Stable graphs

by

Klaus-Peter Podewski (Hannover) and Martin Ziegler (Berlin)

Abstract. We show for a simple class of graphs that there is no definable ordering of an infinite set of n-tupels of vertices. This class contains all planar graphs and all graphs of finite valency. A major step is the proof of the equivalence of two graph-theoretical notions.

Introduction. A graph has a definable ordering if there is a graph-theoretical formula φ, an infinite set \mathbb{A} of k-tupels of vertices and a linear ordering $<$ of \mathbb{A} s.t. two elements $\bar{a}, \bar{b} \in \mathbb{A}$ satisfy φ iff $\bar{a} < \bar{b}$.

In [1] it is shown that no tree, no n-separated graph and no graph of finite valency has an ordering of 1-tupels. By a refinement of the method in [1] we prove that no graph has a definable ordering which satisfies the following property:

(*) For every infinite set U of vertices and every natural number m there is a finite set S of vertices and an infinite $U' \subset U$ s.t. all paths connecting two elements of U' of length smaller than m contain an element of S.

We do not see any reasonable weakening of (*) from which we can derive the same result. So it is surprising that (*) holds exactly in those graphs which contain no bounded subdivision of edges of a complete infinite graph, which is a simple and easy to handle property. We call such graphs flat. Since every subdivision of an infinite complete graph is neither a tree nor of finite valency, n-separated, planar or embeddable in a surface of finite genus, all such graphs are flat. It seems difficult to find a reasonable graph-theoretical property which extends flatness and implies the nonexistence of a definable ordering.

A model-theoretic property which is connected with definable orderings is stability [3]. The following sharpening of flatness implies stability. For each natural number m there is a natural number n s.t. no subdivision — by fewer than m many points on each edge — of the complete graph with n vertices is contained in the graph. This graphs are called superflat. Since every tree, every graph with bounded valency, every n-separated graph, every planar graph and every graph which is embeddable in a surface of finite genus is superflat, they are all stable.

Flat graphs. A graph is a structure (E, K), where K is a binary irreflexive and symmetric relation on E. A graph (F, L) is called a subgraph of (E, K) if $F \subseteq E$
and $K \subseteq L$. If $S \subseteq E$, we denote by $(E, K) - S$ the largest subgraph of (E, K) which contains no elements of S.

Let n be a natural number, then "a" is the set of all sequences of length n of elements of A. Such a sequence is a function from $\{0, 1, ..., n-1\}$ to A. A subgraph (\mathcal{Q}, W) of (E, K) is said to be a path of length n from a to b (in (E, K)) if there is an injective sequence \bar{a} of length $n + 1$ s.t. $\bar{a}(0) = a, \bar{a}(n) = b, \mathcal{Q} = \{\bar{a}(i) \mid i \leq n\}$ and

$$W = \bigcup_{i+1}^{n} \{(\bar{a}(i), \bar{a}(i+1)), (\bar{a}(i+1), \bar{a}(i))\}.$$ Two different paths $(\mathcal{Q}_i, W_i), i = 1, 2$ from a_i to b_i are called disjoint if $\mathcal{Q}_1 \cap \mathcal{Q}_2 = \{a_1, b_1, c_1, a_2, b_2\}$.

Let S be a subset of E and let $a, b \in E$. We define $d_\mathcal{Q}(a, b)$ to be the minimum of the lengths of paths from a to b in $(E, K) - S$, if there is such a path, $d_\mathcal{Q}(a, b) = \infty$ otherwise. Note that $d_{\mathcal{Q}}(a, b) = \infty$ if $a \in S$ or $b \in S$. For $\bar{a}, E \subseteq E$ we define

$$d_{\mathcal{Q}}(\bar{a}, b) = \min \{d(\bar{a}(i), b) \mid i, k < n\}.$$ Let m be a natural number and λ a cardinal, then K^m_λ is the subdivision of the complete graph with λ many vertices obtained by inserting m new vertices on each edge.

![Fig. 1](image)

The following property (b) of graphs will be important for later discussions.

(b) For every infinite $U \subseteq E$ and every natural number m there is a finite $S \subseteq E$ and an infinite $U' \subseteq U$ s.t. for all different $a, b \in U'$:

$$d_{\mathcal{Q}}(a, b) = m.$$ This will be equivalent to the following property.

