Some combinatorics involving ultrafilters
by

A. Kanamori (Berkeley)

Abstract. This paper briefly discusses the following property of ultrafilters: if x and 4 are
cardinals, an ultrafilter Uis (u, 4)-cohesiveiff given u sets in U there are 4 of them whose intersection
is in U. Among other things, it is shown that a p-point over w is (w;, w)-cohesive, but that this
property does not characterize p-points. We can in fact prove the following: if Uis a p-point over
and {Xy/a<<w;}CU, then for any d<w, there is an SCuw; of order type & so that [ |{X,| aeS}eU.
A polarized partition relation is strengthened using this fact. These results have direct generaliz-
ations to measurable cardinals, and indeed, the paper is written in this general context.

§ 0. Introduction. In this paper, the following rather general combinatorial
property of ultrafilters is considered, mainly in connection with w and measurable
cardinals.

DepNiTioN. If g and 4 are cardinals, an ultrafilter % is (u, A)-cohesive iff
given p sets in %, there are A of them whose intersection is still in %.

For those familiar with regularity of ultrafilters, notice that (u, 1)-cohesion
is a strong negation of (u, A)-regularity. It is shown that if % is a p-point in the
space BN, then % is (o, , w)-cohesive. The analogous result for measurable cardinals
holds by the same proof. Product ultrafilters are considered in this context, and the
situations under various set theoretical hypotheses are also discussed. Finally, a new
proof and strengthening of a polarized partition relation is derived.

My set theory is ZFC, and the notation is standard, but I do mention the fol-
lowing: «, §,7, .. denote ordinals, but %, 1, and p are reserved for cardinals.
If x is a set, |x| denotes its cardinality and #2x its power set; if y is also a set, *y de-
notes the set of functions from x into y; finally, if n is an integer, [x]" denotes the
collection. of n-element subsets of x, If z is a set of ordinals, Z denotes its order type.
An ultrafilter over a set I is actually one in the Boolean algebra £, and is uniform
if each of its members has cardinality |7]. Finally, B indicates the end of a proof.

While working on this paper the author has profited from discussions with
Mathias and Prikry.

§ 1. Preliminaries and P-points. Under the GCH, we can make some intial
deductions from the following classical result of Sierpiriski (which I state in a slightly
weakened version relevant to our purposes) — see P, of [Si].
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1.1, PROPOSITION (Sierpifski). If 2* = A*, there are functions f,: A*—2 for
a<At so that: whenever X< % and |X| = A",

Ha<At| faX#2}|<4.

Prikry showed that the first part of the next theorem follows from Sierpiniski’s
result, and the second is easy enough to see.

1.2. THEOREM. Suppose 2% = A*.

(i) (Prikry) If % is a uniform ultrafilter over A*, then % is not (1™, 2)-cohesive.

() If ¥ is a uniform ultrafilter over A, then ¥ is not (A*, A*)-cohesive.

Proof. Let { f,] a<A*} be as in 1.1. For (i), set Ay = {¢| /(&) = k} for k<2
and a<A*. Suppose that k<2 and ScA* with || = A If X = () {4} ae S},
then {o] £, X = {k}}2. Hence |X|<A and X ¢ % as % is uniform. The result now
follows, since there mst be a k<2 for which there are A*a’s so that 4Xe4.

To show (ii), set B’g = {a< | fi(6) = k} for k<2 and £<A*. Suppose that
k<2 and Y= A* with | Y| = AY. Then

T= {B {eYis{u<il f,¥ = {k}},

" and hence |T] <, i.e. T¢ ¥ as ¥ is uniform. The result now follows as for (1) =
Having made these initial remarks, I now turn to my main concern, the consi-
deration of measurable cardinals » and the non-trivial cases involving x* and x.

1.3. DEFINITION.

() % is a w-ultrafilter iff % is a non-principal, %-complete ultrafilter over .

(i) » is a measurable cardinal iff there is a »x-ultrafilter.

(i) % is x-compact iff every x-complete filter over x can be extended to
a x-complete ultrafilter over x. .

