through P_3, A_n, C_n tends to $R_n = \frac{1}{2}(1-\gamma)(1+\gamma) < \frac{1}{2}$ as $n \to \infty$. We have proved before that the radius of the circumference passing through P_3, A_n, B_n tends to $\frac{1}{2}$. Therefore the radius of the circumference passing through points P_3, P_2, P_1, P_1', where $P_2 \neq P_3$, $P_3' \neq P_1$, $P_2 \neq P_1$, has no limit as $P_1 \to P_3$, $P_3 \to P_5$. This completes the proof that curve I' does not possess the Alt curvature at P_5.

It is evident from (2), (7) that the curve I' has no osculatory plane at P_5.

REFERENCES

MATHAMATICIANS OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 24. 1. 1991

INFORMATION WITHOUT PROBABILITY

BY

R. S. INGARDEN AND K. URBANIEK (WROCŁAW)

1. Introduction. Since the first definition of the notion of information given in its full generality by C.E. Shannon in 1948 (1), many mathematical investigations have been concerned with this notion (2). The general tendency of these investigations (initiated by Shannon himself (3)) has been to separate the definition of information, say H, from the explicit formula

$$H = - \sum_{i=1}^{n} p_i \log p_i,$$

adopted by Shannon from statistical physics (Boltzmann's formula for entropy). Here p_i denotes the probability of the i-th elementary event ($i = 1, \ldots, n$; we consider first a finite, or at any rate discrete, probability scheme, convergence of the sum in the case $n = \infty$ being assumed). It was felt from the beginning that such a formula as (1) should be rather a result than a starting point of the theory. Moreover, some investigators, as e.g. Rényi (4), considered (1) as too narrow to cover all possible applications of information theory and tried to generalize this formula. Of course, to get such a generalization in a natural way, it is necessary to have an abstract definition of information, i.e. by means of a set of axioms (this set may be subsequently diminished by the generalization process). Many such sets of axioms have so far been proposed (5) and their consequences as well as mutual interrelations have been investigated. All axiomatic definitions of information known to the present authors are equivalent to formula (1) (except Rényi's general

(1) Cf. Shannon [11]. The numbers in square brackets refer to the list of literature given at the end of this paper, p. 149-150.
(2) Cf. St. E. Khintchine [6], Kolmogorov [4], Rényi [10], where further references may be found.
(3) Cf. [11], p. 392, and Appendix 2, p. 419.
(4) Cf. Rényi [10].
(5) Cf. Shannon [11], Khintchine [8], Fadeev [3], Rényi [10].
realization just mentioned) and all are essentially based on the notion of probability, i.e. the probability distribution of some set of events is considered as given.

Before we formulate our problem, let us discuss shortly the relation of information theory to probability theory. According to (1), the range of information theory is only a proper part of the range of probability theory, because of the impossibility of a direct application of (1) to the case of continuous probability distributions. In fact, transition in (1) from the sum to an integral is not unique (it depends on units chosen, cf. the discussion below). Naturally enough the question arises how to extend information theory to the continuous case. The first indication in this direction was given by Shannon (41) himself and his idea was subsequently developed by Kolmogorov (21). As is well known, stochastic events a, b, ... form a Boolean algebra, or ring (42), say A. Every subalgebra (subring) A, B, ... of A may be considered as a trial, e.g., a measurement of some physical quantity. We denote by a_i, b_j, ... elementary events (atoms) (43) of A, B, ..., respectively. If we have two trials A, B belonging to the same a, i.e. if we have two compatible trials (this condition is important in view of applications to quantum physics) and if both subalgebras are finite (or at least discrete, in the infinite case assuming convergence, as before) we may form the well-defined expression (44)

$$H(A, B) = \sum_{ij} p_{ij} \log \frac{p_{ij}}{p_i p_j}$$

where p_{ij} denotes probability of the event consisting in the result a_i of the first trial and the result b_j of the second one. Kolmogorov (21) generalized formula (2) for the case of arbitrary (in particular, continuous) A and B by putting

$$I(A, B) = \sup_{A \subseteq A', B \subseteq B'} H(A_1, B_1)$$

where the supremum is taken over all finite subalgebras A, C A and B, C B. If A and B are finite, then $I(A, B)$ is real and non-negative; in the general case it may take, besides, only the value $I = +\infty$. Since definition (3) covers all possible cases considered in probability theory, in contradiction to (1), some authors (45) try to base information theory on notion (3) only and not on (1). But such a radical point of view does not seem very rational, especially from the point of view of applications to physics. In fact, mathematical intuitions connected with (1) and (3) are rather different, in spite of the similarity of formulae (1) and (2) and of some inner relationship between the two notions. This may easily be seen by considering the list of principal properties of $I(A, B)$ (46):

1. $I(A, B) = I(B, A)$.
2. If A, B are stochastically independent, i.e. $p_{ij} = p_i p_j$ for all i, j.
3. $I(A_1, B_1) + I(A_2, B_2) = I(A_1, B_1) + I(A_2, B_2)$
4. If A, C A, then $I(A_1, B) \leq I(A, B)$.

In the light of these properties the description of $I(A, B)$ as: “the amount of information contained in the trial A with respect to the trial B” (47) does not seem very expressive. The term “correlational information” or “informational coefficient of correlation” between A and B (in contradistinction to, e.g. Pearson’s correlational coefficient) seems a more appropriate term, especially because of property 2. Such a meaning has rather little to do with the meaning of H (or $H(A)$) (1) which gives a measure of the degree of uncertainty associated with the trial A (this uncertainty corresponds roughly to dispersion in usual statistics, since we have just seen an approximate correspondence between $I(A, B)$ and statistical coefficients of correlation).

Let us see, however, whether it is possible to retain the intuitions connected with (1) for the continuous case, especially in view of their important applications in physics (48).

