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A fixed point theorem for plane homeomorphisms
by

Harold Bell (Cincinnati, Ohio)

Abstract. Every homeomorphism of the plane into itself that leaves a non-separating continuum
invariant has a fixed point in this continuum.

In [3] Brouwer proved that if 4 is an orientation preserving homeomorphism
of the plane onto itself and the iterates of some point x, x, 2(x), 2 (h(x)), ... has
a cluster point, thén 4 has a fixed point. In [4] Cartwright and Littlewood proved
that every orientation preserving homeomorphism of the plane onto itself that leaves
a non-separating continuum M invariant has a fixed point in M. In this paper it
shall be shown that every homeomorphism of the plane into itself that leaves a non-~
separating continuum M invariant has a fixed point in M.

Basic AssuMpTION. It shall be assumed throughout this paper that # is a fixed
point free homeomorphism of the plane into itself that leaves a continuum M in-
variant. It is also assumed, without loss of generality, that M is a non-separating
plane continuum and that M does not contain a proper non-separating invariant
subcontinuum.

All set will be assumed to be subsets of the plane unless otherwise is indicated.

In section I the theorem is proven for two special cases. The first (1.2) is a direct
generalization of the Brouwer fixed point theorem for two-cells and the second (1.3)
is designed to illustrate a type of proof in a setting that yields geometric intuition
while minimizing formal constructions. In section II continua ¥ (2.9) and ¥’ (2.10)
are constructed such that M« Y= Y”. In section III it is shown that if Y is a two-
cell (1.2) gnarantees a fixed point in' Y. In section IV it is shown that if ¥ is not
a two-cell, then ¥’ resembles the continuum N in (1.3) well enough to employ the
technique used in the proof of (1.3).

Section I. Two special cases. In this section the theorem is proven for two special
cases. '

(1.1) DERINTTION. The operator T. For each bounded set 4 let T'(4) be the smallest
compact set that contains 4 and has a connected complement. It is handy to notice
that T(4) is the complement of the unbounded component of the complement of 4.
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(1.2) Let f: D—R* be a map defined on a simple closed curve D and let
Xgs X1, s Xy = Xo be a partition of D. If for each arc in D x;_,x;, there is an arc 4,
in T(D), joining f (x;-1) to f(x), such that x;_yx; " T(d; O f (=1 %)) = D then
every extension of f to a map defined on T(D) has a fixed point.

Proof. Suppose by way of contradiction there is a fixed point free extension
of fto a map g defined on T(D) For each i there is a simple closed curve D; such
that

T(f(xi-l x) Ai)C(T(Di))O and

[I, Lemma 3]. For each i, let K; be an arc in 7(D) that joins x; to x;_; such that
g(K)<=T(D), K; nT(D;) = @, and no two distinct K intersect except ‘possibly
at a common endpoint. A new map g’: T(D)-R* may then be defined for
which g'(2) = g(2) if z¢ U{T(K; v x_1x): i = 1,2, ..., n}, g'(x=y x)=4,;, and
g'(T(K; U x;-; x))<T(D,;). The map g’ is a fixed pomt free map defined on T(D)
for which g'(D) =T(D), contradicting the Brouwer fixed point theorem for two-cells.

\

XXy N T(Dy) = B

%

Ay

Fig. 1.1

"In Figure 1.1 we mean to portray a plane continuum N that is similar to the
“Lakes of Wada” [5]. In the figure two infinitely long “channels”, an “in channel”,
and an “out channel” have been dug in a cellular island. The center lines of the chan-

nels are labelled L° and L' respectively and have the property LO—L° = bdry (N)
= L'—I. The set of accessible points of N has two arc components J;, and J,.

