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through Py, 4, 0, tends to Ry = $(1—»)/(1+y) <} a8 n— co. We have
proved before that the radius of the circumference passing *through
P,, Ay, B, tends to }. Therefore the radius of the circumference passing
through points Py, Py, Py, where P, el Pyel’y Py # Py, Py # Py, Py % ‘Pg_,
has no limit as P, - Py, Py - P,. This completes the proof that curve I’
does not possess the Alt curvature at Py.

1t is evident from (2), (7) that the curve I" has no oseulatory plane
at Py.
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1. Introduction. Since the first definition of the notion of informa-
tion given in its full generality by C.E. Shannon in 1948 (1), many
mathematical investigations have been concerned with this notion (2).
The general tendency of these investigations (initiated by Shannon
himself (°)) has been to separate the definition of information, say H,
from the explicit formula

k(3
(1) H=— > pjlogp;,
i=1
adopted by Shannon from statistical physics (Boltzmann’s formula for
entropy). Here p; denotes the probability of the i-th elementary event
(¢ =1,...,n; we consider first a finite, or at any rate discrete, proba-
bility scheme, convergemce of the sum in the case n = co being assu-
med). It was felt from the beginning that such a formula as (1) should
be rather a result than a starting point of the theory. Moreover, some
investigators, as e. g. Rényi(*), considered (1) as too narrow to cover
all possible applications of information theory and tried to generalize
this formula. Of eourse, to gat such a generalization in a natural way,
it is necessary to have an abstract definition of information, i.e. by
means of a set of axioms (this set may be subsequently diminished in
the generalization process). Many such sets of axioms have so far been
proposed (5) and their consequences as well as mutual interrelations have
been investigated. All axiomatic definitions of information known to
the present authors are equivalent to formula (1) (except Rényi’s gene-

(*) Ci. Shannon [11]. The numbers in square brackets refer to the list of lite-
rature given at the end of this paper, p. 149-150.

(®) Cf.,, e.g., Khintchine [8], Feinstein [4], Rényi [10], where further refe-
rences may be found.

() Cf. [11], p. 892, and Appendix 2, p. 419.

(% Cf. Rényi [10].

(%) Cf. Shannon [11], Khintehine [8], Faddeev [3], Rényi [10].
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ralization just mentioned) and all are essentially based on the notion of
probability, i. e. the probability distribution of some set of events is
considered as given.

Before we formulate our problem, let us discuss shortly the relation
of information theory to probability theory. According to (1), the range
of information theory is only a proper part of the range of probability
theory, because of the impossibility of a direct application of (1) to the
case of continuous probability distributions. In fact, transition in (1)
from the sum. to an integral is not unique (it depends on units chosen,
¢f. the discussion below). Naturally enough the question arises how to
extend information theory to the continuous case. The first indication
in this direction wag given by Shannon (°) himself and his idea was sub-
sequently developed by Kolmiogorov (7). As is well known, stochastic
events a, b, ... form a Boolean algebra, or ring (!), say a. Every sub-
algebra (subring) 4, B,... of a may be considered a8 a trial, e.g.,
a measurement of some physical quantity. We denote by a, by, ... ele-
mentary events (atoms)(®) of 4,B,..., respectively. If we have two
trials 4, B belonging to the same g, i. e. if we have two compatible trials
(this condition is important in view of applications to guantum physics)
and if both subalgebras arve finite (or at least discrete, in the infinite
cage assuming convergence, as before) we may form the well-defined
expression (°)

@) H(4,B) = Y pylog 2L,
(%3 DiP;

where p; denotes probability of the event consisting in the result a; of

the first trial and the result b, of the second one. Kolmogorov (7) genera-

lized formula (2) for the case of arbitrary (in particular, continuous)

A and B by putting

sup
1C4 LB

where the supremum is taken over all finite subalgebras 4, C A and

(3) : I(4A, B) =, BH(A“ B,),

(%) Cf. [11], Appendix 7, p. 855.
(?) Cf. Gelfand, Kolmogorov and Yaglom [5].
(&) Cf., e.g., Sikorski [12], p. 2, 46. The point of view ol Boolean algebras is
connected rather with set theory, that of Boolean rings rather with algebra, bul
both are equivalent (in some sense, although in another sense they ore slightly diffe-
rent). In the sequel we shall use the ring point of view as a little more convenient for
our purposes. Boolean operations (used by us explicitly) will be denoted as follows:
union (joint) of elements by v, intersection (meet) hy ~, difference (ordinary, non-
symmetrie) by N . 0 will denote the zero element.