The problem is to define information not for two but for one trial (or, in a slightly different approach, not for two, but for one random variable, e.g., physical quantity). It may be remarked first that Kol-
mogorov's method of generalization from the finite to the general case is here useless. Indeed,

\[J_1(A) = \sup_{A' \subset A} H(A) \]

(where the supremum is taken over all finite subalgebras \(A' \subset A\)) is always infinite for continuous distributions, in contradiction to \(I(A, B)\) which may be finite in the latter case. Whereas (3) may be correctly written in this case as (14)

\[I(A, B) = \int_A \left(\int p(da, db) \log \frac{p(da, db)}{p(da)p(db)} \right) \]

the analogous expression

\[J(A) = -\int p(da) \log p(da) \]

is evidently incorrect and does not give \(J_1(A)\) (see (4)). Instead, the expression

\[H(I(A)) = \int p(da) \log \frac{q(da)}{p(da)} = \int q(a) \log \frac{s(a)}{q(a)} da \]

is correct and, in general finite (the latter if there exist "densities": \(q(a) \) and \(s(a) \) such that \(p(a) = q(a)da, q(a) = s(a)da \)). We may call \(H(I(A)) \) the relative information contained in the trial \(A \) with respect to the "grain distribution" \(q \) (or \(s \)) (14) in contradistinction to the absolute information \(H(A) \) in the finite (or discrete) case. Grain distribution \(q(a) \) is, alongside with \(p(a) \), the second measure defined on the Boolean ring \(A \). It may be considered either as a "distribution of our interest" (15) or as something objectively determined. An example of the latter case is the well-known entropy of (half-) classical statistical mechanics (11)

\[S = -\int \phi(P, Q) \log [h^N \phi(P, Q)] dP dQ, \]

(14) Cf. [8], p. 746.
(15) This notion is closely related to the expression \(I_2(\xi) \) defined by Vinnez [14], p. 683. The terminology "coarse grained entropy" and "fine grained entropy" is used in physics, e.g., Tolman [13]. Our term "relative information" should not be confused with the term "conditional information", e.g., cf. [8], p. 95, of the English translation.
(10) Cf. Vinnez [15], p. 683. Another physical example may be found in optics where entropy has been defined by Ingarden, cf. [9], p. 179 (we have there the wavelength \(\lambda \) of light instead of the constant \(h \) in (8)).

where \(P \) and \(Q \) denote, respectively, \(s \)-dimensional manifolds of momentum and position coordinates of the mechanical system (with \(s \) degrees of freedom) and \(h \) is the Planck action constant. In this case \(\sigma \) is constant and equal to \(\lambda^2 h^2 \), i.e., to the density of "elementary cells" in the phase space (or Heisenberg's "cells of uncertainty") (14).

As a further example of (7) we consider the important quantity

\[I(A) = -\int p(da) \log \frac{V_p(da)}{da} = -\int q(a) \log [V_p(a)] da, \]

where

\[V = \int da, \]

i.e., the volume of the continuous space considered. Now \(\sigma = V^{-1} \). Comparing (9) with (8) we may write

\[I(A) = J(A) - \log V; \]

i.e., \(I(A) \) represents the deviation of the "absolute information" \(J(A) \) from its maximal possible value (e.g., for physical systems occurring in the equilibrium state). This deviation is, according to (9), independent of the system of units used and gives, therefore, a well-defined quantity. Although the right-hand side of (11) is incorrect to the same degree as (6), it transmits the very idea that was the physical purpose for which Boltzmann introduced his famous "H"-quantity. In the finite case we may take instead of \(V \) (see (10))

\[N = \sum_{\alpha}^N \]

(11) and we get in place of (9)

\[I(A) = -\sum_{\alpha}^N p_{\alpha} \log [p_{\alpha}], \]

(13) which completes our general definition of the quantity \(I(A) \).

Summing up we may say that there are two fundamental informational notions, \(I(A) \) and \(I(A, B) \), which are uniquely determined in all the fields of probability theory, whereas quantities \(H(A) \) and \(H_I(A) \)

(14) If we take \(\sigma = 1 \times \text{unit of } \sigma^2 \), e.g., \(\sigma = 1 \text{ cm}^2 \text{-sec} \), we formally obtain formula (6), but the units chosen must be held in mind (which is frequently forgotten), and with \(\Delta_p(da) \) instead of \(p(da) \).
(15) Our \(-I(A) \) in (13) corresponds to \(I_\lambda \) considered by Vinnez [15], p. 682, as the "information of the system of events".
may be defined only in cases of discrete and continuous probability distributions, respectively. (In the sequel we shall consider only $H(A)$ and $I(A, B)$, which are historically as well as practically the most important. The others may be constructed in a similar way.)

Now we can formulate the central problem of our paper. It consists in the question whether the notion of information may or may not be separated not only from the formula (1), or (5), but also from the notion of probability itself. In other words: can probability theory be considered as a branch of information theory, and not vice versa, as has been held hitherto? The answer to this question is positive and we shall show below how it is possible to define probability by means of the notion of information. The situation is in a high degree analogous to that regarding the notion of mathematical expectation (expectation value). Expectation value may be defined by means of probability distribution, and vice versa, probability distribution may be constructed (by the solution of the s.e. momentum problem) from some expectation values.

The possibility of reversing the hitherto-usual direction of deduction seems interesting not only from a purely logical and mathematical point of view, but also from the point of view of the philosophy of mathematical and physical notions. Indeed, information seems intuitively a much simpler and more elementary notion than that of probability. It gives more a cruder and global description of some situations (physical or other) than probability does. Therefore, information represents a more primary step of knowledge than that of cognition of probabilities, just as probability description is cruder and more general than deterministic description. Furthermore, a principal separation of notions of probability and information seems convenient and useful from the point of view of statistical physics. In physics there prevail situations where information is known (e.g. entropy of some macroscopic system) and may be measured with a high degree of accuracy, whereas probability distribution is unknown and practically cannot be measured at all (since the number of degrees of freedom of such systems is of the order 10^{40}). A more detailed discussion of this physical problem is given in a separate paper (3), which in other respects is a summary of the present one. Finally, it may be remarked that a new axiomatic definition of information, free of the inessential connection with probability, clears the way for possible future generalizations of this notion.