The non-principal ultrafilters over w are precisely the w-ultrafilters, and thus,
in this paper I regard o to be both measurable and w-compact. Note that x-com-
pactness is just a restricted version of the usual concept of strong compactness,
and that it obviously implies the measurability of %. The following is another obser-
vation of a negative kind.

- L.4. PROPOSITION. If % is x-compact, there is a x-ultrafilter which is not
2%, x)-cohesive.

Proof. Let # <=2, be a family of 2% »-independent sets (see Kunen [Ku 3] for
details; the existence of such a family only depends on the fact that 3 ** = x); that
is, given any o/, #& so that o o B = @ and ||, |B|<x,

N#oN{x—X| XeB)| =x.
Then
Fux—-NT| TS and || = %}

generates a uniform x-complete filter: -
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Let of € with [&]| <, and suppose also that A<x and for a<i, 7,= are
such that |7 ,| = x. It must be shown that

) N2 AN e Tl a<2} = x.

By the cardinality assumptions, we can inductively choose X, e 7 ,— & so that
o<f<A implies that X, #X,. Note that for each a<l, x—(\7 ,2x—X,. Thus,

NN {x—NTJa<ii2 N ) {x—X,| a<i},

and the set on the right has cardinality %, as & is independent. Hence, we get (%).

Now by x-compactness of %, let % be any x-ultrafilter extending the above
filter. Clearly the family & =% is a counterexample to the (2%, 5)-cohesion of #, and
we are done. (This example for % = w is just Kunen’s example (see 2.8 of [Ku 3])
of an w-ultrafilter of character 2%, i.e. one not generated by less that 27 sets of
integers.) B

Thus, we see that the negative results 1.2 and 1.4 can be culled from previous
set theoretical experience; I now turn to the positive results. The following concepts
first arose in the study of AN, the Stone-Cech compactification of the integers, which
is identifiable with the set of ultrafilters over w.

1.5. DEFINITIONS.

(i) The Rudin-Keisler ordering (RK) on ultrafilters is defined as follows: If % is
an ultrafilter over a set I and ¥~ over J, ¥ <px% iff there is a function f: I-J so
that ¥ = f, (%), where ’

fl@) = {(X<J| X0 e} .

If 7" <, then ¥ = g% (¥ and % are isomorphic) if U<w?", and ¥ <px¥
Y ULgx?. )

(i) A x-ultrafilter % is minimal iff it is minimal in the RK ordering, i.e. there
is no (non-principal) ultrafilter " <gg%.

(i) A w-ultrafilter % is a p-point iff whenever {X,| o <»}S%, thereis a Ye %
so that |¥—X,|<x for each a<x.

See the reference work Comfort—Negrepontis ((CN], especially § 16) for details
on these concepts and the general development of the theory of AN, For an analogous
development of the theory of x-ultrafiters for %> with attention to-distinctive
features and new factors, see Kanamori [Ka]. In the present context, it is not hard
to show that if % is (i, A)-cohesive and ¥ <px%, then ¥ is (u, A)-cohesive. For
future reference, I collect some known characterizations in the next proposition.

1.6. PROPOSITION.
() The following are equivalent for a x-ultrafilter U:
(a) % is minimal.
(b) % is Ramsey: for any n<w and A<, if fi [x]"~1, there is an Xe
so that | fIX7"| = L. :

4%
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(¢) % is selective: if f&™x so that f~*({u}) ¢ % for each «, then there is an
Xea so that | X nf ' ({«D)i<1 for each a.
When »>w, we can also add:
(d) There is a normal x-ultrafilter A" so that N ~px.
(ii) The following are equivalent for a x-ultrafilter %:
(&) % is a p-point.
(b) % is almost selective: if f&*x so that f~*({o}) ¢ % for each o, then f is
almost 1-1 (mod%), i.e. there is an X €U so that |X 0 f “({ah<x for each w.

Hence, minimal x-ultrafilters are always p-points. When » = w, the converse
is not true under CH or Martin’s Axiom (MA), but it is not even known whether
p-points exist if we do not assume either of these hypotheses. However, Kunen
[Ku 1] has shown that there is 2 model of ZFC without any minimal w-ultrafilters,
When %>, minimal x-ultrafilters always exist (Scott), but it is consistent that
all p-points are minimal, and, in fact, all RK -isomorphic to each other (Kunen —
see after 2.2 below), Non-minimal p-point %-ultrafilters exist if » is measurable and
a limit of measurable cardinals; but it is still open whether such x-ultrafilters exist
when » is x-compact.