(*) An element aed is said to be an atom of A provided a # 0 and every ele-
ment bed contained in a (bca, i.e, bua ==a or bna = b) is equal either to a or
$o 0.
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B;CB. If 4 and B are finite, then I(4, B) is real and non-negative;
in the general case it may take, besides, only the value I = -oco. Since
definition (3) eovers all possible cases considered in probability theory,
in contradistinetion to (1), some authors () try to base information
theory on notion (3) only and not on (1). But such a radical point of view
does not seem very rational, especially from the point of view of appli-
cations to physics. In fact, mathematical intuitions connected with (1)
and (3) are rather different, in spite of the similarity of formulae (1)
and (2) and of some inner relationship between the two notions. This

may easily be seen by considering the list of principal properties of
I(4,B)(%1):

1. I(4, B) = I(B, 4),

2. I(4,B) = 0 whenever 4 and B are stochastically independent,
e, py = p;p; for all ¢, 4.

3. If (4,,B,) and (4,,B,) are stochastically independent, then
[((AU Az)y (Bn Bz)) = I(An B1)+I(-Az7 Ba):

4. If A, C A, then I(4,,B) <I(4,B).

In the light of these properties the description of I(4, B) as: “the
amount of information contained in the trial A with respects to the
trial B”('2) does not seem very expressive. The term “correlational in-
formation” or “informational coefficient of correlation” between 4 and B
(in contradistinction to, e.g. Pearson’s correlational coefficient) seems
& more appropriate term, especially because of property 2. Such a mean-
ing has rather little to do with the meaning of H (or H(4)) (1) which
gives a measure of the degree of uncertainty connected with the trial A
(this uncertainty corresponds roughly to dispersion in usual statistios,
since we have just seen an approximate correspondence between I(4, B)
and statistical coefficients of correlation).

Let us see, however, whether it is possible to retain the intuitions
connected with (1) for the continuous case, especially in view of their
important applications in physics (12).

The problem is to define information not for two but for one trial
(or, in a slightly different approach, not for two, but for one random
variable, e. g., physical quantity). It may be remarked first that Kol-

(1% Cf. [2], p. 4. Also Shanmon [11] writes at the beginning of Appendix 7.
p. 655: “The following will indicate a more general and more rigorous approach to
the central definitions of communication theory.”

(1) Cf. [5], p. 746, or [2], . 30.

@2) Cf. [5], p. 745.

(13) Cf., e. g., Brillouin's presentation [1].
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mogorov’s method of generalization from. the finite to the general case
is here useless. Indeed,
(4) J1(4) = sup H(4)

4ycd .
(where the supremum is taken over all finite subalgebras A,C 4) is
always infinite for continuous distributions, in contrary to I(4, B) which
may be finite in the latter case. Whereas (3) may be correctly written
in this case as (1)

- _ _plda, db)
(5) I(4,B) = Jﬂfp(da, @)log s
the analogous expression
(6) J(4) = — [ p(da)logp(da)
A4

is evidently incorrect and does not give J,(4) (see (4)). Instead, the ex-
pression

{

f o(a)
(

o(a)log—=da

_ q
) Ho(4) = [ p(dalog | o

da)
da)
is correct and, in general finite (the latter if there exist “densities”: o(a)
and o(a) such that p(a) = g(a)da, q(a) = o(a)da). We may call H,(4)
the relative information contained in the trial A with respect to the
“grain distribution” ¢ (or o) (1%) in econtradistinction to the absolute infor-
mation H(4) in the finite (or discrete) case. Grain distribution g(a) is,
alongside with p(a), the second measure defined on the Boolean ring 4.
It may be considered either as “a distribution of our interest” (1*) or as
something objectively determined. An example of the latter case is the
well-known entropy of (half-) classical statistical mechanics (17)

(8) 8= —[o(P, Q)log[# (P, Q)1dPAQ,

(1) Cf. [5], . 745.