2. Preliminary notions. Boolean rings will be denoted by A, B, C, ..., their elements by a, b, c, In this paper we shall consider non-trivial Boolean rings only, i.e. rings which contain at least one element different from 0. Moreover, non-trivial subrings will be briefly called subrings.

Let \mathfrak{R} be a class of finite Boolean rings satisfying the following conditions:

(*) If $A \in \mathfrak{R}$ and B is a subring of A, then $B \in \mathfrak{R}$.

(**) For any $A \in \mathfrak{R}$ there exists a ring $B \in \mathfrak{R}$ such that A is a proper subring of B.

Let F be a real-valued function defined on \mathfrak{R}. We say that two rings A and B from \mathfrak{R} are F-equivalent, in symbols $A \cong F B$, if there exists an isomorphism φ of A onto B such that $F(C) = F(\varphi(C))$ for any subring C of A. Obviously, the class \mathfrak{R} is decomposed into disjoint sets of F-equivalent rings.

For any pair A and B of isomorphic rings from \mathfrak{R} we put

$$\varphi_F(A, B) = \min_{C \subseteq A} \{ F(C) - F(\varphi(C)) \}$$

where C is running over all subrings of A and F over all isomorphisms of A onto B. It is easy to verify that the function φ_F defined for any $A, B \in \mathfrak{R}$ by means of the equality

$$\varphi_F(A, B) = \begin{cases} 1 & \text{if } A \text{ and } B \text{ are non-isomorphic,} \\ \frac{1}{1 - \varphi_F(A, B)} & \text{if } A \text{ and } B \text{ are isomorphic} \end{cases}$$

makes \mathfrak{R} a pseudometric space (4). Moreover, $\varphi_F(A, B) = 0$ if and only if A and B are F-equivalent.

A ring A from \mathfrak{R} is said to be F-homogeneous if for every automorphism φ of A and for every subring B of A we have the equality $F(B) = F(\varphi(B))$.

Let $a \in A$ and $a \neq 0$. By $a \cong A$ we shall denote the subring of A consisting of all elements of A which are contained in a.

Lemma 1. Let A be an F-homogeneous ring from \mathfrak{R} and $a \in A$, $a \neq 0$. Then the subring $a \cong A$ is also F-homogeneous.

Proof. Let y be an arbitrary automorphism of $a \cong A$. Setting $y_0(b) = y(a \cong b) \cup (b \setminus a)$ we get the extension of y to an automorphism y_0 of the whole ring A. For any subring B of $a \cong A$ we have the equality $F(B) = F(y_0(B)) = F(\varphi(B))$, which implies the F-homogeneity of $a \cong A$.

Let a_1, a_2, \ldots, a_n be a system of elements of a ring A and A_1, A_2, \ldots, A_n be a system of subrings of A. By $[a_1, a_2, \ldots, a_n, A_1, A_2, \ldots, A_n]$
we shall denote the least subring of A containing all elements a_1, a_2, \ldots, a_n and all subrings A_1, A_2, \ldots, A_k. For any $A \subseteq \mathcal{C}$, 1_A will denote the unit element of A, i.e., an element such that $1_A \cdot a = a$ for every $a \in A$. The existence of the unit element of a finite Boolean ring is evident; it is simply the union of all atoms.

Lemma 2. Let A be an F-homogeneous ring from \mathcal{F} and let a_1, a_2, \ldots, a_n be a system of disjoint elements of A such that $a_k \cdot a_{j+k} = 1_A$ and

$$a_i \cdot A \supseteq a_j \cdot A \quad (j, k = 1, 2, \ldots, n).$$

Then the subring $[a_1, a_2, \ldots, a_n]$ is also F-homogeneous.

Proof. Let ψ be an arbitrary automorphism of $[a_1, a_2, \ldots, a_n]$. For any index j there exists an index j' such that $\psi(a_j) = a_{j'}$ ($j = 1, 2, \ldots, n$). From the assumption (14) it follows that there exists an isomorphism φ_j of $a_j \cdot A$ onto $a_{j'} \cdot A$ such that $\varphi_j(C) = \varphi_j(\psi(C))$ for any subset C of $a_j \cdot A$. Setting for any $a \in A$

$$\varphi_0(a) = \varphi_j(a \cdot a_1) \cup \varphi_j(a \cdot a_2) \cup \ldots \cup \varphi_j(a \cdot a_n)$$

we get the extension of ψ to an automorphism φ_0 of A. Hence, for every subring B of $[a_1, a_2, \ldots, a_n]$ we have the equality $\varphi_0(B) = \varphi_0(\psi(B)) = \varphi_0(\varphi(B))$. Thus the subring $[a_1, a_2, \ldots, a_n]$ is F-homogeneous.

By \mathcal{H}_F we shall denote the class consisting of all F-homogeneous rings from \mathcal{F} and their subrings.

A real-valued function F on \mathcal{H} is said to be regular if \mathcal{H}_F is a dense subset of the pseudometric space \mathcal{H}, i.e., for any $A \in \mathcal{H}$ there exists a sequence A_1, A_2, \ldots of rings belonging to \mathcal{H}_F such that $\lim_{n \to \infty} d(A_n, A) = 0$.

In the sequel by $\mathcal{N}(A)$ we shall denote the number of atoms of the ring A.