1 now proceed to show that if % is a p-point %-ultrafilter, then % is (x*, 5)-co-
hesive, and, toward this goal, provide a new characterization of p-points which may
be of independent interest.
~ 1.7. DermviTioN. If @ is an ultrafilter over some cardinal i, & is coherent
iff whenever X' e @ and &/ =9 so that for each a<A4,

Hded| Xnoa=4dna}l|>4,

then there is a #<.«f so that [4]| =4 and () BeD.

If 2 and & are ultrafilters over 4 so that & <pg @, then if @ is coherent, so is &.
Note that coherence makes sense for an ultrafilter % over an arbitrary set I, by
considering some ¢: I+ |I]| and formulating the property for @,(%) instead.

1.8. PROPOSITION. If 2<% = 1 and of < P1 with |f|> 2, then there is an X esf
so that {dest) A na=Xna}| = || for every a<i.

Proof. Argue by contradiction, and assume that for each X s, there is an
ay<l so that [{deof] 4noy=Xnay}|<|f]. Surely, there is a f<i and
a s, cof with ||| = || so that X e/, implies oy = f. But as 2/ <|az|, there is
an o/, o/ with |, = || so that X, Yeol, imply X nf = Y n f. This is
a contradiction, B

The following is now immediate from the definitions and 1.8:

1.9. COROLLARY. If2<* = 1 and @ over 1 is coherent, then it is (A*, A)-cohesive.

With these preliminaries, I now prove the main result. The (x*, %)-cohesion
of normal x-ultrafilters for x>w was first proved by Solovay.

1.10. THEOREM. If % is a x-ultrafilter, then % is a p-point iff U is coherent.
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Thus, p-point x-ultrafilters are (x*,%)-cohesive, and in particular, p-points in N
are (0, @)-cohesive,
Proof. Suppose first that % is coherent. and {X,| £<x}<=%. We must find
a Y e so that | ¥ —X,| < for each £ <x. By taking successive intersections, we can
assume henceforth that §<{ < implies X,<X,.
Set Yy = X;u ¢ for £<x. Then for each u<s,

{é<ul Yena=o}| =«

and so by cohefence, there is a Tcx with |T] = x so that ¥ = | {¥,| £eT}e%.
Now given any y<x, let 6y so that d € T. By the definition of the Y,’s and the
fact that the X’s were descending, we have |¥,— Y| <x. Hence, | Y~ ¥,|<x and
the result follows. : .

Conversely, suppose that % is a p~point, and X e % and o <% with |} = »
so that for each a<x, ‘

*) [{AelenumAﬁa}>[=x.

We must establish the existence of a #=sf so that |B| = » and (| # e%.
Since % is a p-point, there is a ¥ e % so that | Y —A4|<x for every A es/. For
each 4 .o/, with 4#X, let I, be the half-open interval of ordinals [y,, d,), where

ya= Ufol Xna=4na},
and
5, = least 6>y, so that Y—-5<4.

Notice that I, may be empty; in any case, |[,|<x.

By (x) for every g <. there is an 4 e/ so that 9<y,. Hence, by induction we
can choose an &'cof so that |#'| = x and if 4,Besl’ with A#B, then
I, n Iz = @ Now we can find some #=s' so that |#| = » and

Z= ULl AeB}éu.

Thus, X" Y n(x—2Z)e¥.

Suppose now that fe X n Y n (x—Z), and 4 eB. As B¢y, either f<y,
or 8,<p. If B<y,, then f e X implies f & 4 by the definition of y,. If §,<§, then
Be Y implies f e A by the definition of 8. Hence, in either case, f e 4. We have
thus shown that X n ¥ n (x—Z)< () #. This establishes that (| # e %, and the

proof is complete. M ‘ ’
In § 2, it is shown that (x*, %)-cohesion does not characterize p-points, and

in § 3, a refinement of the argument for 1.10 is given.

§ 2. Product ultrafilters. Let us first recall some further definitions.

