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1. Introduction. Let U = (4A;F) be an abstract algebra, i.e. a set
A of elements and a class F of fundamental operations. Every f from F
is a function of several variables which associates with each system ,
Xy, ..., s, of elements of A an element f(z, #,,...,%,) belonging to A.
¥ F = {fy,fa;---s fu} Wwe often write (4;fi, fa, ..., fr) instead of (4; F).
We denote by A®™ () the class of all algebraic operations of n variables,
i. e. the smallest class of operations containing all identity operations

1) BN @y, Bay vvy @) =2, (B=1,2,..., %)

and closed under the compogsition with the fundamental operations. The
clags of all algebraic operations will be denoted by A4 (2). Two algebras
A = (A;F) and U = (4; F) having the same class of algebraic opera-
tions will be treated here as identical. Further, if A (A)C A(U), we say
that 2 is a subsystem of Y.

We shall call the identity operations (1) also trivial operations. If
all algebraic operations are trivial, then the algebra will be called trivial.

Let us consider an n-element subset I = {ay, dy, ..., a,} of 4. We
say that I is a set of independent elements, or else that all elements of
I are independent if for any f, gcA™(20) the equaliby f(a, @y, ..., a,)
= g(@y, G, - .-, 4,) implies the identity of f and ¢ in A. The properties
of the notion of independence are given in [1] and [2].

All elements of a trivial algebra are obviously independent. 8. Swier-
czkowski has proved that for algebras having at least three elements
the converse implication is true: if all elements are independent, then the.
algebra is trivial ([8], p. 501, and [6], Theorem 1). In a recent note [3],
using a complete characterization of two-element algebrag given by
Post [4], we described non-trivial two-element algebras in which all
elements are independent. Namely, denoting by S the class of all such
algebras, with fixed elements 0 and 1, we proved that .# consists of three
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algebras, P, P and P* (defined below). In this paper we present a com-
plete proof of the result quoted. The proof involves some of Post’s ideas
ag presented in [4]; however, no particular result of [4] is explicitly used.
We hope that this will be appreciated by the reader, the more so as the
reagonings in [4] are rather complicated.

In what follows we shall consider algebras possessing only the ele-
ments 0 and 1. The set T = {0, 1} can be regarded as a Boolean algebra
with 0 as a neutral element. By |, (M, ' and ~ we denoto the olementary
Boolean operations: joint, meet, complementation and symmetric sub-
traction. A T-valued operation f-of n variables running over 7 ig gaid
to be Romogeneous if for every mapping 7 of T into itself the equality

f(T(w1)7 T(@a)y - ey 7(“%)) = T(f(,wn Loy caey 41).,,,))

holds. Bince each mapping of T' info itself iy a composition of two map-
pings 2 — @’ and @ —~ 0 (z<T), an operation f is homogeneous if and only if

(2) f(wlya"'zy-'wwn)=f/(a";;w;7"'awvll)
and
(3) F(0,0,...,0) =0.

For an arbitrary abstract algebra it was proved in [1] (p. 733) that
I is & set of independent elements if and only if each mapping of I into
4 can Dbe extended to a homomorphism of the subalgebra generated by
I into A. Applying this result to the algebras in question we get the fol-
lowing statement:

The elements 0 and 1 of an algebra U are independent if and only if
all algebraic operations from A(™U) are homogencous.

It is very easy to verify that the only operations of two variables
satisfying conditions (2) and (3) are trivial ones. Furthermore, it is obvious
that the triviality of all operations of two variables implies the indepen-
dence of the elements 0 and 1. Consequently, the elemenis 0 and 1 are in-
dependent if and only if each operation from AP () is trivial.

2. The algebras P, P* and P. We define three T-valued non-
trivial operations p,, p* and p of three variables running over 7' by the
following conditions:

(4) Pl 8, 9) = pal@, Yy, 0) = puly, 0, 2) =y,
(5) PH@, 3, y) = p*(w, 9y, %) = p*(y, v, a) =,
(6) Pl 3,y) =a, plo,y,o) =ply,a,a) =y.
The three algebras
Pu=(T;p0), P*=(T59%, P=(T;p)
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were considered by Post [4]. It follows directly from (4), (5), (6) and from
the definition of algebraic operations of two variables that all these
operations in the three algebras considered are trivial. Thus P, P*,
Pes. Further, from the formulas

lp*(w’ Y5 2) =p(p(w, ¥, 2), p(2,2, ?/)7"”),
(M) l *(977’3/,3’)=1”(~’”;?/:P(m;?/,z))7
( IRK: ) = P*(“‘: Y, _’p*(.’l?, Y, 3))
we get the equality P = (T; p«, p*). Consequently, the algebras P.
and P* are subsystems of the algebra P.
We shall now describe the structure of the algebras Pu, P* and P.