3. Definition of information. Now we shall give the definition of information. A real-valued regular function H defined on \mathcal{H} is called information if it has the following properties:

I. Connection between information of rings and their subrings. Let $A \in \mathcal{H}$ and let a, b be a pair of disjoint elements of A, $a \neq 0, b \neq 0$. Setting $A_1 = a \cdot A$, $A_2 = b \cdot A$, $A_2 = (a \cdot b) \cdot A$, $A_3 = [a, (1_A \setminus a) \cdot A]$, $A_4 = [a, (1_A \setminus b) \cdot A]$, $A_5 = [a, (1_A \setminus a \cdot b) \cdot A]$, $A_6 = (a \cdot b, (1_A \setminus a \cdot b) \cdot A]$, we have the equality

$$H(A) - H(A_3) H(A_4) H(A_5) = (H(A) - H(A_3)) H(A_4) H(A_5) + (H(A) - H(A_3)) H(A_4) H(A_5).$$

II. Local character of information. Let $A, B \subseteq \mathcal{H}$ and A_1, B_1 be a pair of subrings of A and B, respectively, such that $A_1 \supseteq B_1$ and

$$[A_1 \cap A, 1_A \setminus 1_{A_1}] \supseteq [B_1 \cap B, 1_B \setminus 1_{B_1}].$$

Then, setting $A_2 = [A_1 \setminus 1_{A_1}], A_3 = [B_1 \setminus 1_{B_1}, B_2 = [B_1 \setminus 1_{B_1}, B]$. We have the equality

$$H(A) - H(A_2) = H(B) - H(B_2).$$

III. Monotonicity. If B is a proper subring of A, then $H(B) < H(A)$.

IV. Indistinguishability. Isomorphic H-homogeneous rings are H-equivalent.

V. Normalization. If $\mathcal{N}(A) = 2$ and A is H-homogeneous, then $H(A) = 1$.

Remark. We shall show how it is possible to define correlational information $I(A, B)$ for arbitrary rings A, B (not necessarily finite), which are subrings of a ring C, by means of the notion of information defined above. Namely, for any pair A_1, B_1 of subrings of a ring from \mathcal{H} we put

$$H(A_1, B_1) = H(A_1) + H(B_1) - H(A_1, B_1).$$

Further, for any pair A, B of subrings of an arbitrary Boolean ring C (not necessarily finite) such that every finite subring of C belongs to \mathcal{H}, we put

$$I(A, B) = \sup_{A_1 \subseteq A, B_1 \subseteq B} H(A_1, B_1),$$

where, as in (3), the supremum is taken over all finite subrings A_1, B_1 of A and B, respectively.

4. Connection between information and probability. We can now state the following fundamental theorem.

Theorem. Let H be an information on \mathcal{H}. Then for every $A \in \mathcal{H}$ there exists one and only one strictly positive probability measure p_A defined on A such that

$$p_B(b) = \frac{p_A(b)}{p_A(1_B)} \quad (b \in B),$$

for every subring B of A and

$$H(A) = - \sum_{a \in A} p_A(a) \log p_A(a),$$

where in the base of the logarithm is 2 and a_1, a_2, \ldots, a_n are all the atoms of A.

It is easy to verify that for any family $p_n(A \times \mathcal{X})$ of strictly positive-probability measures satisfying (16), the function defined by (17) satisfies conditions I-V. The H-homogeneous rings coincide with the rings having uniform probability distribution.

The proof of the Theorem will be carried out in a series of Lemmas in which all Boolean rings are supposed to belong to \mathcal{X}. Since information is a regular function, every ring from \mathcal{X} is isomorphic to a subring of an H-homogeneous ring $A \times \mathcal{X}$ such that $N(A) \geq n$. Hence, by Lemma 1, there exists an H-homogeneous subring A_n of A satisfying the equality $N(A_n) = n$.

Lemma 3. If $N(A) = 1$, then $H(C) = 0$.

Proof. It is clear that all one-atomic rings are H-homogeneous and, consequently, by property IV of information, are H-equivalent. Let A be a two-atomic H-homogeneous ring with the atoms a and b. Let A_1, A_2, A_3, and A_4 have the same, which, according to (15), implies the equality $H(A_2) = H(A_3) = N(A_4) = 0$. But A_4 is a proper subring of A and, by property III, $H(A_4) < H(A)$. Thus the last equality implies the assertion of the Lemma.

Lemma 4. Let A be an H-homogeneous ring and a_1, a_2, b_1, b_2 a system of disjoint elements of A such that $a_1 \wedge a_2$, $b_1 \wedge b_2 = 1$, $a_1 \wedge A \supseteq a_2 \wedge A$ and $b_1 \wedge A \supseteq b_2 \wedge A$. Then

$$H([a_1, b_1]) = H([a_2, b_2]) = H([a_1, a_2, b_1, b_2]).$$

Proof. Let c_1, c_2, \ldots, c_k and d_1, d_2, \ldots, d_k be the systems of all atoms of the rings $(a_1 \wedge b_1) \wedge A$ and $(a_2 \wedge b_2) \wedge A$, respectively. We may assume that $c_1 = c_2 = \ldots = c_k = b_1 = c_1 = \ldots = c_k = b_2 = d_1 = \ldots = d_k = b_2$. By Lemma 1, the ring $(a_1 \wedge b_1) \wedge A$ is H-homogeneous. Further, by Lemma 3, all the rings $(c_i \wedge d_i) \wedge A$, $(c_i \wedge d_i) \wedge A$, $i = 1, 2, \ldots, k$ are H-homogeneous. Since they are two-atomic rings, we have, in virtue of property IV

$$(c_i \wedge d_i) \wedge A \supseteq (c_i \wedge d_i) \wedge A \supseteq (c_i \wedge d_i) \wedge A.$$

Hence, by Lemma 2, the ring $(a_1 \wedge b_1) \wedge A$ is H-homogeneous. Both rings $(a_1 \wedge b_1) \wedge A$ and $(c_1 \wedge d_1) \wedge A = (c_2 \wedge d_2) \wedge A = \ldots = (c_k \wedge d_k) \wedge A$ are k-atomic. Consequently, according to IV

$$(a_1 \wedge b_1) \wedge A \supseteq (c_i \wedge d_i) \wedge A \supseteq (c_i \wedge d_i) \wedge A.$$

We now define an isomorphism ψ of $(a_1 \wedge b_1) \wedge A$ onto $[a_1 \wedge d_1, c_1 \wedge d_1, \ldots, c_k \wedge d_k]$ by the equality $\psi(q_0) = c_0 \wedge d_0(j = 1, 2, \ldots, k)$. Taking into account the H-homogeneity of both rings we get the equality

$$H(A) = H([a_1, b_1]) = N(a \wedge A) N(A)$$

for any subring B of $(a_1 \wedge b_1) \wedge A$. The equality $\psi([a_1, b_1]) = [a_1 \wedge a_2, b_1 \wedge b_2]$ completes the proof of the Lemma.

