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take on the respective forms,
F =FI2K, FF =PF1FI.

The functional equation of commutativity thus has order 2, while the
superficially more complicated functional equation of associativity has
the lower order 1.
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A SUFFICIENT CONDITION FOR INDEPENDENCE
BY

8. SWIERCZEOWSKI (WROCEAW)

The present paper originated in an attempt to decide whether the
well known notion of independence of continuous functions comes under
the general scheme of such notiors given by E. Marezewski (). Our theo-
rem gives a positive answer to this and to a class of similar questions.

By an algebra we mean what is also called a general algebraie system,

i.e. a set 4 together with some A-valued functions of finitely many
variables defined over A (also called operations). The notion of indepen-
dence in an algebra is taken from the paper of E. Marczewski and it is
assumed that the reader is acquainted with it.
_ TemorEM. Let A be an arbilrary set with at least two elements,
A>2 Let JC2% be a hereditary family of finite subsets of A and let
8 = [w: {w} ¢J). Then the condition 8> J implies the evistence of an
algebra with the set of elements A in which J is the class of emactly all finite
independent subsels.

If we wish J to be the family of all finite independent subsets
of an algebra, then clearly every element of S has to form a depen-
dent set, i. e. it has to be self-dependent. Thus our theorem says that
if J allows for sufficiently many self-dependent elements, then it can
be the family of all finite independent subsets in a suitable algebra
over 4.

If 8> J does not hold, then there may be no algebra over A in
which J is the set of exactly all finite independent subsets. There is no
such algebra if 4 = {a,b,c} and J = {0, {a}, {b}, {4, b}} (O denotes
the empty set). Assuming the contrary, we have from the self-dependence
of ¢ that there is an operation f(x) such that f(#) % # holds for some
zed. Then it follows from the independence of a that f(a) # a. Since

() E. Marczewski, 4 general schems of the notions of independence in mathe-
matics, Bulletin de 'Académie Polonaise des Sciences, Série des Sciences Mathéma-
tiques, Astronomiques et Physiques, 6 (1958), p. 731-736.
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a,b are independent, we have also f(a) # b, whence f(a) = ¢. By sym-
metry, f(b) =c¢. Hence f(a) = f(b), econtradicting the independence
of a,b.

Proof of the theorem. Let 4 and J C 24 satisfy the above assum-
ptions. If J = {@}, then our task is to construct an algebra on 4 which
has no independent elements at all. This can be done as follows. As there
are at least two elements 0, 1e4, we can define an operation f(z) on A4
by putting f(0) =1, f(x) =« for & # 0, and another operation g(z)
such that g(1) = 0 and ¢g(#) = @ for # # 1. Then we have, for each =,
either f(z) = @ or g(z) = @, or both. Hence # cannot be independent in
the algebra (4;f, g) because this would imply that one of these equa-
lities hag to hold identically.

Suppose now that some non-empty set belongs to J. Let m >1
be the greatest integer such that there is a set with m elements in J,
or let m be infinity. § being non-empty, we can pick out one element
0ef. Since §—{0} containg at least as many elements as J—{@}, there
is a one-to-one mapping ¢ of J—{@} into §—{0}. Using this mapping
we define operations fi(my), fa(®y, %2)y «ovy fu(®@1y o0y @), ... for all inte-
gers 7 which do not exceed m as follows:

g{y, ...y @} if all a; ave different and {ay,..., a,}ed,

Jul@yy ooy

a'n) = .

0 in all other cases.

We note that none of these operations assumes identically the value 0.
An operation assuming the value 0 on any number of arguments will
also be needed and we shall denote it by f.,. It is easily seen that we have
always fu(@y ...y a,)eS i n < m.

For integers k satisfying m < &
rations fr(wy, ..., %) as follows:
a, if @48 (i =1, ...,

’ a’k) = .
0 in all other cases.

< iy (if such exist) we define ope-

k), and all a; are different,

Fulas .

Since there are at least & elements in 4— 8, we have f, # f.. It is
also clear that fi(wq, ..., ;) does not assume identically the value .
It is now our assertion that the algebra we need is

A = (4; for f1s fos )3
that is to say, X C 4 is a set of independent elements in =/ if and only
if Xed.
; First we note that if {a,,..., a,}¢J, then a,,..., a, are dependent
in «. This is trivially so if r < m, for then f.(a;,...,a,) = 0 = fo(as,...
-y ay), Whereas f, #f.. If r >m and r < 4— 8, then we have either
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Fel@yy oooy @) = Fo(q, .. ,a,) as before, or fy(ay, ..., 4,) = a,, and hence
the dependence of ay,.. . Finally, if » > A— 8, then one of the
elements ay, ..., a, must belnng to 8, say a;eS, and we have fi(a;) =0
= fm (a;). This proves that a; is dependent in & and consequently
Gy, ..., 0, aTe dependent.

For the remaining part of our proof we need to determme, for every
n < m, the class A™ of all operations of » variables in «/. We call the
operations f., fi(@1), fal#y, By), ... fundamental. A® is; by definition,
the smallest class such that

(*) all identity operations e;(wy,...,

2)=x, 1=1,...,n, belong
to A™,
() if f, i3 a fundamental operation, » < oo, and hy eA™ j=1,...,7
then
fr(hl(mly vy @a)y oy Bp(Bry ony mn))eA("),
(50)  froeA®™.