Algebra P,. The fundamental operation p. can be expressed in
terms of the symmetric difference as follows:

(8) Px(%,y,2) = @—y—=.
Hence we infer that the class A(Px) consists of all operations f of the form

y By) = oy, = By e = By,

fley, @, ...
Jo<... <ju<n ond k is an odd integer.

Algebra P+ The fundamental operation p* can be defined by means
of the joint and the meet -operations as follows:

9) ., P, 9,2) = (ZnY) v

Hence we infer that all algebraic operations from A4 (P*) can be expres-
sed in terms of the operations  and ~. Now we shall prove that the
class A(P)* consists of all homogeneous operations which can be empreesed
in terms of the operations o and ~.

We present the proof which is an adaptation of a part of paper [4]
by Post. In order to prove our statement it is sufficient to show that
every homogeneous operation which can be expressed in terms of the
operations w and ~ belongs to A(P*). Leb f be such an operation of n
variables. First we shall prove that for every pair a,, Gy ..y @, and
byy by, ...y by of systems of elements of T satisfying the condition

(10) Fay, oy ooy ) =1 =f(by, by, ..., By)

there exists an index % (1 <% < m) such that @, = b, = 1. Contrary
to this, let us suppose that a; ~ b; = 0 for all indices j (1 <j < n). In
other words, we have a; =1 whenever b, = 1. Since the operation I
can be expressed in terms of u and ~, we have, according to (10),
the equahty flaty a3, ..., a;) =1, which, by virtue of (2), implies
f(ay, @9, ..., 4,) = 0. But this contradicts (10).

where 1 < j; <

@~e)oyn~a2).
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TFormula (9) can be rewritten in the form p*(w,y,2) =@ ~ (y u2)
o (¥ ~#). Moreover, the compositions ¢, (m =2,3,...) defined by
formulas
a0y %1y Bg) = P*(Tos Tyy ),

G (Bgy Tyy vevy Bm) = P*(woy By m-1 (@) L1y o ovy mm,J)) (m >=3)

can be written in the form
n m

G gy By - vy B ) = (@ O }!l xy) :fq &y .
Lot gy Gagy ooy Gus (8 =1,2, ..., 1) be the family of all systems
of elements from 7T satisfying the condition f(ay,, tass ..oy tys) = 1.
By J, we denote the set of indices j for which a;, = 1. We have proved
that

(11) Jslmz7§29é0

Tet us introduce the following sequence fi, fy, ..., fr of compositions
of operations g, and trivial operations:

(1 < 84,8, <7).

ful@yy ®ay ooy @) = @;, Where jiedy,

vy 8) = {fer (@1, @ay s @) ~ U ) M
jedp jad g
Obviously, all the operations fi, fa, ..., fr belong to A(P*). More-
over, from (11) we get the equalities

fulty, B2y -- (2<k<).

1 =fs(a1,sa [CRYRERS) a’n,:s') = fi 11 (val,s’ Gygyeeey a’n,s) =
= fulln sy Gogy -y Upg) (8 = 1,2,...,7).

Tn other words, fu(Gy, @y, ..., a%) = 1 whenever f(a,, @, ..., &) = 1.
Since both operations are homogeneous, the last implication implies
the following ome: fy(@y, Gay ..., @,) = 0 whenever f(ay, as, ..., ;) = 0.
Thus f = f, and, consequently, feA(P*), which completes the proof.

Algebra P. We know that all algebraie operations from A(P)
are homogeneous. The converse implication is also true.. Namely, we shall
prove that the class A(P) vonsisls of all homogencous operations.

Now let f be a homogeneous operation of n variables. Since every
T-valned operation defined on 7 iy a Boolean polynomnial, we can write

[
(12) Af(lamaa ---5-7%) = U ﬂm‘,';.’",
(ia/ig,ensinlad Bm2

where J is a set of (n— 1)-tuples of 0’ and 1’s and &° = @', #* = (zeT).
Since, by (2) and (3), f(1,1,...,1) =1, the set J contains the (h—1)-
tuple (1, 1, ..., 1). Writing the operation p in terms of Boolean. operations

P(%%z)=(mﬁyr\Z)u(mnynz')u(m’nynz’)u(mny’nz’),

©
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we have p(l,¥, %) =1y 2. Hence we infer that for every &k-tuple
(Gvsjas -y du) (0,0, ...,0) the class A(P) contains an operation
91,4y, ... i, OF B+1 variables such that

k
Giggaodp(Ly By ooy Bp) = Ules"'
8=

Thus for every (n—1)-tuple (i5,%s,...,%) 7 (1,1,...,1) there exists
an operation hyy, ;, in A™(P) such that
n

hig,is,...,in(lj Lgy Bgy oovy Bp) = (k w}ck), .
=2

Further, from the equality p(y, 2, 1) = y ~ 2 it follows that there exists
an operation heA™(P) such that

n
h(1, %y, ..., 3,) = kﬂn .

