  if g = —
- {J q P,

0 otherwise
and

gL —

colimlim{M (i)} ¥ g=p=0,
2B = s
otherwise .

Both spectral sequences converge to H(B) and the second one gives that, for ¢ # 0,
H(B) = 0. Feeding this information back into the first spectral sequence then gives,
again for ¢ # 0,
1Ef'q = IEEQ"I =0
and so im@M = 0 for all p>0.
The c9rresponding result for inverse limits of quotient objects is also true with
some restrictions. In fact, the argument given below is based on that of Iehsen, [8]

p. 153, who used it to argue from systems of Artinian modules to systems of strictly
linearly compact modules over a Noetherian ring.

Let M : S—0d-U be a pro-A-module and suppose there is a directed family
of subobjects, {M,},. 4, of M satisfying the following conditions:
) M = lim{M/M,},

(ii) for each « and p>0, ImP{M/M,} =0,
p :
(iii) for p>0, Im®{ME/M,()} = 0.
# % op

TreoREM 2.2. With M, {M,} as above, im®M = 0 for p>0.

Since all that we have Idone‘ is to axiomatise to cover Jensen’s argument on p.k 153
of [8], a proof Would' seem slightly superfluous. It basically follows the second half
of the proof of 2.1 in form, but uses ;EP? = lim®(Hm@{ )1 (/M (D)}) which is

s 4

the first spectral sequence associated with double complex
6** = I;,[? I;I* {M (l)/Mm(l)} .
Condition (iii) above is necessary because the second spectral sequence of TotC

does not give enough information to claim H%(TotT) = 0 for g % 0. It is the use

‘of this ex.tre? con.dition that is implied in the statement: “% is closed under restricted
inverse limits” in the introduction. ‘

The other construction that will be needed is that of extension:
) A class, ‘fl, of objects in an abelian category is said to be closed under extensions
if, whenever, in a short exact sequence
0—-X—Y—Z—0,
X and Z are in %, then Y is in €.
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ExampLE. Let & denote the class of stable systems in pro(.#od-), then & is
closed under extensions by a result of Verdier [17] p. 4951, Proposition 3(2).

ProroSITION 2.3. & is closed under extensions.
Proof. Let
0—X—Y—Z—0

be a short exact sequence then the associated long exact sequence of derived functors
gives '
© 0—lim X—lim¥—lim Z—lim X —-lim® Y-hmZ - ..

If X and Z are in 2, lim®X = 0 and im®Z = 0 for p>0, hence im®Y = 0.
Since & is a subclass of % and & is closed under special direct limits and
extensions, we can recursively form mnew pro 9 -modules from the stable systems
by repeated application of the two processes. The class so formed will be denoted
by #'& and will be called the class of weakly stable pro 2-modules. Thus ¥
is the smallest subclass of & closed under -special direct limits and extensions,
and which contains &. There are several questions which pose themselves more
or less naturally:

1. When is #& = £?

2. W # &, can we describe the £ -objects which are not in ¥ & by some
explicit internal property?

and on a slightly more technical level,

3. Is either of #'% or & a torsion class in pro(od-2)?

The reason one might hope for #°% or & to be a torsion class in that. the re-
sulting torsion theory would help greatly in attacking the first two questions.

(For information on torsion theories, the reader is referred to Stenstrdm, [15],
and in particular to the extensive bibliography contain therein.)

Partial answers to some of these questions exist.

If 90 is a field and we restrict attention to finite dimensional systems then, as
mentioned in the introduction, all Z-objects are weakly stable. In fact a more
general result than this will be proved later and will include a partial answer to 2.
To question 3 the answer is simple: in general, no.

ExampLe. Let X be the “Jensen monster” constructed in Section 6 of [9],
i e. let 9 be commutative, then X is an inverse system indexed by a well ordered
set, £, such that Em™X s 0 for all n>0. Agdin, by [9] 1.1, let X be embedded ‘in
a pro 9 -module ¥ which. is flasque and hence Im™Y = 0 for all #>0. Y is thus
in %, but Y/X is not since, using the long exact sequence of derived functors, it is
easily shown that im®¥/Xalim**X. Thus although & is closed under extensions
and direct limits, it is not closed under quotients and hence cannot be a torsion class.