(%) This notion is closely related to the expression Iy(&) defined by Vincze
[14], p. 683. The terminology “coarse grained entropy” and “fine grained entropy”
is used in physics, ef.,, e.g., Tolman [13]. Our term “relativo information” should
not be confused with the term “conditional information”, cf., e. g., [8], p. B, of the
English translation. '

(16) C£. Vineze [15], p. 682.

(*") Cf. Landau and Lifschitz [9], p.39. Another physical example may be
found in opties where entropy has been defined by Ingarden, cof. [6], p. 179 (we have
there the wave length 1 of light instead of the constant A in (8)).
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where P and ¢ denote, respectively, s-dimensional manifolds of momen-
tum and position coordinates of the mechanical system (with s degrees
of freedom) and h is the Planck action constant. In this case ¢ is con-
stant and equal to %~% i. e. to the density of “elementary cells” in the
phage space (or Heisenberg’s “cells of uncertainty”) (18).

As a further example of (7) we consider the important quantity

Vpia) | _
0 114 = ~ [[paaos| | = ~ [ et@rogtvetends
where
(10) V = [da,
A

i. e. the volume of the continuous space considered. Now o = V~'. Com-
paring (9) with (6) we may write

(11) I(4) = J(4)—1log V;

i.e. I(A) represents the deviation of the “absolute information” J(4)
from its maximal possible value (e.g. for physical systems occurring
in the equilibrium state.) This deviation is, according to (9), independent
of the system of units used and gives, therefore, a well-defined quantity.
Although the right-hand side of (11) is incorre¢t to the same degree
ag (6), it transmits the very idea that was the physical purpose for which
Boltzmann introduced his famous “H.”-quantity. In the finite case we may
take instead of V (see (10))

(12)

and we get in place of (9)

1(4) = — > pilognp; = H(4)—logn (1),

=1

(13)

which completes our general definition of the quantity I(4).

Summing up we may say that there are two fundamental informa-
tional notions, I(4) and I(4, B), which are uniquely determined in all
the fields of probability theory, whereas quantities H(A4) and H,(A4)

(18) If we take ¢ = 1 X units of a1, e. g o = 1 em—3 ete., we formally obtain
formula (6), but the units chosen must be held in mind (which is frequently forgot-
da
ten), and with —1'1% instead of p(da).

(1% Our —I(4) in (18), corresponds to I, considered by Vineze [15], p. 682,
as the “information of the system of events”.
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may be defined only in cases of discrete and continuous probability
distributions, respectively. (In the sequel we shall consider only H(4)
and I(4, B), which are historically as well as practically the most im-
portant. The others may be constructed in a similar way.)

Now we can formulate the central problem of our paper. It con-
sists in the question whether the notion of information may or may not
be separated not only from the formula (1), or (b), but also from the
notion of probability itself. In other words: can probability theory be
congidered 25 a branch of information theory, and not vice versa, as
has been held hitherto? The answer to this question is positive and we
shall show below how ifi is possible to define probability by means of the
notion of information. The situation is in a high degree amalogous to
that regarding the notion of mathematical expectation (expectation.
value). Expectation value may be determined by means of probability
distribution, and viee versa, probability distribution may be constructed.
(by the solution of the s.c. momentum problem) from some expectation
values.