Lemma 5. For any H-homogeneous ring A and any element $a \in A$ ($a \neq 0$) the equality

$$H(A) = H([a, (\lambda \cdot a) \wedge A]) + \frac{N(a \wedge A)}{N(A)} H(a \wedge A)$$

holds.

Proof. First let us suppose that $N(a \wedge A) = 1$. Then, by Lemma 3, $H(a \wedge A) = 0$ and the assertion of the Lemma is a direct consequence of the equality $A = [a, (\lambda \cdot a) \wedge A]$. Now let us assume that $N(a \wedge A) \geq 2$. By Lemma 1, $a \wedge A$ is an H-homogeneous ring and, consequently, contains a two-atomic H-homogeneous subring. Thus, according to III, IV and V, $H(a \wedge A) \geq 1$, from H-homogeneity of A it follows that

$$H([a, (\lambda \cdot a) \wedge A]) = H([a, (\lambda \cdot a) \wedge A])$$

and $H(a \wedge A) = H(a \wedge A)$, whenever $N(a \wedge A) = N(a \wedge A)$. Thus the expression

$$H(A) - H([a, (\lambda \cdot a) \wedge A])$$

depends only on $N(a \wedge A)$ and $N(a)$. Let us denote the expression (18) by $f(N(a \wedge A), N(a))$. To prove our Lemma it is sufficient to show that

$$f(k, n) = \frac{k}{n} (k = 2, 3, \ldots; n = 2, 3, \ldots).$$

Since $\lambda = 1, 1, 1, 1, \lambda \cdot a, (\lambda \cdot a) \wedge A \wedge A = 1$, we have $N([1, 1, 1, 1, \lambda \cdot a \wedge A]) = 1$, which, in view of Lemma 3, implies $H([1, 1, 1, 1, \lambda \cdot a \wedge A]) = 0$. In other words, we have proved the equality

$$f(n, n) = 1 (n = 2, 3, \ldots).$$

Now let a and b be a pair of disjoint elements of A such that $N(a \wedge b) \geq 2$ and $N(b \wedge A) \geq 2$. Setting $A_1 = a \wedge A$, $A_2 = b \wedge A$, $A_3 = (a \wedge b) \wedge A$, $A_4 = [a, (\lambda \cdot a) \wedge A]$, $A_5 = [b, (\lambda \cdot b) \wedge A]$, $A_6 = \ldots = [a \wedge b, (\lambda \cdot a \wedge b) \wedge A]$, we have the equalities

$$f(N(a \wedge A), N(A)) = H(A) - H(A),$$

$$f(N(b \wedge A), N(A)) = H(A) - H(A),$$

$$f(N(a \wedge b) \wedge A, N(A)) = H(A) - H(A).$$
Thus, dividing both sides of equality (15) by $H(A_2)H(A_3)H(A_4)$, we obtain the formula

$$f(N((a \cup b) \cap A), N(A)) = f(N(a \cap A), N(A)) + f(N(a \cup A), N(A)).$$

Finally, taking into account the equation $N((a \cup b) \cap A) = N(a \cap A) + N(b \cap A)$, we get the equality

$$f(b_1 \cup b_2, n) = f(b_1, n) + f(b_2, n), \quad \text{whenever} \quad b_1 \geq 2, \quad b_2 \geq 2$$

and

$$b_1 + b_2 \leq n.$$

Let $n \geq 6$. Setting $f(2, n) = 2p$ we have, in view of (21), $f(0, n) = 3f(3, n)$ and $f(6, n) = 3f(2, n) = 6p$, which implies $f(3, n) = 3p$. Every integer $k \geq 2$ can be expressed in the form $k = 2r + 3s$, where $r = 0, 1, 2, \ldots$ and $s = 0, 1$. By (21), we have the equality

$$f(k, n) = rf(2, n) + rf(3, n) = (2r + 3s)p = kp \quad (k = 2, 3, \ldots, n).$$

Hence and from (20) we get $np = 1$ and, consequently,

$$f(k, n) = \frac{k}{n} \quad (k = 2, 3, \ldots, n; \quad n = 6, 7, \ldots).$$

Thus, for $n \geq 6$ equality (19) is proved.

Before proving the last equality for $n < 6$ we shall prove some auxiliary formulæ.