1. DEFINITION. A graph (E, K) is called flat if no subgraph is isomorphic to K^m_λ for any natural number m.

(E, K) is called superflat if for every natural number m there is a natural number n such that no subgraph of (E, K) is isomorphic to K^m_λ.

2. THEOREM. A graph has the property (b) iff it is flat.

Proof. Since no K^m_λ has the property (b), we have that (b) implies flatness. To prove the other direction assume that there is an infinite $U \subseteq E$ and a natural number m s.t.

For every infinite $U' \subseteq U$ and finite $S \subseteq E$ there are two distinct $a, b \in U'$ with $d_{\mathcal{Q}}(a, b) = m$.

We first observe:

LEMMA. For every infinite $U \subseteq U$ and finite $S \subseteq E$ there is $c \in E \subseteq S$, an infinite $U'' \subseteq U'$ and for every $a, b \in U''$ a path (\mathcal{Q}_a, W_a) from c to a of length $\leq m$ such that (\mathcal{Q}_a, W_a) and (\mathcal{Q}_b, W_b) are disjoint for $a \neq b$.

Proof. Since there is no infinite $U' \subseteq U'$ such that $d_{\mathcal{Q}}(a, b) > m$ for all distinct $a, b \in U'$, Ramsey's theorem yields an infinite $U'' \subseteq U''$ s.t.

$$d_{\mathcal{Q}}(a, b) = m$$ for all $a, b \in U''$.

Let $a \in U''$ and let $F'' = \{b \in E \mid d_{\mathcal{Q}}(a, b) = m\}$. For every $b \in F''$, $b \neq a$, we choose an $c_k \in F''$ s.t. $d_{\mathcal{Q}}(a, c_k) < d_{\mathcal{Q}}(a, b)$ and $(c_k, a) \in L$. Let

$$L'' = \bigcup_{a \in F''} \{(c_k, a), (b, c_k)\}.$$ Then (F', L') is a tree. Let (F, L) the largest subtree whose endpoints are elements of U''.

Since the distance in (F', L') of two vertices is smaller than $2m+1$ there must exist a $c_0 \in F$ s.t. $x := \{d \mid c = c_d\}$ is infinite. For every $d \in x$ we choose a path (\mathcal{Q}_d, W_d) in (F, L) from c to an endpoint a_d s.t. $d \in \mathcal{Q}_d$. Let $U'' = \{a_d \mid d \in x\}$. Then c and U'' have the desired properties.

Now we can continue with the proof of the theorem. Using the preceding lemma we choose vertices $c_{i_0}, c_{i_1}, ..., c_{i_{m-1}}$ infinite set $U_i \subseteq U_{i-1}$ $(U_0 \subseteq U)$ and for every $a \in U_i$ a path (\mathcal{Q}_a, W_a) of length $\leq m$ s.t. (\mathcal{Q}_a, W_a) and (Q_b, W_b) are disjoint for $a \neq b \in U_i$. Then we construct subgraphs (F_{i_n}, L_{i_n}) s.t.

a) (F_n, L_n) is a subdivision of the complete graph with the vertices $c_{i_0}, ..., c_{i_n}$ by fewer than $2m+1$ vertices.

b) (F_{i_n}, L_{i_n}) is a subgraph of (F_{i-1}, L_{i-1}) as follows:

Let $F_{i-1} = \emptyset, L_{i-1} = \emptyset$. Suppose (F_{i-1}, L_{i-1}) is already chosen. Let t be greater then all i with $c_{i_{t-1}}, c_{i_{t+1}}$. To connect c_{i_t} with c_{i_k}, $k < n$, we choose subgraphs $(F_{i_t}^1, L_{i_t}^1), k < n$, in the following manner:

Let $F_{i_t}^1 = F_{i_{t-1}} \cup \{c_{i_t}\}$ and let $L_{i_t}^1 = L_{i_{t-1}}$. Assume $(F_{i_t}^1, L_{i_t}^1)$ is chosen. Then there exists $a, b \in U_{i_t}^1$ s.t.

$$\mathcal{Q}_{i_t}^1 \cap F_{i_t}^1 = \{c_{i_t}\} \quad \text{and} \quad \mathcal{Q}_{i_t}^1 \cap F_{i_t}^1 = \{c_{i_t}\}.$$ Let (\mathcal{Q}, W) the path from c_{i_t} to c_{i_k} s.t. $W \subseteq W_{i_{t-1}} \cup W_{i_{t+1}}$, and define

$$F_{i_t}^2 = F_{i_{t-1}} \cup Q, \quad L_{i_t}^2 = L_{i_{t-1}} \cup W.$$ Let $F_t = F_{i_t}^2$ and $L_{i_t} = L_{i_t}^2$. Then the graph (F_t, L_t) has properties a) and b).