Similarly, although quotients of weakly stable systems will be often .gessentially
epimorphic, it is well known that epimorphic systems can be arvbmar.ﬂy bad as
above. So W& cannot be expected. to give a torsion theory either, in general.
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Again we shall see later that, in fact, a subclass of #°% does give a torsion
theory and that this torsion theory provides a tool for examining weak stability,

3. Weak stability and change of rings. So far we have restricted attention to
a single ring, A, and the resulting category, pro(#od-A), with classes &, #'F
and &, et cetera, Since, in this section, we will be dealing with “change of rings”
induced by a ring homomorphism,

¢: U-B,
we shall need to modify the notation to talk of the categories, pro(#od-2¥) and
pro(#od-B), and classes, L(N), #F (W) and ZL(W) in pro(Hod-A), F(B),

WP (B) and £ (B) in pro(Hod-B).
@ induces two functors

U?: Mod-B—Mod-A
and

F®: Mod-Y—.Mod-B,

F? being a left adjoint for U?. Explicitly, if M is a B-module, then U*(M) has the

same underlying Abelian group structure as 9t and has a right A-module structure -

given by '
ma=m-pa),
where the action on the right is that “native to” M.
F? is given by
F'() = R @yB for N in Aod-U,

where B .is given an -algebra structure by the above method.
These extend to give a pair of functors )

pro(U®): pro(#od-B)—pro(#od-A)
and

pro(F?): pro(#od-W—pro(Hod-B) .

In our context here, the question arises as to whether the classes %, %% and & are,
in some way, carried over by these functorial transformations. One result is obvious 5
since pro(U®) is essentially a forgetful functor, we immediately get:

PROPOSITION 3.1. pro(U?) sends each of Z(B), W (B) and P (B) into the
corresponding class of £ (N). WL (W) or & ().

It is less obvious, and still unsolved, as to whether the following statement is
true in general or, if not generally true, for what classes of rings and homomorphisms,
it is true: \

If M is pro(.#od-B) is such that pro(U%)M is in # & (2) (resp. & (A))
then M is in W &£ (B) (resp. &£ (B)).
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The corresponding statement for & is true. The converse problem is perhaps
more fruitful. For a specific example, consider 9 = Z, the integers, B = Q, the
rationals and

0: 1-Q

the obvious homomorphism. Further let M be any system of abelian groups of
finite rank, then pro(F?)M is a system of finite dimensional rational vector spaces
and hence is weakly stable; however it is easy to construct examples in which
EmM = 0, so pro(F¥) creates stability and weak stability.

Since pro(F?) is a left adjoint to pro(U*®), it preserves direct limits, but the other
process used in the construction of #'& from &, namely that of extension, has
a more complicated behaviour under pro(F?), since, in general, ?®q®B is not an
exact functor. So to start with we shall restrict ourselves to studying stability, but,
even in this case, it will be convenient to impose the condition that 8 is a flat A-al-
gebra and hence that 7@y is, in fact, exact. To see why this is so, consider 2 sy§t_em
M in pro(#od-) such that pro(F®)M satisfies (ML). Can one find a condition
on M that will ensure that M itself satisfies (ML) ? For such a condition to be of use,
it must, of course, be sufficiently dissimilar from the condition (ML) itself.

If we suppose M: S—#od- 2, then given iin S and j>i, there is a short exact
‘sequence :

0—pi M(j)—M i)—Coker p{—0.

Since F? is right exact, this sequence becomes, on applying F ’
—Tord, (Coker pl, B)—p! M(j)@B—M (i) ®uB—>Cokerp;@yB—0 .

Comparison with the corresponding sequence for pro(F”)‘M = M®yB shows
that the last two terms are the same. Making the assumption that

Tork(Cokerpl, B) =0,
we get that piM(j)@uB=(pl®aB) (M(j)®B). If this is true for all j=i, then
we can find an f({)>i such that
(P1®oB) (M()®:B) = (7] ®aB)(M(f () @aB)
for all j>f(i), and combining with the previous isomorphism gives us:
PIM()®oB2pOM(f (1) ®uB .