Let B be an H-homogeneous ring and a_1, a_2, b_1, b_2 be a system of disjoint elements of B such that $N(B) = 2$, $N(a_1 \cap B) = N(a_2 \cap B) = n - 1$, $N(b_1 \cap B) = N(b_2 \cap B) = 1$ and $n \geq 3$. From (23) it follows that

$$f(N((a \cup b) \cap B), N(B)) = f(n, 2n) = \frac{n}{2}.$$

Hence, by the definition of the function f, we get the equality

$$f(N((a \cup b) \cap B), N(B)) = H(B) + \frac{n}{2}H((a \cup b) \cap B).$$

The ring $C = (a \cup b) \cap B$ is a subring of both rings B and $D = (a \cup b, a \cup b \cup c)$. Since $[1_C, 1_B \setminus 1_C] = D = [1_B \setminus 1_D, 1_B \setminus 1_C]$, we have, in view of property II of information,

$$H(C) = H((a \cup b) \cap B), a \cup b \cup c) = H(D) - H((a \cup b, a \cup b \cup c)).$$

From the equality $N((a \cup b) \cap B) = N((a \cup b) \cap B)$ and from H-homogeneity of B we obtain the relation $[a \cup b, a \cup b] \subseteq [a \cup b, a \cup b \cup c]$. Thus

$$H(D) = H([a \cup b, a \cup b]) = H(([a \cup b, a \cup b]) = H([a \cup b, a \cup b]).$$

Moreover, the rings $(a \cup b \cup c) \cap B$ and $(a \cup b \cup c) \cap B$ are H-equivalent. Using Lemma 2, we infer that these two-atomic $[a \cup b, a \cup b \cup c]$ is H-homogeneous and, by property V of $H((a \cup b, a \cup b \cup c)) = 1$. Hence and from (23), (24) and (25) we obtain the formula

$$H(B) = H((a \cup b) \cap B) + 1.$$
Hence and from (26), (23) and (29) we get the formula

\[H([a_1 \lor a_2, b_1 \lor b_2]) = H([a_1 \lor a_2, b_1 \land B]) - \frac{n-1}{n} H(a_1 \land B). \]

By Lemma 4 we have

\[H([a_1, b_1]) = H([a_1 \lor a_2, b_1 \lor b_2]). \]

Finally, setting \(A = (a_1 \lor b_1) \cap B \), we have \(N(a_1 \land A) = n-1 \), \(N(A) = n \), \([a_1, (1_A \land a_1) \land A] = [a_1, b_1] \) and, according to (30) and (31)

\[f(N(a_1 \land A), N(A)) = \frac{n-1}{n}. \]

Thus we have proved the equality

\[f(n-1, n) = \frac{n-1}{n} \quad \text{for} \quad n \geq 3. \]

Now we shall prove equality (19) for \(n = 2, 3, 4, \) and 5. From (20) and (32) we get \(f(2, 3) = 1 \), \(f(2, 3) = \frac{3}{2}, \) \(f(3, 3) = 1 \), \(f(3, 4) = \frac{3}{2} \)

\(f(4, 4) = 1, \) \(f(4, 5) = \frac{5}{4} \) and \(f(5, 5) = 1 \) by equality (21), \(2f(2, 4) = \frac{5}{4} \)

\(f(4, 4) = \frac{3}{2}, \) \(f(2, 5) = \frac{5}{4} \) and \(f(3, 5) = \frac{5}{4} \). Hence \(f(2, 4) = \frac{3}{2}, \) \(f(2, 5) = \frac{5}{4} \) and \(f(3, 5) = \frac{5}{4} \), which completes the proof of the Lemma.

Lemma 7. Let \(A \) be an \(H \)-homogeneous ring and let \(b_1, b_2, \ldots, b_n \) be a system of disjoint elements of \(A \) such that \(b_k \neq 0 \) for \(k = 1, 2, \ldots, n \), and \(b_1 \lor b_2 \lor \ldots \lor b_n = 1_A \). Then

\[H([b_1, b_2, \ldots, b_n]) = \frac{1}{N(A)} \sum_{k=1}^{n} N(b_k \land A). \]

Proof. Let us introduce the notation

\[B_k = A \setminus B_k = \{ b_1, b_2, \ldots, b_k, (1_A \land (b_1 \lor b_2 \lor \ldots \lor b_k)) \land A \}. \]

\[A_k = B_k \setminus B_{k-1} = \{ b_k, (1_A \land b_k) \land A \}. \]

By Lemma 5, we have the equality

\[H(A) = H(A_k) + \frac{N(b_k \land A)}{N(A)} H(b_k \land A) \quad (k = 1, 2, \ldots, n). \]

Let us consider the rings \(A \) and \(B_{k-1} \) \((k = 1, 2, \ldots, n) \). The ring \(C_k = b_k \land A \) is a subring of both \(A \) and \(B_{k-1} \). It is easy to see that

\[A_k \setminus A = \{ b_1, b_2, \ldots, b_k \}, \]

\[A_k \setminus B_{k-1} = \{ b_{k-1}, b_k \}, \]

\[A_k \setminus C_k = \{ b_1, b_2, \ldots, b_{k-1} \}. \]

Thus, by property II of information

\[H(A) - H(A_k) = H(B_{k-1}) - H(B_k) \quad (k = 1, 2, \ldots, n). \]

Hence and from (34) we get the equalities

\[H(B_{k-1}) - H(B_k) = \frac{N(b_k \land A)}{N(A)} H(b_k \land A) \quad (k = 1, 2, \ldots, n), \]

which imply

\[H(A) - H([b_1, b_2, \ldots, b_n]) = H(B_0) - H(B_n) = \sum_{k=1}^{n} \frac{N(b_k \land A)}{N(A)} H(b_k \land A). \]

Taking into account the equality

\[\sum_{k=1}^{n} \frac{N(b_k \land A)}{N(A)} = 1, \]

we obtain formula (33).

Lemma 8. Let \(A \) be a ring from \(N(A) \geq 3 \) and let \(p_1 \) and \(p_2 \) be two strictly positive probability measures on \(A \). If for any triplet \(a_1, a_2, a_3 \) of disjoint elements of \(A \) satisfying the condition \(a_1 \lor a_2 \lor a_3 = 1_A \) we have the equality

\[p_1(a_1) p_2(a_2) + p_1(a_2) p_2(a_3) + p_1(a_3) p_2(a_1) = p_1(a_1) p_2(a_1) + p_2(a_2) p_2(a_2) + p_1(a_3) p_2(a_3), \]

then \(p_1 = p_2 \).