Let J be the set appearing in (12). By a suitable composition of the
operations gy, 5, x5 Migsy,...5, A0A b We get an operation f; eA™(P) such that

n

fJ(.lymzy"'amn) = ) ﬂ m}ck'
(19,03, in) €T k=2

Hence and from (12) we obtain the equality f(1,@s,...,@,) =
fr(L, @g, ..., %), Whence, by virtue of the homogeneity of f and f7, the
equality f = f, follows. Thus fe A(P), which completes the proof.

3. Characterization of the class .#. We have seen that all the al-
gebras Pu, P* and P belong to . The complete description of this
class is given by the following

THEOREM. £ = {P., P*, P}.

Before proving the theorem we shall prove some lemmas. In what
follows the algebra 20 is supposed to belong to ..

LEMMA 1. One of the relations

AP Rl = A9(P), ADR) = AP,
holds.

Proof. Since A(P) consists of all homogeneous operations, we have
the inclusion A(A) C A(P) and, consequently,
(13) A®(U) 5 A9(D).

Tirst let us suppose that A®(2) contains a non-symmetric operation
f depending on every variable. Since operations of two variables are
trivial, each of the operations f(z, =, ¥y), f(2, v, s) and f(y, #, ) is equal
to either z or y. Further, by the non-symmetry of f, among these opera-

A9(2U) C AN(Py),

Colloquium Mathematicum IX,2 3
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tions there exist two different ones. Without loss of generality we may
suppose that
(14)

fle, 2, y) =, .f(my?/w’) =Y.

Since the operation f depends on the last variable, there exists
a system ay, @y, ag such that f(ay, as, as) # fay, @, ;). Consequently,
fly,«,y) #f(y,x, ), which together with (14) yields f(y, @, x) = y.
Taking into account formula (6), we have the equality f =p. Thus
A®(P) D A® (). Comparing this inclusion with (13), we get the equality
AP(U) = AD(P).

Now let ns suppose that each operation g from A® () depending
on every variable is symmetric. Then all operations g (2, «, ¥), g(x, ¥y, »)
and ¢(y, @, ©) are equal to either # or y. By (4) and (5) in the first case
we have the equality ¢ = p. and in the second gy = p*. Because of formula
(7) the class A®(2) contains exactly one of the operations p, and p*.
Thus we have either A®(A) = A®(P,) or AP (A) = A (P*).

Tinally, it A®(2A) does not contain any operation depending on
every variable, then all operations of three variables are frivial and,
of course, A9 () C A®(P,), which completes the proof.

Levma 2. If ADR) CA®(Py), then there ewists no operation in
AP (A) depending on every variable.

Proof. Contrary to this, let ug suppose that there existy an operation
f in A®(2) depending on every variable. First we shall prove the
equalities

(15) Ty, 9, =fly, s, =f,®,y,9) :f(muqu Yy ) = .

By the symmetry of our assumption it suffices to prove the last equality.
Since f depends on the first variable we can find a system a,, 6y, 4,3, @,
of elements of 7' such that f(a,, ay, 6, a)) 7 f(a1, Gg, g, 4y). Among
the elements a,, a,, o, at leagt two ave identical. Without loss of generality
we may suppose that a, = ay. Xence it follows that the operation
flz,y,y,2) depends on s. We know that the only operations in A9 (P,)

AR C AN Py), flo,y,9,2) =a o flo,y,y,2) =a-=y-z Ob-
viously, in both cases we have the equality f(x,y,y,y) ==&, which
completes the proof of (15).

From (15) it follows directly that the operations f(wy, @, @y, )
and. f(@,, £1, 5, ®,) depend on @, %, and x;, #, respectively. Since they
belong to A®(P.), we have the equalities

J(@1, @y, By B3) = @y By g,

F (@15 @1, B3y @) = By 034

icm
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From, the first equality we get (0, 0,1, 1) = 1 and from the second
one f(0,0,1,1) = 0, which is impossible. The Lemma is thus proved.