The possibility of reversing the-hitherto-usual direction of deduction
seems interesting not only from a purely logical and mathematical point
of view, but also from the point of view of the philosophy of mathema-
tical and physical notions. Indeed, information seems intuitively a much
simpler and more elementary notion than that of probability. It gives
more a cruder and global description of some situations physical or other)
than probability does. Therefore, information represents a more primary
step of knowledge than that of cognition of probabilities (just as pro-
bability deseription is cruder and more global than deterministic deserip-
tion). Furthermore, a principal separation of notions of probability and
information seems convenient and useful from the point of view of sta-
tistical physics. In physics there prevail situations where information.
is known (e. g. etnropy of some macroscopic system) and may be mea-
sured with a high degree of accuracy, whereas probability distribution
ig unknown and practically cannot be measured at all (since the number
of degrees of freedom of such systems is of the order 1022). A more
detailed discussion of this physical problem is given in a separate paper (),
which in other respects is a snmmary of the present one. Finally, it may
be remarked that a new axiomatic definition of information, froe of the
inessential comnection with probability, clears the way for -possible
future generalizations of this notion.

2. Preliminary notions. Boolean rings will be denoted by 4, B,
0, ..., their elements by a, b, ¢,....In this paper we ghall consider non-

(20) Cf. Ingarden and Urbanik [7].
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trivial Boolean rings only, i. e. rings which contain at least one element
different from 0. Moreover, non-trivial subrings will be briefly called
subrings. )

Let o be a class of finite Boolean rings satisfying the following
conditions:

(*) If des# and B is a subring of 4, then Bes#t.

(#+) For any A e there exists a ring Bes# such that 4 is a proper
subring of B.

Let F be a real-valued function defined on 2. We say that two
rings 4 and B from 5# are F-equivalent, in symbols A~»B, if there exists
an isomorphism ¢ of 4 onto B such that F(C) = Flg(0)) for any sub-
ring ¢ of A. Obviously, the class # is decomposed into disjoint sets of
F-equivalent rings.

For any pair 4 and B of isomorphic rings from # we put

op(4,B) = minmgXlF(C)—lf’(tp(G‘))i,
e
where ( is running over all subrings of A and ¢ over all isomorphisms
of A onto B. Tt is easy to verify that the function op defined for any
4, Bes# Dby means.of the equality

1 if 4 and B are non-isomorphic,

Sp(d,B) o . .
20 if 4 and B are isomorphic
1+ dp(4, B)

er(4, B) =

makes o a pseudometric space (21). Moreover, gr(4, B) = 0 if and only
if A4 and B are F-equivalent.

A ring A from 2 is said to be F-homogeneous if for every automor-
phism y of A and for every subring B of 4 we have the equality
F(B) = Flyp(B)).

Let aed and o = 0. By a~ A we shall denote the subring of 4 con-
sisting of all elements of 4 which are contained in a.

LeMMA 1. Tet A be an F-homogencous ring from H# and acd, a # 0.
Then the subring a~ A is also F-homogeneous.

Proof. Let y be an arbitrary automorphism of o~ A. Setting
wo(b) = p(a~ ) w (b a) we get the extension of y to an automorphism y,
of the whole ring 4. For any subring B of a~ 4 we have the equality
F(B) = F(y,(B)) = F(p(B)), which implies the F-homogeneity of a~ 4.

Let ay, s, ..., 6, be a system of elements of a ring 4 and 4., 4,, ...
...y Ay be o system of subrings of A. By [y, Gay -ovy Gny Ayy Agy oony Ai]

(?1) Pseudometric g(w,y) differs from the metric only in the absence of the
assumption that g(x,y) = 0 implies the equality » = y.
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we shall denote the least subring of A containing all elements a,, a,, ..., a,
and all subrings 4., 4,,..., 4;. For any 4 ei#, 1, will denote the unit
element of 4, i.e. an element such that 1, a =a for every aeA. The
existence of the unit element of a finite Boolean ring is evident; if is
simply the union of all atoms.

LEmMmA 2. Let A be an F-homogeneous ring from 52 and let a,, a,,
..y Gy be a system of disjoint elements of A such that aywayv~...va, =1,
and .

(14) bndgand (j,k=1,2,..,m).

Then the subring [ay, tgy ..., a,] 48 also F-homogencous.