This condition looks as if it is getting near to (ML) for the system M.itse]f. Th}1§ it
is convenient to impose the condition that B is a flat A-algebra, since reqmrmg'
that M satisfy Torg(piM(j), B) = 0 for all j>i would ‘seem rather cumbersome;
it must, however, be noted that this condition is not necessary, %ne.rely conve:.nent
for our limited purposes here. In fact if we make the further rcstncn‘on that ¢ is an
epimorphism, the situation simplifies considerably due to the following well known
results (see Section 13 of Stenstrém’s lecture notes [15] for example).
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If ¢: U—B is a flat epimorphism then the family, §, of right ideals, T, of 2 such
that 9(3)B = B, is a perfect topology on . The corresponding ring of quotients, A,
is isomorphic to B and the canonical map W—Wy is isomorphic to ¢, To §, there
corresponds a torsion radical, z ( ), and a torsion theory ¢ and Uy are related by

t(mt) = Ker(ﬂﬁ*%@m%@
for all modules, 9.
‘We can now state a result which gives a partial answer to the problem of the
creation of stability by pro(F®).

PrOPOSITION 3.2 Suppose ¢: U—B is a flat epimorphism of rings. If
M: S—Mod-W is a pro-W module, such that pro(F*)M satisfies (ML) and, for
each i, and all j>i, t(Cokerp}) = 0, then M satisfies (ML).

Proof. From the above discussion we obtain two diagrams:

0 0 0
S’ ;
0—>1(pIM(j)) —1(M()) —1(Cokerp)
b ;
0—pIM(j) —M() . —Cokerp/—0

; ¥ v,
0—=piM()®uB—M (i) ®uB— Coker p] @y B—0

and a corresponding one for £(i). By assumption z(Cokerpf) = 0 so a is an isomor-
phism; similarly #(p{ M (£ (i))) = t(M(5). Thus both the torsion and torsion free
parts of p/M(j) and p{"M(f(i)) are naturally isomorphic. Since pIM(j) is a sub-
module of p/ M (f () for j>£ (i), it follows that p{M(j) and p{ DM f (3)) coincide.
In a more or less dual fashion, one gets the corresponding result for (EM).
ProrosirioN 3.3. Suppose @: U—B is. a- flat epimorphism of rings. If
M: F—Aod-U is, a pro-W-module such that pro(F?)M satisfies (EM) and for
each j>1iy, t(Kerpl)) = 0 then M satisfies (EM). B ‘
Combining these results gives us a result on stability. Concerning weak stability,
if M = colimM,, the resulting Coker p{,, and Kerp{,, can be used as follows:
PROPOSITION 3.4. If ¢: N—B is a flat epimorphism, and M in pro(#od-2U)
is a direct limit of pro W-modules, M = colimM, such that pro(F")M is weakly
stable and pro(F*)M,, is stable for each o, then as long as, for each i, j>i,
#(Cokerp]) = 0 and t(Kerp}) = 0, M is weakly stable.
Proof. Extending from previous results, one needs only to note that the idem-
potent radical associated with a perfect topology commutes with direct lLimits.
Finally, if ¢ is a flat epimorphism pro (F?) preserves extensions, If ¢ is a faith-
fully flat epimorphism then all extensions come from extensions. Thus we get

THEOREM 3.5. If @1 U—B is a faithfully flat epimorphism, pro(F*)M is weakly

stable and for each i,j>i, t(Cokerp]) =0 and t(Kerp)) = 0, then, M is weakly
stable as a pro W-module.
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Tt is probable that, in many cases, the Coker/Ker condition can be considerably
weakened, for instance, by adding “essentially” at strategic points.

4. The weakly stable socle, 5( ). Earlier we saw that, due to the fact that, in
general, & and #'& are not closed under quotients, we cannot obtain a torsion
radical by assigning, to each pro--module M, its maximal, weakly stable ox
or .Z-subobject. We can overcome this difficulty if we restrict ourselves to simple
systems. ‘

A pro A-module M is said 1o be simple if, whenever [V is a subobject of Min
pro(Mod-20), then either

(i) the monomorphism N—M is an isomorphism, or

(ii) the monomorphism: N—M is the zero morphism and hence N is essentially
Zero. )

Tt should be recalled that the statement “N is essentially zero” does mot .imply
that N(i) = 0 for all indices 7, but only that, given any i, there is a j>i with pi = 0.

Although simplicity of M does give very strong limitations on the properties M
can have, it does not, by itself, seem to imply stability, we therefore introduce the
class of stable, simple pro %-modules, which will be denoted by & (M), or, more
briefly, & is no confusion can arise. :

Given M in pro(#od-90), we can assign to M, the sum of all simplc? stable
subobjects of M, which we denote by s(M). The assignment of s(M)to M is func-
torial and defines an idempotent preradical,

s: pro(.#od-Uy—pro(Mod-2A).