(1.3) THEOREM. There does not exist a homeomorphism k of the plane into itself

that leaves N invariant and is such that the image of small arcs that cut across the out
channel have images-that cut across the out channel further out and small arcs that cut
across the in channel have images that cut across the in channel Surther in (see Fig. 1,2).
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Fig. 1.2

Proof. Suppose such a homeomorphism exists. Then either the situation de-
picted in Figure 1.3 or the situation depicted in Figure 1.4 must occur. In each figure
a simple closed curve D, that surrounds W, is constructed using a small arc A° that cuts
across the out channel, a small arc A* that cuts across the in channel, and parts of J;
and J,. A small arc P with one endpoint on the out channel and the other endpoint
in N is chosen so that P separates N and no subarcof P, k(P) = P, or k(P,) = P,
cuts across the out channel up to 4° or the in channel up to 4’ Then either
k() = Jy, k(J,) = J, and Figure 1.3 is accurate or k(J,) = J,, k(JZ) =J; and
Figure 1.4 is accurate.
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\

Fig. 1.4

Now since P, P;, and P, separate N, P—N, P,—N, and P,—N must each
contain infinitely many components that cut across the in channel. Let C, be the
first component of P,~N that cuts across the in channel. Clearly, C = k~(C))
is a component of P—N that cuts across the in channel before C, does. Notice
that there are no components of P,—N that cut across the in channel before C,
does. .

It follows that either Figure 1.5 or Figure 1.6 is accurate. In either case the Jordan
Curve Theorem dictates that the out channel must pass through P on its way to P,.
Let C° be the first component of P— N that cuts across the out channel. Then k(C%
is a component of P;—N that cuts across the out channel before C° does and
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Fig. 1.6

k(k(C®)) is a component of P,— N that cuts across the out channel before k(C°)
does. That is, the out channel must pass through P before it can pass through P,,
it must pass through P, before it can pass through P, (thus eliminating Figures 1.3
and 1.5 as possibilities), and it must pass through P; before it can pass through P,,
clearly an impossible situation.

Section II. Some constructions and definitions,

(2.1) The number ¥o. Let ry>0 be chosen such that if 4 is any set of diam-
eter <2r;, then the distance from A to the convex hull of h(d4) is at least r,.
(2.2) Topological ray. A set L will be called a topological ray if there is a homeo-
morphism r of [0, co) onto L such that lim |r(#)| = oo. The point r(0) will be called
=0
the endpoint of the topological ray. Sometimes the homeomorphism r shall also be
referred to as a ray. e

(2.3) The distance from a point p to a non-empty set A,

d(p, 4) = inf{|p—al: ae 4} .

(24) S(p, A). Let S(p, 4) = {x: d(x, 4) = |x—pl}.

(2.5) The sets E(M) and E'(M). A point e is in E(M) if M n S(e, M) has
at least two points, e is in E'(M) if M A S(e, M) has at least three points.

(2.6) The sets of chords € (M) and 4(M). If c e E(M), then €,(M) is the set
of open intervals (a, b) for which there is a component of S(e, M)—M with end-
points a and b. An open interval (a, b) is in € (M) if (a, b) e €,(M) for some e e E(M)
or there is a sequence of such open intervals (a,, b,) with lima, = a and limb, = b.

(2.7) The number r'. Let r'>0 be chosen so that

T({z: d(z, M)<r})c{z: d(z, M)<ro}.
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" (2.8) DEFINITION OF % (n). For each posruve mtegcr nlet@n) = {I. 1e ¢ (M)
for some e with d(e, M)<r'/n}

(2.9) DerNITION OF Y. Let Y=T(U {Ie¥(): InT(h(D) u M) =B} u M,
(2.10) DermvrTION OF Y. Let Y/ = T(|J {Te €¢(1): 1o T(h() U M) = @ and
In T(h_l(l) UM)=0}uM).
Section ITI. The set Y is not a two-cell.
(3.1) Let I, = (a,,b) e %) for n =1, 2,3, ... be such that a = lima, and
= limb, exist. If a#b then
@ (a, b) e €(1).
) If I, nTTh{l) v M) = O for each n, then

(a,b) n T[h([(a, BluM)] =
Gif) If I,=Tlh(T)v M1 for each n, then (a,b)=T[h[(a, b)] U M].

Proof. (i) was proven in [2, Corollary 2.4.1]. (ii) and (iii) are straightforward.

(3.2) The {I: 1€ %4(1) and InT(h(I) U M) = @} U M is closed.