Proof. Contrary to this statement let us suppose that there exists an atom \(a \in A \) such that

\[p_1(a) \neq p_2(a). \]

Consider the triplet \(a_1 = a, a_2 = 1_A \setminus a, a_3 = 0 \). Then

\[p_1(a) p_2(a) + (1 - p_1(a)) (1 - p_2(a)) = p_1(a) p_2(a) + (1 - p_2(a)) (1 - p_1(a)). \]

Since the function \(x \log x + (1 - x) \log (1 - x) \) is convex and symmetric with respect to \(x = \frac{1}{2} \), the last equality and (35) imply

\[p_1(a) = 1 - p_2(a). \]

(36) We define the indeterminate form \(0 \cdot \log 0 \) as having the value zero.
Since $N(A) \geq 3$, there exist two disjoint elements b and c such that $b \neq 0, c \neq 0$ and $b \lor c = 1_A \setminus a$. First let us assume that $p_1(b) = p_1(c)$ and $p_1(e) = p_2(e)$. Then we have the equality

$$p_1(a) = 1 - p_1(b) - p_1(c) = 1 - p_2(b) - p_2(c) = p_4(a),$$

which contradicts inequality (35). Consequently, $p_1(b) \neq p_1(c)$ or $p_1(e) \neq p_2(e)$. By symmetry, we may suppose that $p_1(b) \neq p_2(b)$. Now identical reasoning to that which led to equality (39) gives $p_1(b) = 1 - p_2(b)$. Hence and from (38), according to the strict positivity of p_1, we get

$$p_1(c) = 1 - p_1(a) - p_1(b) - p_1(c) = p_4(a) + p_2(b) - 1 = -p_2(c),$$

which is impossible. The Lemma is thus proved.

Proof of the theorem. We know that the class \mathcal{K} contains a sequence C_1, C_2, \ldots of H-homogeneous rings such that $N(C_n) = n$ $(n = 1, 2, \ldots)$. Put $L(n) = H(C_n)$ $(n = 1, 2, \ldots)$. Let a be an atom of C_{n+1}. Then, by Lemma 1, the ring $(1_{C_{n+1}} \setminus a) \cap C_{n+1}$ is H-homogeneous and, of course, n-atomic. Thus, by property IV of information, $(1_{C_{n+1}} \setminus a) \cap C_{n+1}$ $\equiv C_n$, which implies

$$H((1_{C_{n+1}} \setminus a) \cap C_{n+1}) = L(n).$$

Since $(1_{C_{n+1}} \setminus a) \cap C_{n+1}$ is a proper subring of C_{n+1}, we have, in virtue of (37),

$$L(n) < L(n+1) \quad (n = 1, 2, \ldots).$$

Now let a_1, a_2, \ldots, a_m be a system of disjoint elements of C_{n+1} such that $a_1 \lor a_2 \lor \cdots \lor a_m = 1_{C_{n+1}}$ and

$$N(a_j \cap C_{n+1}) = n \quad (j = 1, 2, \ldots, m).$$

Obviously, $a_j \cap C_{n+1} \equiv q_j \cap C_{n+1}$ $(j, k = 1, 2, \ldots, m)$ and, by Lemma 2, the ring (a_1, a_2, \ldots, a_m) is H-homogeneous and, by (38), n-atomic. Thus

$$H(a_j \cap C_{n+1}) = L(n) \quad (j = 1, 2, \ldots, m).$$

Using Lemma 7, we obtain the relation

$$H([a_1, a_2, \ldots, a_m]) = \sum_{k=1}^{m} \frac{N(a_k \cap C_{n+1})}{N(C_{n+1})} \left[H(C_{n+1}) - H(a_k \cap C_{n+1})\right].$$

Hence, in view of (38), (39) and (40), we have the equation

$$L(m) - L(n) = L(n-m) \quad (n, m = 1, 2, \ldots).$$

It is well known [34] that every solution of this equation satisfying condition (37) is of the form $L(n) = \mu \log n$, where μ is a positive constant. By property VI, $L(1) = L(2) = \mu$. Thus

$$L(n) = \log n.$$

Now let A be an H-homogeneous ring and B_a its subring. Assume that $l_A = l_A$ and denote by b_1, b_2, \ldots, b_n all the atoms of B_a. Obviously, $B_a = \{b_1, b_2, \ldots, b_n\}$ and, by Lemma 1, all the rings $b_j \cap A$ ($j = 1, 2, \ldots, n$) are H-homogeneous. Thus, by (41), we have

$$H(A) = \log N(A), \quad H(b_j \cap A) = \log N(b_j \cap A) \quad (j = 1, 2, \ldots, n).$$

Further, applying Lemma 7, we get

$$H(B_a) = \sum_{k=1}^{n} H(b_k \cap A) - \log N(B_a) \quad (n).$$

We define a probability measure p_{B_a} on B_a by means of the formula

$$p_{B_a} = \frac{N(a \cap A)}{N(A)} (a \in B_a).$$

It is easy to verify that if B_a is a subring of $C \cap \mathcal{K}$, then

$$p_{B_a}(a) = \frac{p_0(a)}{p_0(1_{B_a})} (a \in B_a).$$

Moreover, by (42),

$$H(B_a) = -\sum_{b \in B} p_B(b) \log p_B(b),$$

where b_1, b_2, \ldots, b_n are atoms of B_a. Thus we have defined a probability measure p_B for any ring B_a from \mathcal{K} in such a way that equalities (16) and (17) hold.