Now we proceed to form the associated torsion radical, s( ), following the procedure
of [15], Chapter 1.
Define, recursively s; = s and, for any ordinal, B, let s; be defined by

(i) if B is mot a limit ordinal, sy(M) is given by
sp(M)[S, (M) = s(M]Sy-1(M))
or

(i) if B is a limit ordinal, s = coljx;ls,.
13

Since s;(M) is in & and 5 is defined in (i) by extension agd in (ii) by.a special
direct limit, it follows that s,(M) is always in #. Now define s(M) = colll,msﬁ(M).

Again (M) is a special direct limit of systems in & and hence it is itself
in . Since all this is performed within % it follows that
Hm@Ws(M) =0 for i>0.
We thus have a short exact sequence,

05 (M)>M>M]s(M)—0
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in pro(s#od-2), where imM is an extension of lims(M) by limM/s(M) and,
for i>0, .

1im® 1 S lim @M/ (M)
is an isomorphism, 5 defines a torsion class which we will denote by W9 2,

the weakly stable “semi-simple” systems.
The ideal situation would be if

Tim’s (M) 5 Yim M

was also an isomorphism, i.e. if limM/s(M) was zero, since then we would have that
any pro 2A-module was the extension of a weakly stable system by a zero limit system
and could ask when this extension was split, 4 Ia Teply [16]. In general, all one can
say is the following.

THEOREM 4.1. Any pro W-module, M, is an extension of a weakly stable semisimple
pro A-module, s(M), by a pro N-module, N, which satisfies: :

@) ImPMxBEmON for i>0,

(i) socimN) = 0,
where soc( ) denotes the socle preradical in M od-9N.

Proof. The only thing left to prove is Property (ii). Suppose & is a nonzero simple
module of lim N, then denoting the canonical map from im N to Nin pro(#od-%) by

p: imN—N,

we have that, since  is nonzero and simple, w(S)=c for cofinally many indices i;
that is, given any 7 there is some j>i with (&) =& If j, k are two such indices,
k>j, then, again because S # 0,

25 m(©)-u(®)

is an isomorphism, at least, for cofinally many k, j. Hence N contains a subsystem
isomorphic to the stable system, ¢(®). This contradicts the maximality of s(M).
If we resirict the class of rings being considered, we can get improved results.

A ring U is said to be right semi-Artinian if M is in Mod-U, M ¢ 0, implies
soc(M) 2 0.

COROLLARY 4.2. If U is right semi-Artinian then any pro W-module M is an
extension of a W LSF (W-object, s(M), with the same limit as M, by a zero limit
pro U-module with the same derived limits as M.

Jensen [9] p. 92 mentions the following result:

If M is a pro N-module in which each M () is Artinian, then M is essentially zero
if and only if limM = 0. ‘

The proof is based on Bourbaki [3].

Combining this result with 4.2 we get

COROLLARY 4.3. For any ‘right semi-Artinian ring W, any pro W-module
M: F—~M0d-N in which each M(i) is Artinian is weakly stable.
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This result is probably not the best possible one since Jensen shows that any
pro 2A-module M for which M() is Artinian is in %, (9] p. 57), no matter what
the ring is.

5, Stability resulis. Although a combination of the results of Sections 3 and 4 will
give us some of the results of this section, with virtually no extra work, they do not
provide “stability results” only “weak stability results” for the rings cox.lcerned.
Since we will need these stronger stability arguments elsewhere, we have included
this section which also gives elementary proofs of some special cases of theorems

roved above. ‘ . ‘
F Let 9 be a semisimple ring. Then any finitely generated right A-module P has
a direct decomposition,
PxCl'D...AG",

where G, are pairwise non-isomorphic simple right 'QI-modul.es. In the CO{respon;img
decomposition for 2 itself there is at least one representative o.f each ismorp lism
class of simple right 2 -modules. We shall assume thaF the same is true of ;my given
decomposition of any module, even the zero mOdTlle, 11} as much'as redundant §um—
mands of form & for n; = 0 will be included. With th1sv convention we cag assign r:
separate “dimensions” to any given module B; for %, given by the above decompo

sition, we have

4P =n for i=1,2,..,r.

Tt 9 is a field, this reverts to the single vector space dimension‘of P o:ve; A.

Suppose M: F—Mod-U is a pro A-module, we say that M is essentzal. ly of
bounded dimension if there is an integer n such that given any index i, there is an
index j>i with

d(pIM())<n  for s=1,2,...m.