Proof. In [2, Lemma 2.3] it was shown that |J {I: Te (1)} U M is closed.
It follows that if

peUilIegMand InThDUM)=8}u M,
then p e M or there is a sequence of I, = (a,, b,) in ¥(1) where
LnTh{)vM)= ‘
for each n and pe(a,b) = (lima,, imb,) € ¥(1). According to (3.1),
(@, ) nTh(a, D)) vM)=9.

It follows that (@, b)) =Y.
(3.3) The continuum Y is not a two-cell.

Proof. Suppose Y is a two-cell. Then the boundary of ¥, D, is a simple closed
curve. For each p e D n M there is a ray L with endpoint p such that L n ¥ = { p}
Since h(p) ¢ L there is an open set U that contains p such that A(U) n L = @.
Let C, be the component of U n D that contains p. If ab is any arc in C, with end-
points 4, b € M and 4, is any arcin Y that joins 2(<) to £(b) and does not intersect ab,
then T(4 O h(4,)) N ab = @. 1t follows from the compactness of D that there
is a partition of D {xo, Xy, ..., X, = X} =M such that each arc x,_,x; is either
contained in some C, with pe D "M or x1%; = (x;-y, x) e 4(1). According
to (1.1) & must have a ﬁxed point ih Y if for each i there is an arc 4;< ¥ that joins
R(¥_;) to h(x) such that T(4; U h(x;_ X)) N Xy x; = B IF x,_ 1%;<=C, for
some p-e D n M, then let A, = A;. If on the other hand,

Xi—y X = (¥imgq, X)) € €(1)
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then x;;x; 0 T(M U h(x;_;x)) = @. Let J be a ray that intersects x,_, x, but -
does not intetsect T(M U h(x;_ 1x,)) Let O be a simple closed curve such that
McT(Q)<=Y and (JUux,_x)n Q@ =@. Let 4, be an arc in T(Q) that joins
h(x;_;) to A(x;) and does not contain x,_, or x;. Then

Xpm g% O T(h(xpyx) U A) (LU x_yx) O T(h(x_yx) U Q).
Since L U x;..; X; is unbounded, connected and disjoint from A(x;_, x;) U Qit follows

that (LU ¥,y x) N T(R(x;—1x) U Q) = @. Since I is assumed to be fixed point
free in Y, it follows that Y is not a two-cell.

Section IV. There is an out channel for Y, an in channel for Y’ and a fixed point
for A.

(4.1) The continuum M has no cutpoints.

Proof. In [1] it was shown the boundary of M must be an indecomposable
continuum from which it follows easily that A has no cutpoints.

(4.2) DermviTION. {D(€): e € E'(M)}. For e € E'(M), let D(e) be the interior
of the convex hull of M n S(e, M).

(4.3) It was shown [2, Theorem 2.2] that the convex hull of M is the disjoint
union of M, the open intervals in ¥(M), and the open two-cells D(e), ee E'(M).

(4.4) DEFmITION OF D, AND D,. For each positive integer n, let D, be the
boundary of T(U {I: Te#(m)} u M). Let D, be the boundary of T(Y U D,).

(4.5) Each D, and D, is a simple closed curve.

Proof. In [2, Theorem 4.4] it was shown if M has no cut points and 4 is a com-
pact set for which M < (T(4))° then the boundary of T(U {I: Te %,(M) for some
ee A} U M) is a simple closed curve. If 4, = {x: d(x, M)<r/n}, then it follows
from the definition of #(n) that D, is a simple closed curve. It was also shown
[2, Theorem 4.3] that if #=% (M) and |J {I: Ie ¥} U M contains a simple closed
curve D such that M =T(D), then the boundary of T({J {I: Te %} U M) is a simple
closed curve. It follows that Dj is a simple closed curve.

(4.6) There is an I = (&', b') € €(1) such that I; = D1— Y. Fix e; € E(M) such
that d(ey, M)<r' and Ij € €,(M).

Proof. Combine (3.3) and (4.5).

(4.7) Let ee E'(M) with d(e, M)<r,. Then Y contains all but at most two
Te € (M).