To finish the construction define

$$F' = \bigcup_{n=1}^{m} \{F_n\} \quad \text{and} \quad L' = \bigcup_{n=1}^{m} \{L_n\}.$$
An easy application of Ramsey's theorem shows that there is an \(e < 2m \) and a subgraph \((F,L)\) of \((F',L')\) which is isomorphic to \(K^*_m \). This proves the theorem.

3. **Corollary.** Let \((E,K)\) be a flat graph, \(m \) a natural number and \(A \in E \) infinite. Then there is an infinite \(B \in A \) and a finite \(S \in E \) s.t. for all distinct \(\bar{a}, \bar{b} \in B \):

\[
d_d(\bar{a}, \bar{b}) > m.
\]

Proof. By recursion on \(e \leq n \) we choose infinite \(A_e \in A \) and finite \(S_e \in E \) as follows:

Let \(A_0 = A \) and \(S_0 = \emptyset \). Suppose that \(A_e \) and \(S_e \) are chosen. If

\[
U = \{(\bar{a}, e) \mid \bar{a} \in A_e\}
\]

is finite, let \(S_{e+1} = S_e \cup U \) and \(A_{e+1} = A_e \). Otherwise, since \((E,K)\) is flat, there is an infinite \(U' \subset U \) and a finite \(S_{e+1} \in E \) s.t. for all distinct \(\bar{a}, \bar{b} \in U', \bar{a} \neq \bar{b} \in U' \) we have \(d_{d}(\bar{a}, \bar{b}) > m \).

Let \(A_{e+1} \) be an infinite subset of \(A_e \) s.t. for all distinct \(\bar{a}, \bar{b} \in A_{e+1} \) we have \(d_{d}(\bar{a}, \bar{b}) > m \). Then

\[
\text{if } S = \bigcup_{\bar{a} \in A} \text{ we have for all distinct } \bar{a}, \bar{b} \in A_{e+1} \text{ and for all } k < n:
\]

\[
d_d(\bar{a}(k), \bar{b}(k)) > m.
\]

By induction we choose elements \(\bar{a}_e \in A_e \), as follows:

Let \(\bar{a}_0 \in A_0 \). Suppose that \(\bar{a}_j, j < i \), is already chosen. Then we choose \(\bar{a}_{i+1} \in A_i \) such that

\[
d_d(\bar{a}_{i+1}, \bar{a}_j) < m \quad \text{for } j < i.
\]

If such an element does not exist, the infinite \(A_e \) must contain \(\bar{a}, \bar{b} \) s.t. for some \(j < i, j < k < n \) we have:

\[
d_d(\bar{a}(k), \bar{a}(j)) < m, \quad d_d(\bar{a}(k), \bar{b}(j)) < m.
\]

This implies \(d_d(\bar{a}(j), \bar{b}(j)) < 2m \), which is a contradiction to the construction of \(A_e \).

Graphs with definable orderings. The (first order) language \(L' \) of the theory of graphs contains besides the logical symbols a binary relation symbol \(P \). Let \(X' \) be a set, then \(L' \) denotes the language \(L' \) extended by using the elements of \(X \) as constant symbols. Let \(V \) be the set of variables, let \(\varphi \) be a formula from \(L' \) and let \(V_i \in \text{"} V \text{"} \) s.t. \(\varphi[V_i] \in L \) for all \(i \neq j \) \((m \neq i) \). If every free variable of \(\varphi \) is equal to some \(V_i \), \(i < k, k < n \), we write \(\varphi(V_1, ..., V_k) \). This notion indicates how to substitute constants:

Let \(\bar{a} \in \epsilon \text{"} X \text{"} \), then \(\varphi(\bar{a}_1, ..., \bar{a}_k) \) denotes the sentence from \(L' \), which is obtained from \(\varphi(\bar{a}_1, ..., \bar{a}_k) \) by substituting \(V_i \) by \(\bar{a}_i \).