If M is essentially of bounded dimension, then M is .isomf)rphic to a syste.m};
" i "(i dimension, i.e. there is an integer, 7, for whic
M, in which each M'(f) has bounded , ‘

supdy(M())<n, s=1,2,..,n.
:

Tt we relax this condition so that each piM(j)is of' finite ‘type, thCI} w;;lllalfl Osray;v Rhf cl;
essentially of finite type and in this case there is an isomorphic, M’,
each. M'(i) is of finite type.

For M essentially of finite type, we can use
stable. If we require that M is essentially of boun
that it is stable.

PROPOSITION 5.1. If 9 is semi-simple, tznld Ma

ial bounded dimension, then M is stable. .
tm”yP:{)of. First we can replace M by an i_somorphic prodﬂl-vrlric;dule for which
dy(M()) is bounded. We require that M satisfies (EM) and (ML).

4.3 to conclude that M is weakly
ded dimension, then we can show

pro W-module which is essen-
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Suppose i is fixed, then the family {p{(M( 7))} contains a minimal element,
PIPM( £ (i), and hence, for all j>£ (i), p! M(j) = p/®M(f (). Note this uses only
the fact that M(i) is of finite type, and hence Artinian, since 9 is Artinian.

Now we may assume that every structure map pj in M is epimorphic. Let i be
fixed and, for j>i and 5 = 1,2, ...,n, let k(j, 1) = d(Ker p). For each s, k(j, 1)
increases with “increasing” j and hence, for some i, in £, we must achieve
a maximum, i.e. .

@) k(is, D)2 k,(j, 1) for all j>i,

(i) ks, 0) = kJj, ©) for all j>i,.
(Here we are making use of the fact that p] is epimorphic to check that k, is increasing
with j.) Since # is cofiltering we can find an 7, greater than all the i’s and then
ky(j, 1) = ki, 1) for all j>i, and each s = 1,2, ..., . It follows that Ker pj, must

be zero for each j> 1y, i.e. that M is cofinally (and hence essentially) monpmorphic.
Since M satisfies both (EM) and (ML), it is stable.

COROLLARY 5.2. Any pro-vector space of bounded dimension is stable.

Since we have a stability result for semi-simple rings, we can apply Proposi-
tions 3.2 and 3.3 to gain information about stability over more general rings with
semisimple quotient rings.

Firstly we need to recall some facts from ring theory (see Sandomierski [14]
or Stenstrém [15]). ‘

A submodule, £, of a right U-module, M, is called an essential submodule
of M if &N <M # 0 for all non zero submodules, N, of M. A right ideal of A is
essential in A if it is essential as a submodule of . If M is any right 20 module,

3@ = {me M|(0:m) is essential in A}

is the singular submodule of 9.

The ring U is called right non-singular if J(W) = 0, where 2 is considered as
a right W-module. A is said to be right finite dimensional if no right ideal can be
written as a direct sum of infinitely many non-zero right ideals of 2,

Sandomierski, [15], showed that, if A is a right nonsingular, right finite dimen-
sional ring, then the maximal, right quotient ring, Qy, of U is semi-simple ; moreover,

3 () =Ker (M—-IMQ4Qy)

and A-Qy is a flat epimorphism.

For 9 a right nonsingular and right finite dimensional ring, let M be any right
A-module, then M®qyQy is a module over the semi-simple, Artinian ring, Qg, we
shall say that the sth' Q-rank of 9 is the integer

rks(ms DEI) = ds(”@ﬂlnﬂo .
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It M: F—>Mod-A is a pro A-module, then if there is some integer, n, such that

for each s = 1,2, ...,n .

supr kS(M @), Qo <n
i

then M will be said to be of bounded Qqy-rank.

THEOREM 5.3. If M F—Mod-W is of bounded Qy-rank and for each index i, and
j>i, 3(Coker ph) =0 and 3(Ker pl) =0, then M is stable.

Proof. This is a direct corollary of 3.2 and 3.3 since, for @: U—Qy, £ = J is
the torsion radical. .

A particular case of a nonsingular ring is an integral domain; 3-torsion rever‘ts
in this case to being classical torsion, T, of modules over an integral domain
and Qg is the field of fractions. Thus we get as 4 special case of the above.