Proof. Given any three intervals.in #,(M) there will be two of them say I
and J for which [T(J U M)—M] n [T(Ju M)—M] = &. Since 4 is a homeomot-
phism it follows that

[T v M)~MI A [TV M)-M] = 8.
IfI'¢ Ythen I« T(h(I) u M). Since I U D(e) L Jis connected and h(I) N D(e) = &
it follows that
Jelu D uJcsT(h() v M)—M.
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Therefore,
F=JnTHhJT) U M)-M = JaT(hIT) v M).

It follows that J< Y.

(4.8) Let e e E'(M) with D(€)<=T(D,). Then either Y contains every Ie E (M)
or there are exactly two intervals in € (M) that are not contained in Y.

Proof. According to (4.7) there are at most two I € %,(M) not contained in Y.
Suppose I e (M) and I¢ Y. Then IcT{h(I) u M). Write the boundary of D(e)
as ] U K where K is an arc with the same endpoints as I. A straightforward appli-
cation of the Jordan curve theorem will show that 7= T'(h(K) U M). Then, according
to [1, Lemma 7] there is a component of A(K)—M, P, such that I=T(P U M).
Since % is 2 homeomorphism it follows that P = h(J) for some component J of K— M.
Clearly, Je % (M) and JeT(h(J) U M) = T(P U M). Therefore J¢ Y.

(4.9) DEFNITION. A partial order on E(M) and %(M). For e,fe E(M)
define e< [ if there are a,be M n S(f, M) such that ecTla,fl1u [f,b) u M]
If I, J e € (M) define I<J to mean T(J U M)cT(J v M).

(4.10) DEFmNITION. The topological rays L,. For e<E(M) let

La = {fEE(M)' egf} *

From [2, Theorem 3.1] we have

(4.11) Each L, is a topological ray with endpoint e.

From [2, Lemma 3.4] we have

(4.12) Let e,fe E(M). If e<f then there exists an 1€ € (M) and a Je € (M)
such that ISJ. If there is an Ie € (M) and a Je € (M) such that I<J, then e<f.

(4.13) The {Ie €(1): I<I; and I1¢£ Y} is totally ordered by <

Proof. Suppose by way of contradiction that there exist I,Je € (1) such that
I,JSI;, I,J¢ Y, I¢J and J£ I Let e, fe E(M) such that [ € €,(M) and J € € ((M).
According to (4.12), e{ €L, N L. Let ¢ be the least element in L, 0 L;. Cleatly,
e € E'(M) and there are K;, K,, and K;e%,(M) such that I<K;<K; and
J<SK,<K;<I{. Tt follows that none of the K, are contained in ¥, which contra-
dicts (4.7).

(4.14) For each positive integer n there is a unique I € (1) such that I =D,
I'<I], and 1,2 Y.

Proof. Let ¥ = {Ie 6 (1): I<I;, I¢Y and I¢T(D,)}. By (4.13) % is totally
ordered by <. A straightforward application of (3.1) shows that % has a greatest
lower bound, say J. If J= D), let I, = J. If not (4.3) implies that J e € (M) for some
ee E'(M). In this case (4.7) indicates that there is a Ke %, (M) such that K<J
and K¢ Y. Clearly KcD,. Let I, = K. Since no two Ie#(l) contained in the
simple closed curve D are comparable it follows that I, is unique.

(4.15) DermniTION. Let I, be as in (4.13) and for each i let ¢; be such that
Lie 6 yM).
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(4.16) DEFINITION. The center line L°. Let 10 = (J {Ly: i=1,2,..}.

(4.17) L° is homeomorphic to the set of real numbers.

Proof. By (4.12) the {e;: i = 1,2, ...} is totally ordered by <. It follows that L°
is either a topological ray or is homeomorphic to the set of real numbers. Since
limd(e}, M) = 0 it follows that L° is not a topological ray.

i~reo

(4.18) DEFINITION. The out channel. Let U be the union of those Ie @(M)
and those D(e), e € E'(M) that intersect L°. An arc ab contained in R?— M, except
for the endpoints ¢, be M will be said to cut across L° if T'(ab U M) contains
{(ee L°: e<f} for some fe L°.

(4.19) LY—L° is an invariant subcontinuum of bdry(M). Therefore, IO—1° is
the boundary of M.