If \((E,K)\) is a graph and \(f \) a function from \(X \) to \(E \), then \((E,K,f(\bar{x}))_{\text{ex}} \) is a structure for \(L' \). For \(\varphi(V_1, ..., V_k) \) from \(L' \) and \(\bar{a} \in \epsilon \text{"} X \text{"} \) let

\[
(E,K,f(\bar{x}))_{\text{ex}} \models \varphi(\bar{a}_1, ..., \bar{a}_k)
\]

express that \(\varphi \) holds in \((E,K,f(\bar{x}))_{\text{ex}} \) if \(f(\bar{a}) \) is interpreted by \(\bar{a} \). Then \((E,K,f(\bar{x}))_{\text{ex}} \) is the set of all sentences of \(L' \) which hold in \((E,K,f(\bar{x}))_{\text{ex}} \).

For example let \(S \) be a finite set, \(V_1, V_2 \) two \(n \)-tuples of variables. Define

\[
\varphi_{\text{ex}}(V_1, V_2)
\]

\[
:= \bigwedge_{l < m} \bigvee_{i < j} (\varphi(V_1(l), V_2(j)), \varphi(V_1(l), V_2(i))) \wedge \varphi(V_2(i), V_1(j)) \wedge \varphi(V_2(j), V_1(i)) \wedge \varphi(V_2(i), V_2(j)) \wedge \varphi(V_2(j), V_2(i))
\]

Then

\[
(E,K,f(\bar{x}))_{\text{ex}} \models \varphi_{\text{ex}}(\bar{a}, \bar{b}) \iff d_{d}(\bar{a}, \bar{b}) > m \text{ in } (E,K).
\]

Similarly we find for all natural numbers \(n, m \) a sentence \(\psi_{\text{ex}} \), s.t. \((E,K) \models \psi_{\text{ex}} \) iff \((E,K)_w \) contains no isomorphic copy of \(K^*_m \).

From this we can derive

4. **Lemma.** \((E,K)\) is superflat iff all graphs \((F,L)\) which are elementary equivalent to \((E,K)\) (i.e., \(\text{Th}(E,K) = \text{Th}(F,L) \)) are flat.

Proof. If \((E,K)\) is superflat there is for every \(m \) an \(n \) s.t. \((E,K) \not\models \psi_{\text{ex}} \). This holds also in every \((F,L)\) elementary equivalent to \((E,K)\). So clearly for every \(n \) \(K^*_n \) is not embeddable in \((F,L)\).

The other direction is shown by an easy application of the compactness theorem.

The following notion is important in model theory [3].

5. **Definition.** A formula \(\varphi(V, U) \) is said to define an ordering of the graph \((E,K)\) if there are an infinite \(\bar{A} \in E \) and a linear ordering \(< \) on \(\bar{A} \) s.t. for all \(\bar{a}, \bar{b} \in \bar{A} \):

\[
(E,K) \models \varphi(\bar{a}, \bar{b}) \iff \bar{a} < \bar{b}
\]

\((E,K)\) is called stable if there is no definable ordering in any \((F,L)\) elementary equivalent to \((E,K)\).

It is quite useful to make the following definition:

6. **Definition.** A formula \(\varphi(V, W) \) is called large in a graph \((E,K)\) if there is an infinite \(\bar{A} \in E \) s.t. for every infinite \(B \subset \bar{A} \) there are \(\bar{a}, \bar{b} \in B \) s.t. \((E,K) \not\models \psi(\bar{a}, \bar{b}) \).

For example, if \(\varphi(V, W) \) defines an ordering in \((E,K)\), then \(\varphi(V, W) \wedge \neg \varphi(W, V) \) are large. A major step to prove that every flat graph has no definable ordering, is the following theorem:

7. **Theorem.** Let \(\varphi(V, W) \) be a large formula in a flat graph \((E,K)\). Then there is an extension \((F,L) \) of \((E,K)\), an automorphism \(h \) of \((F,L)\) and \(\bar{a}, \bar{b} \in \epsilon \text{"} E \text{"} \) s.t.

\[
1. \ h \bar{a} = \bar{b} \text{ and } h \bar{a} = \bar{a}
\]

\[
2. \ d_d(\bar{a}, \bar{b}) = \infty
\]

\[
3. \ (F,L) \not\models \varphi(\bar{a}, \bar{b})
\]

Proof. If there is an \(\bar{a} \in \epsilon \text{"} E \text{"} \) s.t. \((E,K) \not\models \psi(\bar{a}, \bar{a})\), then let \(\bar{b} = \bar{a} \) and \((F,L) = (E,K)\). Otherwise, since \(\varphi(V, W) \) is large in \((E,K)\) there is an infinite \(\bar{A} \in E \) s.t. every infinite \(B \subset \bar{A} \) contains two different elements \(\bar{a}, \bar{b} \) s.t. such that

\[
(E,K) \not\models \psi(\bar{a}, \bar{b}) \text{.}
\]