COROLLARY 5.4. If O is a commutative integral domain, M: S—#0d- is of
bounded torsion free rank and for each index i and j>i, T(Cokerpi) =0 and
T(Ker pf) = 0 then M 'is stable. .

We will need this form of the result in the next section.

. Whilst with commutative integral domains, it is worth noting that localization
techniques ‘will generally create stability. Thus, restricting ours?lves to localizing
the integers at a prime ideal (p), if M: SF—Mod-1 is a pro-abelian group, then as
long as the kernels and cokernels are “cofinally” without p-torsion and jche
constituent abelian groups have finitely generated p-torsion and bounded tors1'on
free rank, the localized system M, of Zy)-modules will be stable. Corresponding
comments go through for weak stability.

6. A possible extension ‘to inverse systems of nﬂpotefxt g’rOups: A.start has bc?en
made recently (by Michael Barr [2]) on the study of torsion theone:s in non-abeh‘a:n :
categories; much work has also been put into the stuc?y of denv.efi funcFors in
non-abelian cases. Here we content ourselves with looking at stablht}f of inverse
systems of nilpotent groups; nilpotent groups presenjc themselv_es for this generalis-
ation since, in a sense, they are themselves a generalisation of abehalj't groups al:ld many
of the techniques go through (such as localization) to the nilpotent situation.

Firstly we fix some notation: ' .

Let ® be a group then subgroups I''® are defined inductively by

: r'e=6 ad I'*'6=I[6,I'6]. :

® is nilpotent of class ¢ if I'“® # 1, but F”’fl(ﬁ = 1. We write nil ® = ¢. Of
course G is nilpotent of class 1 if and only if G is’ Abelian.

If & is nilpotent of class ¢, there is a functorial exact sequence,

1= G—6—-6/ 61,

where ﬁil (I°®) and nil (6/I"°6) are both less than ¢. (This provides the basis for an
inductive argument.) .
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‘We will denote the full subcategory of the category of groups, consistirig of the
nilpotent groups of class ¢ or less, by A",

Let p be any prime number.

Suppose ® is a group and $ a subgroup. x €® will be said to be a p-torsion
element modulo $ if x*" € § for some n; it is forsion modulo $ if x" € § for some n.
If $ <1 ® then x is forsion mod $ if and only if x$ is a torsion element of &/$. Finally
we need the following lemma, proof of which is omitted as it is straightforward.

-LEMMA. Let

1-W;—B—Ei—1

lﬂ’g{ l,'I’B i%ﬁ

1A —B,—C,—1

be a commutative diagram of groups with exact rows, then, if Ker @y has no p-torsion
and B, has no p-torsion modulo @u(B,), Ker @y and Ker o have no p-torsion and A,
(resp.€,) has no p-torsion modulo g(Wy) (resp. Pu(Cy)).

We denote by pro(./,) the category of cofiltered projective (i.¢. inverse) systems
of class ¢ nilpotent groups. Let G: J—.", be an object in pro(A,). If c=1, G is
of bounded rank if suprankG()®Q< 4 for some integer A". Assuming the defini-
tion is made for objects in pro(A,—;), we say G in pro(A",) has bounded rank if
both I'°G and G/I'°G have bounded rank.

THEOREM 6.1. Let G in pro(A",) and suppose G to be of bounded rank, then, if
given any index i, and j>i, Ker pj has no torsion and G(i) has no torsion modulo
PIG(j), G is stable.

Proof. If ¢ = 1, the theorem is a special case of 5.4. So assume the theorem
holds in pro(A#'.—,). If G is of bounded rank and the Kernel/Cokernel condition
is satisfied then, in the exact sequence

1-I*G—G—-G/I*G—1

I'°G and G/I'°G are of bounded rank and also satisfy the Kernel/Cokernel condition
by the lemma. Thus we have the commutative diagram

1-I"G —~ G —GI'G —l
= ‘u &
1-1im *G—lim G—lim G/ G—1
and hence p is an isomorphism. Note the bottom row is exact precisely because I'°G is
stable,

COROLLARY 6.2. If G in pro(A",) is of bounded rank and each G(i) is uniquely
divisible, then G is stable.

Proof. In this case for ¢ = 1 we have Corollary 5.2. The proof then proceeds,
as in 6.1, by induction.

;
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Results analogous to the “change of rings” results of Section 3 can be obtained
for localizing objects of pro(4,) in the sense of Warficld’s Notes [18] or Hilton [7].
However these are left to the reader to formulate.
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