Now let A be an arbitrary ring from \mathcal{K} and $N(A) \geq 3$. By regularity of information, there exists a sequence A_1, A_2, \ldots of rings belonging

[34] Cf., e.g., (31), p. 9, 10.
to \mathcal{F} such that $\lim_{r \to \infty} p_{\mathcal{H}}(A_r, A) = 0$. We may assume that $q_H(A, A) < 1$, i.e., the rings A and A_r ($r = 1, 2, \ldots$) are isomorphic. By the definition of q_H for every integer r there exists an isomorphism φ_r of A_r onto A such that for any subring B of A

$$\lim_{r \to \infty} H[\varphi_r^{-1}(B)] = H(B).$$

Let a_1, a_2, \ldots, a_ν be the system of all atoms of A. We shall prove that for any j ($j = 1, 2, \ldots, \nu$) the sequence

$$p_{\mathcal{H}}[\varphi_r^{-1}(a_j)]$$

is convergent. Since the sequence (46) is bounded, each of its subsequences contains a convergent subsequence. Denoting the limit of such a subsequence by $p(a_j)$, we have $\sum_{j} p(a_j) = 1$ and $p(a_j) > 0$ ($j = 1, 2, \ldots, \nu$).

Moreover, setting $p(a_1 \cup a_2 \cup \ldots \cup a_\nu) = \sum_{j} p(a_j)$ ($a_s \cap a_m = 0$ if $s \neq m$), from (43), (44) and (45) we get the equality

$$H(a_1, b, c) = -p(a_1)\log p(a_1) - p(b)\log p(b) - p(c)\log p(c),$$

where a, b, c is an arbitrary triplet of disjoint elements of A and $a \cup b \cup c = 1_A$. Hence, by Lemma 8, $p(a)$ is the limit of any convergent subsequence of (46). Thus, the sequence (46) itself is convergent to $p(a)$. Setting for any element $a = a_1 \cup a_2 \cup \ldots \cup a_\nu$ ($a_s \cap a_m = 0$ for $s \neq m$)

$$p_{\mathcal{H}}(a) = \sum_{j} p(a_j),$$

we get a probability measure on A such that, according to (44) and (45),

$$H(A) = -\sum_{j} p_{\mathcal{H}}(a_j)\log p_{\mathcal{H}}(a_j).$$

Moreover, for any subring B of A the formula

$$p_B(b) = \frac{p_{\mathcal{H}}(b)}{p_{\mathcal{H}}(1_B)}$$

determines a probability measure on B such that, according to (43), (44) and (45),

$$H(B) = -\sum_{j} p_B(b_j)\log p_B(b_j),$$

where b_1, b_2, \ldots, b_μ are atoms of B. Hence and from property III, it follows that all the measures $p_{\mathcal{H}}$ are strictly positive. Thus we have defined probability measures for any ring A satisfying the inequality $N(A) \geq 3$ and for any its subring. These probability measures satisfy conditions (16) and (17), and, consequently, by (16), every probability measure on a subring B of A is uniquely determined by the probability measure on A. By (**), the class of all rings A from \mathcal{F} satisfying the inequality $N(A) \geq 3$ and all their subrings coincide with the whole class \mathcal{F}. Thus to prove the uniqueness of $p_{\mathcal{H}}(A \in \mathcal{F})$ it is sufficient to prove this for rings satisfying the condition $N(A) \geq 3$. But the last statement is a direct consequence of Lemma 8. In fact, for any triplet a_1, a_2, a_3 of disjoint elements of such a ring A satisfying the equality $a_1 \cup a_2 \cup a_3 = 1_A$, we have

$$H([a_1, a_2, a_3]) = -p_{\mathcal{H}}(a_1)\log p_{\mathcal{H}}(a_1) - p_{\mathcal{H}}(a_2)\log p_{\mathcal{H}}(a_2) - p_{\mathcal{H}}(a_3)\log p_{\mathcal{H}}(a_3).$$

On the other hand, for every probability measure $\tilde{p}_{\mathcal{H}}$ on A satisfying (16) and (17) we have the same equality:

$$H([a_1, a_2, a_3]) = -\tilde{p}_{\mathcal{H}}(a_1)\log \tilde{p}_{\mathcal{H}}(a_1) - \tilde{p}_{\mathcal{H}}(a_2)\log \tilde{p}_{\mathcal{H}}(a_2) - \tilde{p}_{\mathcal{H}}(a_3)\log \tilde{p}_{\mathcal{H}}(a_3).$$

Consequently, in view of Lemma 8, $p_{\mathcal{H}} = \tilde{p}_{\mathcal{H}}$. The Theorem is thus proved.

Added in proof. The term “informational coefficient of correlation” (see p. 153) was also proposed by E. H. Lin-but in his paper An informational measure of correlation, Information and Control 1 (1957), p. 85-59.

REFERENCES

ON PAIRS OF INDEPENDENT RANDOM VARIABLES
WHOSE QUOTIENTS FOLLOW SOME KNOWN DISTRIBUTION

BY

J. KOTLARSKI (WARSAW)

1. Introduction. Some important probability distributions encountered in mathematical statistics are defined as probability distributions of a quotient of two independent random variables. So are the distributions of Student as well as those of Fisher's variance ratios. A question suggests itself if the distributions of nominators and denominators of the quotients in question are determined uniquely, up to a multiplication by a constant factor or to a passage to reciprocals of the random variables involved by the distribution of the quotient. The simplest problem is connected with the Cauchy distribution, the probability density of which is

\[\frac{1}{\pi} \frac{1}{1 + x^2} \quad (-\infty < x < \infty). \]

It turns out to be the distribution of a quotient of two independent random variables having the same normal distribution symmetrical about zero, or, in other words, to be Student's distribution with one degree of freedom. This problem has been studied by Mačdon [7], Laha [4, 5, 6], Steck [8], Kotlarski [3] to the effect that there is no such uniqueness – there are many non-normal distributions symmetrical about zero such that a quotient of two independent random variables having such distribution has Cauchy distribution. Another case – where nominators and denominators have gamma distributions – has been considered by Mačdon [7]. He has shown that also in this case there is no uniqueness of the above mentioned kind and thus has shown the ambiguity phenomenon for Fisher's, or, as some say, Snedecor's F distributions.

In this paper we are considering the more general case of quotients $U = \frac{X_1}{X_2}$, where X_1 and X_2 are independent random variables having gamma distributions and u_1, u_2 are real numbers not equal to 0.