2.1. DEFINITIONS. Let @ be an ultrafilter over I, and &, ultrafilters over J
for ie L
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(@) The @-sum of {(&;| iel) is the ultrafilter D &; over IxJ defined by

Xea Y&, iff {il {jl .iYeX}es}eD.

(ii) When each &, = a fixed € in (i), we get the product of 9 and &, denoted
Px & For 0<n<w,¥"is defined by induction: #* =% and %"*' = UxU"

Notice that if & and &, for a<x are all x-ultrafilters, then % = 2 }' &, is
RK -isomorphic to a x-ultrafilter, but not a p-point, since m: x X %—rx, the projec-
tion onto the first coordinate, cannot be almost 1-1 (mod%). The next propositions
show that cohesion is preserved under the taking of sums and products of x-ultra-
filters under suitable conditions, and thus, that this concept does not characterize
p-points.

2.2. PROPOSITION. Suppose U is a minimal w-ultrafilter. If % is (u, A)~cohesive,
then A" is (u, )~ cohesive for each n<w. Hence, each U" is always (", %)-cohesive.

Proof. Let A, = {{ay, ty, -y 0| 0 <oy <..<0,<x}. It is not hard to
establish the following characterization of minimal x-ultrafilters, using the Ramsey
condition:

A. %-ultrafilter & is minimal iff for any n, {X"| X e} U {4,} generates 9",
i.e. for any 4 e ", there is an X e such that X" n 4,=4.

Hence, that % is (u, A)-cohesive certainly implies that %" is (u, 4)-cohesive
for each n<o. An appeal to 1.9 now yields the full conclusion of the proposition. W

Kunen [Ku2] showed that in L[%], the inner model constructed from a normal
x-ultrafilter over x>, each x-ultrafilter is RK -isomorphic to (% n L[#])" for
some 1 <. Hence, 2.2 immediately shows that if it is consistent that there is a measur-
able cardinal %> o, then it is consistent that such a cardinal s exists and every
»-ultrafilter is (% *, %) -cohesive. Thus, 1.4 is yet another way of showing that » cannot
be x-compact in L[%].

The proof of the following result does not generalize for x> .

2.3. PROPOSITION. Suppose that U and ¥, for n<w are all (w3, ©,)-cohesive
o-ultrafilters. Then % 3 ¥, is (@y, ©)-cohesive.

Proof. For any SSwx o and n<o, set (S), = {i| {n,i) € S} for the purposes
of this proof. Also, if Se® Y ¥, let S* = {n| (8),€¥",}. Thus, S*e%.

Now let /=% > ¥, with || = w. By the (@, ®,)-cohesion of %, there
is an &'/ so that || = w; and K = () {4*| ded'}eU.

By induction on the ascending enumeration of K, we can define #,&«’ for
n € K with the following properties:

(2) m<n implies #,5%,,

(® R, =N {(D 4eB,} e, and

(C) lggnl = y.

Choose S, e 8B, for ne K so that m<n and m,ne K imply S, #.S,. For each
n e K, we have

T," =R, {(Sps m<n and meK}e¥,.
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Hence, by the construction,
nEJK{n}xT,,E N{Sd neKyeu v ,.

The proof is complete. M

We know from 1.2(i) that CH implies that no w-ultrafilter is (w,, w)-co-
hesive. However, the previous proposition is not vacuous under Martin’s Axiom.
Booth [Bo] showed that MA. implies the existence of minimal w-ultrafilters % with
the following property: for any p<2® and &/ S% so that || = p, there isa Ye ¥
so that |Y—X|<w for every X esf. Thus, when y is uncountable, there is a finite
set s so that ¥'—s is contained in x members of &, and hence, % is (i, 11)-cohesive.
Tt is also clear from Booth’s work how to get non-minimal p-points under MA which
are still (¢, u)-cohesive for w,;<p<2”. On the other hand, Solomon [So] showed
that MA and 2°>w, also imply the existence of minimal w-ultrafilters which are

not (w,, wy)-cohesive. .