Proof. L9—L° is clearly a subcontinuum of bdry (M). Let peLO—L°and let ¥
be an open neighborhood of h(p). Since A~ (V) is a neighborhood of p, A~ (V)
must contain an I e (1) that cuts across L°. Then I u L° is unbounded, connected,
and does not intersect M. Since I<T(h(I) L M) it follows that A(I)  L° £ @. There~
fore h(h™*(V)) N L° = ¥ n L°#@. Therefore, T(L®—L°) is an invariant non-separ-
ating subcontinuum of M. Since M is a minimal invariant non-separating continuum
it follows that M = T(L®—L®), from which it follows that LO—L° = bdry(M).

It seems clear that

(4.20) If A is an arc of diameter <r' that cuts across L°, then
(A—M)=T(h(4) L M).

(4.21) There is an “in channel”. That is, there is a subset of E(M) L’ such that L' is
homeomorphic to the set of real numbers, if A is any arc of diameter <r' that cuts
dcross L', then h(A)=T(4d v M) and L'— L = bdry(M).

Proof. We have shown that if 4 has no fixed point, then there must be an “out
channel” for 7 and M. If k has no fixed point then neither does A™*. Since M is also
a minimal invariant non-separating continuum for / it is also a minimal invariant
non-separating continuum for 4~ *. It follows that 2~* must have an “out channel”.
Clearly, an “out channel” for #~* is an “in channel” for .

(4.22) There is a fixed point in M.

Proof. Let ¥ = T({ {Ie€(l): In(L° ul) =@} u M). Then ¥ pretty
much resembles the continuum N of (1.3). That is, ¥ has the required “in channel”
and “out channel”. Although Y’ is not an invariant continuum and L°—L° is not
all of ¥, the procedure used to prove (1.3) is still operative. For 4° choose an I, for
which h(B(ID)) = T(I] U M). Let 4* be the largest I #(1) that intersects L'. Finally,
choose the arc P so that P separates M, so that it shares an endpoint with 4° and so
that P, h(P), and h(h(P)) do not intersect (L° U L)) n (R*—T(D)). The proof
proceeds as before.
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Note on decompositions of metrizable spaces II
by

Roman Pol (Warszawa)

Abstract. This paper is a continuation of the author’s paper [16]. - We improve some results
from [16] and investigate the special decompositions of metrizable spaces introduced in [16] which
establish close relations between A. H. Stone’s [20] property ocLw(<t) and stationary sets of ordi~
nals. On this ground we construct decompositions of Baire spaces B(f) which yield results on absolu~
tely t-analytic spaces (considered by A. H. Stone [19]) and give, under an additional set theoretic
axiom, the negative answer to a question raised in [16]. Connections between these topics and
non-separable theory of Borel sets are also investigated.

This paper is a continuation of our paper [16]. In the first section we prove
a theorem on o-discrete reduction which' improves a result from [16] and
a proposition on completely additive-Borel families which extends an important
R. W. Hansell’s theorem [9]; these results together give a reduction theorem in
non-separable theory of Borel sets which yields a selection theorem.

In the second section we investigate the special decompositions of metnzable
spaces introduced in [16] (we call them “natural”) which allow to establish close
relations between oLw(<t) property (considered by A.H, Stone. [20]) and the
notion of stationary sets of ordinals and we consider the class of mappings preserving
o-discretness which is closely related to these topics.

In the third section we apply some of results of Section 2 to obtain special de-
compositions of B(f) (i.e. the countable product of discrete spaces of cardinality t)
which generalize the classical F. Bernstein’s decompositions of irrationals B(so)
into totally imperfect sets. These decompositions yield a theorem on absolutely
t-analytic spaces (introduced by A. H. Stone [19]) and, under an additional set theor-
etic axiom, provide an example which settles a problem raised by the author in [16].

The author wishes to thank W. G. Fleissner for the first draft of his paper [6]
from which the author has learned the axiom E(w,) and some related ideas used in
Section 3.5.

Notation and terminology. Our topological terminology follows [3] and [12];
set theoretic terminology is taken from [13] — with the only exception — a regular
cardinal is always understanding to be uncountable. By a space we shall mean in this
Dpaper always a metrizable space. Given a space X we denote by ¢ a metric agreeing
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