Levua 3. If A® () C A® (D), then every operation f from A™ ()
(n = 8) satisfies the equality

(16) F(@yy By Bay Bay «ovy By) = F(Br, Tuy @1y gy ooy @) +

= f(@1) Bay @1y Bay vy Bp) = [0y Tyy By Tyy ooy Ty)-

Proof. We shall prove this equality by induction on n. It is very
easy to verify (16) for trivial operations and for operations of the form
J(@1y @ay ooy ) = @y = @, — 2, (1 <y < Ja<js <m). Thus (16) holds
for all operations from A(P.) depending on at most three variables.
Hence, in particular, we get (16) for n = 3.

Now let us suppose that n > 4. Identifying in f(#,, ®,, ..., 2,) two
variables, #; and @, (4 <k < n), we obtain an operation f; of n—1
variables satisfying, by the induction assumption, equality (16). Since

Jrlyy @iy @1y ..0) = f(@1, B0,y @iy ovy By Bry pgry -y T,

Jul@iy oy @4,y ..
Tel@sy @i, @gy o) = f(@1y By Tay ooy Bpmry Bay Cppay «ny By

equality (16) holds for any system. a,, as, ..., a, of elements of 7' for
which at least one element a, (4 < k< n) is equal to a,. When a4, = a,
or a, = ag, equality (16) is obvious. It remaing to verify it in the case
ay #ay (k=2,3,...,n). Of course, in this case all elements a,, a5,..., a,
must be equal to one another. Identifying in f(x,, %,,...,%,) the variables
gy Bsy we get the operation g¢(zy,®,, s, x,) depending, by
Lemma 2, on at most three variables. But we know that every such
operation satisfies (16). Hence it follows that (16) holds also in the
case a, = a (k =2, 3,...,n), which completes the proof.

Proof of the theorem. Let 2 be an algebra from .#. First let us
consider the case A®(U) = A®(P). Then peA® () and, consequently,
A”) D A(P). We have proved that A(P) consists of all homogeneous
operations, which gives the converse inclusion. Thus 2l = P.

Now let us suppose that A®(2A) = A% (P*). Hence we obtain the

) =By Bay @iy ey Beo1s Tyy Bppry -0y By,

ooy Ty

“relation p*<A®(2). Consequently, ‘the inclusion

AR D AP

holds. In order to prove the converse inclusion it suffices to show that
every operation from A(2) can be expressed in terms of the operations
v and ~. Every operation f from A™(2) can be written in the form

A7) f(@ry @y ey @) = (wl ~ g(@sy Bgy -0y wn)) ) (m; A~ h(2y, @3, ..., mn))y
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where g and h are T-valued operations of the variables wy, @y, ..., s,

To prove our statement it suffices to show that g(ay, ay, ..., a,) =1
whenever h{ay, @, ..., 4,) = 1. Contrary to this let us suppose that
for a system a,, @gy ..., 0y,

(18) gy gy ovny ) =0 and  h(ay, dgy ..., a,) = 1.

Replacing in f(ay, s, ..., ®,) the variable 2, by @, the variables
#; by y if @; = 1 and the remaining variables by 2, we obtain an opera-
tion fy(®,y,2) belonging to A® () and, consequently, to AP,
Thus f, can be expressed in terms of v and ~. Ience it follows that
also the operation fy(z, 1, 0) can be defined by means of & and ~. But,
according to (17) and (18), fo(w, 1, 0) = &', which gives a contradiction,
The equality 2 = P* is thus proved.

Finally, by Lemma 1, the following case remains:

AD(RA) C AD(P,).

First we shall prove by induction on n that every operation from
A™(2() can be expressed in terms of symmetric difference. Tor n =3
this follows from (19). The passage from n to n -1 results from formula
(16), which shows that every operation from A™*'(2() is a symmetric
difference of three algebraic operations each of which depends on n variab-
les. Thus every operation fe A™(2() can be written in the form

(19)

f(wnmz, ceey By) = &Ly, = By, -~ .. - By

where 1 €<7j, <j,<... <7jr <n The integer % is odd because of the
equality f(z, %, ...,#) = ». Hence. we get the inclusion
(20) A(U) CA(Py).

Further, since 2e.f, there exists a non-trivial operation in A (2) of the
form @, — #, ~ ... — &, where o > 3." Identifying #,, #,, ..., z, we get,
according to (8), the fundamental operation p.. Thus p.eA(YU) and,
consequently, A(2)D A(Ps). Comparing this inclusion with (20) we
get the equality % = P,, which completes the proof of the Theorem.
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