§ 3. Polarized partition relations. This section is devoted to showing that a refine-
ment of the proof of 1.10 yields a strengthened, ultrafilter related, version of a known
polarized partition relation for measurable cardinals. Let us first recall the defi-
nitions of the relevant versions of the polarized partition symbol of Erdss and Hajnal,
and also specify a modification. Recall that if x is a set of ordinals, X denotes its
order type.

3.1. DEFINITIONS.

(i) The polarized partition symbol

o ™"
(,;) - (5)
where m, n<w, denotes the following statement: whenever F: [«]™x [8]"—=4, there
are Aca and B&f so that A = y and B = 4, and |F"([4]" % [B]")| = 1.

(i) When “n” in the symbol is replaced by “<®”, we mean the following state-
ment: whenever F,: [«]™ x [8]"—4 for each n<w, there are 4=« and BSf so that
A=y and B =4, and for all n<o, |F,([4]" x[B]")| = L.

(iii) When “5” in the symbol (either in context (i) or (i) is replaced by “e2f”
where o is a set, we mean that the ¥ specified is a member of o (instead of Y = 6).

The following result strengthens a known polarized partition relation. The
reader is referred to Hajnal [H] and Choodnovsky [Ch] for the previous efforts
in this direction, In particular, a question asked in passing in [H] (top of p. 44) is
now answered positively.

3.2, THEOREM. Let x> be a measurable cardinal.

@) If % is a p-point »-ultrafilter, then

) - Cal
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for any n<xt and A<ux.
(i) If % is a minimal x-ultrafilter, then

%+ n 1, n
() - ().
Sor any n<x*, A<x, aid n<w. When x> w, the “n” can be replaced by “<w".

Proof. If # is a x-ultrafilter; A<x, and F: x* xx—4, for each £é<x™ there
is an X,e% and a f</ so that F'({€} x X;) = B;. Also, f = fixed B for x* &s.
Hence, to show (i), it suffices to show the following: If % is a p-point and
{X;| &<x*}c¥, then for any n<x* there is a BSx* with B=y7 and
N {X:l éeBle.

The refinement to get (ii) is just an initial application of the Ramsey property
of minimal x%-ultrafilters in the above argument, and the final remark in (if) follows
from an application next, for each £<x*, of the countable completeness of -ultra-
filters for x> . "

Thus, suppose that % is a p-point and {X,| é<x™}<%. By Proposition 1.8,
there is 2 Ye% so that for each o<z,

{e<x™| Yoo=X;na}| =x*.

We can surely define ordinals f({)<x* for { <x* by induction so that the fol-
lowing are satisfied:

. (i) fis a normal function, i.e. f is strictly increasing and continuous at limits.
(i) For any {<x™* and a<x, [{¢| f()<é<f+Dand Y no = X, na}| = .
Now fix an y<x", where, to avoid trivialities, we assume x<#. Since % is

a p-point, there is a Z € % so that |Z — X,| <« for any £ <f (n+n+1). Define (possibly
empty) intervals I, for {<f(n-+5+1) as in the proof of 1.9: I, = [y, &,), where

ye=U{al Yno=X:na},
and
: Oy = least 6y, so that Z—6=X,.

Let ¢: x+>n+n be a bijection. By induction, we can choose &, <x* for a<
as follows: If £, for f<a have been chosen, let £, be such that:

@ fle@)<&<f(p(@)+1), and

®) I, n Iy, = & for f<a. .

By the definition of the intervals I, the condition (b) can always be met because
of the property (ii) of the function f.

Clearly, {&,] a<s} has order type n+#. By splitting it into two parts each of
type 7, it is seen that there must be a B={£,| a<x} so that B = n and

T= Ul ¢ecB)éa.
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Hence, like in the proof of 1.10,
YnZnx-1< ) {X] e B},

and so since this last set is in %, the proof is complete. ®
3.3. CoRrOLLARY (Galvin for » = w, unpublished Choodnovsky [Ch]). If x> w

is measurable, then
+ 1,n
% L
» K /2

Jor any n<x™, A<wu, and n<w. When x>w, the “n” can be replaced by “<w”.