Now let C, be the class of those operations h{s,,...,®,) Wwhich
either coincide with one of the e; (¢f. (*)) or else satisfy an identity of
the form

(1) R(@yy ey @) = fol@y, .oy )  for all @y, ..., 2,ed,

where 1< oo and 4y, ..., f7¢{l, ..., n} are fixed. We shall prove that if

~n < m, then C, =A™,

First it is clear that both (+x) and (+++) hold for C,. So we have to
verify still that C, is closed with respect to taking combinations such as
required by (*+). To do this we assume that f, (r < c0), is a fundamental
operation and hy, ..., hye C,. Then it is obvious that if all h; are identity
operations, then f,(h, ..., k) is of the form (1) and thus belongs to C,.
If at least one of the %; is not an identity operation, thus being of the
form (1), then all values attained by this operation lie in 8. This follows
from fi(#;; ..., @;) =0e8 if 1 >n (for then ab least two among the
variables &; , ..., ¥; must be identical), and from the fact that filwiyy ..

..,mil)eS for all values of By eees By if 7<n < m. Therefore we have
in this case f(hy, ..., k) = 0. Henece this operation belongs to C,.

To complete the proof of the theorem we have to show that
{@y5+++y By} ed, n < m, implies the independence of ay, ..., a,. Suppose
that {a,, ..., a,}eJ and let there be two operations g, heA™ for which

(2) (@1 ey @) = h(@y; ..y Gp).

We have to show that ¢ = h. As n does not exceed m, we have here
A®™ = (C,, whence ¢ is either an identity operation, or it is of the
form (1), and similarly h. Now it is true that if one of them is an
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identity operation, then so is the other, for it should be noted that
6;(@y ..., 8,) = a;¢8 while the values attained by operations of the form
(1) are always in § (a8 shown above). Certainly g = ¢; and b = ¢; implies
7 = j and then we have g = h. In all other cases we may assume that h
is given by (1) and similarly

(3 . g(@1y ooy o) = fr (2,

where 7 < 00, jiy ...y fre{l, ..., n}

It is easily seen that if an operation h of the form (1) satisfies
h(@yy ...y @) = 0, where {ay, ..., a,}eJ, then either I = co or gome num-
ber occurs at least twice in the sequence 4,, ..., 4. In both cases we have
identically h(#y, ..., #,) = 0. The same being true for g, the appearance
of 0 in (2) implies g(wy, ..., %,) =0 = h(®2y, ..., @,).

...,w,r),

It g(ay,...,a,) = h(ay,...,a,) #*0, then we must have I,r<n
(ef. (1), (3)) and, by n < m,
(4) fl(a'ily ey O) = q{“ila oy tigdy
fr(a’ju ey @) = Q{ahv seey “f,-}’

It follows mow from the one-to-one property of the mapping ¢, by
q), (2),' (3) fmd (4) that {'hl, ey @y} ={ay, ..., @, }. Hence I=r,
{i1y .y} ={j1; .-, jv} and, again by (1) and (3), ¢ = h. This completes
our proof.
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REMARKS ON THE CARTESIAN PRODUCT OF TWO GRAPHS
BY

L. SZAMKOLOWICZ (WROCLAW)

1. In paper [4] H.S. Shapiro introduced a mnotion of the Cartesian
product G, X @, of two graphs. F. Harary in his paper [2] (see also [3])
introduced a notion of the composition Gy * G, (we write G * @, instead
of Harary’s notation G,[G,], according to the associativity of this opera-
tion) of two graphs. These notions for connected graphs are special cases
of a more general notion of the Cartesiam product of two graphs with
metrics. In the present note we shall study this product under some
natural assumptions concerning these metrics, namely those of [1] (p. 630).
We shall prove that under these assumptions our product coineides with
G, X Gy or G+ G,y

2. Definitions. A pair (¥, o), where N is & finite or infinite set, is
said to be an NS-space if o(z,y) is a function defined on the whole N
whose values are non-negative integers such that

10 o(w,y) =0 if and only if » =y,

20 o(w,y) = oy, @),

° o(®,y)+e(y, 2) > elo, 2),

40 If o(w,y) = n(n > 1), then there exists an element z¢N such
that o(z,2) =1 and ¢(z,y) = n—1.

The Cartesian product of two NS-gpaces <(Ny, g;> and (N, > We
define as an NS-space (N,XN,, ¢), where N, XN, is the set of ordered
pairs (@,¥), ®<N, yeN,, with the metric o defined by

o[(®y, 41) 5 (@2, 2)] = fLo1 (%15 @a)y 0a(Y1y ¥e)] = Ik, m),

b = 01(®1, Bs), M = 03(41, Ya)y @1, B2eN1, Y1, YaeN,, where f is & fune-
tion whose values are non-negative integers and satxsﬁes the following
conditions (see [1], p. 630):

(1) f(k, m) = f(m, k)

for all non-negative integers m, %,
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