Since \((E,K)\) is flat, we have by Corollary 3 that for every natural number \(m \) there is a finite \(S_{m} \in E \) and an infinite \(A_{m} \in A \) s.t. \(d_{d}(\bar{a}, \bar{b}) > m \) for all distinct \(\bar{a}, \bar{b} \in A_{m} \). Clearly we can assume that \(S_{m} = S_{m+1} \) and \(A_{m} = A_{m+1} \).
Now we extend \(\mathcal{L}_\alpha \) to \(\mathcal{L}_b \) by \(2n \) new constant symbols which we can arrange in two sequences \(\bar{a}, \bar{b} \) of length \(n \). We define sets \(T_0, T_1, T_2, T_3 \) of sentences of \(\mathcal{L}_b \):

\[
\begin{align*}
T_0 &= \text{Th}(E, K, \varepsilon)_{\text{res}}, \\
T_1 &= \{ \varphi^g_a(\bar{a}, \bar{b}) \mid m \text{ a natural number} \}, \\
T_2 &= \{ \sigma(\bar{a}) \mapsto \sigma(\bar{b}) \mid \sigma \in \mathcal{L}_b \}, \\
T_3 &= \{ \psi(\bar{a}, \bar{b}) \}.
\end{align*}
\]

where \(\varphi^g_a(V, W) \) is the formula defined above, which expresses \("d_{\text{res}}(V, W) > m" \)

Finally let \(T = T_0 \cup T_1 \cup T_2 \cup T_3 \). First we prove, that \(T \) is consistent:

Let \(\bar{d} \) be a finite set of formulas \(\sigma(\bar{w}) \) from \(\mathcal{L}_b \) and let \(m \) be a natural number. Define

\[
\begin{align*}
T_1 &= \{ \varphi^g_a(\bar{a}, \bar{b}) \mid \bar{r} \in \mathcal{L}_b \}, \\
T_2 &= \{ \sigma(\bar{a}) \mapsto \sigma(\bar{b}) \mid \sigma \in \mathcal{L}_b \}.
\end{align*}
\]

By compactness it suffices to show that \(T = T_0 \cup T_1 \cup T_2 \cup T_3 \) has a model. Since \(A_\alpha \) is infinite, we get by an easy application of Ramsey's theorem an infinite \(B \subseteq A_\alpha \). If

\[
(E, K, \varepsilon) \models \sigma[\bar{a}] \iff (E, K, \varepsilon) \models \sigma[\bar{b}]
\]

for all \(\bar{a}, \bar{b} \in B \) and all \(\sigma \in \mathcal{E} \). Choose two different sequences \(\bar{a}, \bar{b} \in B \) such that \((E, K) \not\models \psi[\bar{a}, \bar{b}] \) and let \(f \) be the map from \(X \) to \(E \) which satisfies \(\varepsilon \models \alpha \). Then \((E, K, f(\bar{a})) \) is a model of \(T \) and therefore \(T \) is consistent.

Let \(F, L, \varepsilon(x) \) be a model of \(T \). Since \(T_1 \subseteq T \) we can assume that \((E, K) \) is an (elementary) subgraph of \((F, L) \) and \(g \models \text{id}_E \). Let \(\bar{a} = g \circ \bar{a} \) and \(\bar{b} = g \circ \bar{b} \). Since \(T_2 \subseteq T \) and \(\bar{a}, \bar{b} \) satisfy the same formulas of \(\mathcal{L}_b \) in \((F, L, \varepsilon(x)) \). Therefore using a result of [2, p. 49] we find an elementary extension \((F', L', \varepsilon(x)) \) of \((F, L) \) and an automorphism \(h \) of \((F, L) \) such that \(h \models \text{id}_L \) and \(h \circ \bar{a} = \bar{b} \). Since \(T_3 \subseteq T \) implies \((F, L) \models \psi[\bar{a}, \bar{b}] \).

References

INSTITUT FÜR MATHEMATIK

TECHNISCHE UNIVERSITÄT

Hannover

FB 3 MATHEMATIK

TECHNISCHE UNIVERSITÄT

Berlin

Accepté par la Rédaction le 9.2.1976