Proof. For x> w, the result is immediate from 3.2, since normal s-ultrafilters
always exist. But, as remarked after 1.6 there are models of ZFC without any mini-
mal w-ultrafilters. However, the following strategem is available: )

A minimal o-ultrafilter % can always be added to any model of ZFC by an
o-closed notion of forcing. (For example, say that p is a conditioniff p is a countable
collection of infinite subsets of e with the finite intersection property and that a con-
dition ¢ is stronger than p iff g2 p. Notice that if m, n<w and f: [w]"-m, any con-
dition p can be extended to one which contains a homogeneous set for f; first let
Y<=w be infinite so that | ¥'— X is finite for every X € p, and use Ramsey’s theorem
to get an infinite homogeneous subset Z of ¥ for f. Then p U {Z} is stronger than p.)

Thus, the forcing adds no new countable sequences of ordinals, and w, is pre-
served as a cardinal. Hence, for any F: o, x [0]'>m with m,n<w®, 3.2 can be
applied in the extension using %, and any resultant “homogeneous” set for F, being
countable, must already exist in the ground model. M

Galvin’s proof of 3.3 for » = w apparently did not generalize, and both the
proof of Choodnovsky [Ch], and of Hajnal [H] for the weaker statement with 5 re-
placed by x, relied on developing a tree and showing that a long branch exists. The
present proof yields more information, being a thinning process which works by
keeping the needed large sets in an ultrafilter. In the paper Baumgartner and
Hajnal [BH] another proof of 3.3 for % = w is outlined which, like the one I give,
depends on a forcing and absoluteness argument. But their forcing is one to make MA
true in the extension, and hence not w-closed, and thus a more involved argument
was needed to show absoluteness. ;

3.4, Interestingly enough, when x> w the well-foundedness of ultrapowers can
be used to yield a simpler proof of the main assertion of 3.2 (and hence, 1.10):

Let x>w, and again, % a p-point x-ultrafilter with {X;] &<»*}=%. For
a fixed f, x <n<x*, we want to find a Bex™* with B = nsothat [} {X;| e B}e%.
Just as before, we can suppose that there is a Ye# so that

[{<xt| Yna=X;na}| =x*

for every a<s. . . )
By well-foundedness; let & €* be a “least” non-constant function, i.e. one
so that for any o<, &~ *({a}) ¢ %, but so that if g e *» and {£<| gO<h(&)} e,
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then g~ %({B}) e for some <. Since % is a p-point, we can assume that % is
almost 1-1, i.e. for each a<, [A™*({a})|<x%.

Let 7: x> be a bijection. We can define ordinals f({)<x* for { <n by induction
so that the following are satisfied:

(@) fis strictly increasing.

() Y (@+1) = Xyq N (@+1) for any « so that (@<t~ X0). (Recall A is
almost 1-1.) .

Tt now suffices to show that T= () {Xyq| {<n} €. Ifnot, Z= Y N —T)e.
On Z we can then define a function g by

g(o) =71 of the least { so that a¢ Xyq -
F103)

If aeZ and h(%)<g(@, then Y (a+1) = Xy 0 (@+1) where ) = g(®).
But ¢ Y so that a & X, contradicting the definition of g. Hence, o € Z implies
g()<h(«), and thus g~'({y}) €% for some y<x. But this set is disjoint from
Xy €%, an evident contradiction. Thus, this proof is complete. M

This argument enables us to make the following observation about closed un-
bounded sets.

3.5. PROPOSITION. Suppose A~* = A and C, for a<At are closed unbounded
subsets of A. Then for any n<2*, there is a B<1™ with B =y so that () {C,] e B}
is still closed unbounded in A. .

Proof. Mimic the argument of 3.4 with the identity function: A—24 in the role
of h, and use the normality of the ideal of non-stationary subsets of A at the appro-
priate places. W

§ 4. Open questions. I conclude the paper with two typical open questions.

4.1. QuEsTION. Is it provable in ZFC alone that there is a (w,, w)-cohesive
w-ultrafilter?

4.2. QuestioN. Is it consistent that there is a x>w and a x-ultrafilter % which
is (u*, x*)-cohesive? 2*>x*. If there were such a x-ultrafilter, then by 1.2(ii),
Silver first showed that the consistency of the existence of a measurable cardinal
w>o so that 2¥>x* follows from a large cardinal assumption (2-extendibility).
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