Proof. Let ¢ be an arbitrary automorphism of [ay, ay,..., ]
For any index j there exists an index % such that y(a) =
(j=1,2,...,n). From the assumption (14) it follows that there existé
an isomorphism ¢; of a;~ A onto ;™ A such that F(0) = F(p(0)) for
any subring C of a;~ A. Setting for any acd

Yo(@) = ¢i(a N ay) Y gy(aay) @ ..V (e ay)

we get the extension of ¢ to an automorphism yp, of A. Hence, for every
subring B of [y, @y,..., @,] We have the equality F(B) = I'(y,(B)
= F(p(B)). Thus the subring [ay, as, ..., a,] is F-homogeneous,

By #’p we shall denote the class consisting of all F-homogeneous
rings from 5 and their subrings.

A real-valued function F on 5 is said to be regular if #p is a dense
subset of the pseudometric space ##, i. e. for any A4 < there exists a se-
quence 4, 4,, ... of rings belongmg to #p such that hm gF (Ay, 4) = 0.

. Ijil the sequel by N (4) we shall denote the number of atoms of the
ring A.

. 3. D.efinition of information. Now we shall give the definition of
information. A real-valued regular fumction H defined on # is called in-
formation if it has the following properties:

I. Connection between information of rings and their
subrings. Let 4« and let a,b be a pair of disjoint eloments of 4,
a5 0, b3 0. Settmg A1_~amA Az.«bmA Ady= (@aub)~A, A=
[0, (La\ @)~ 4], Ay = [b, (LN D)~ 4], Ay = [av, (1N (60 B) ~ 4],
we have the equality

(18)  (H(A)—H (4,))H(A4,)H (4,)
= (B(A)—H (4,)) H (A4, H(A;)+ (H(A)—H(A)) H (4,) H(4,).
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II. Loeal character of information. Let 4, Bes# and 4., B,
be a pair of subrings of A4 and B, respectively, such that 4, B, and

Ly~ 4,11l 15~ B, 1s\15].

Then, setting A, = B, = [1z,, (1z\1p,) " Bl
1 1

we have the equality
H(A)—H(Ao) = H(B)—H(By).

III. Monotoneity. Tf Bis a proper subring of 4, then H(B) < H(4).

IV. Indistinguishability. Isomorphic H-homogeneous rings are
H-equivalent.

V. Normalization. Tf N(4) = 2 and 4 is H-homogeneous, then
H(4) =1. '

Remark. We shall show how it is possible to define correlational
information I(4,B) for arbitrary rings 4, B (not necessarily finite),
which are subrings of a ring ¢, by means of the notion of information
defined above. Namely, for any pair 4,, B, of subrings of & ring from #’
we pub

[lAI; (14\1.41) nA4],

H(Al’ By) = H(-A1)+H(B1)“H([A17 By]).

Further, for any pair 4, B of subrings of an arbitrary Boolean ring ('
(not necessarily finite) such that every finite subring of O belongs to #,
we put

I(A,B)= sup H(4,,Bi),

4,c4,B,cB
where, as in (3), the supremum is taken over all finife subrings A, By
of A and B, respectively.

4. Connection between information and probability. We can now
state the following fundamental

TEEOREM. Let H be an information on #. Then for every Aest there
ewists one and only one strictly positive probability measure p, defined
on A such that
p4(b)
(16 b) = -

) . 25(b) 22 (15)

(beB),
for every subring B of A and

— D) pale;)logp.lay),

j=1

an H(4) =

werre here and henceforth the base of the logarithm is 2 and @y, Ggy -.vy Oy
are all the atoms of A.
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It is easy to verify that for any family p.(4 < 2#) of strietly positive
probability measures satisfying (16) the function defined by (17) satisties
conditions I-V. The H-homogeneous rings coincide with the rings having
uniform probability distribution.

The proof of the Theorem will be carried out in a series of Leminas
in which all Boolean rings are supposed to belong o #. Since informa-
tion is a regular funetion, every ring from J# is isomorphic to a subring
of an H-homogeneous ring from 7. Consequently, according to (w),
for any integer = there exists an H-homogeneous ring 4 es#” such that
N(A) = n. Hence, by Lemma 1, there exists an H-homogeneous gub-
ring 4, of A satisfying the equality N(4,) = n.

TemmA 3. If N(C) =1, then H(C) = 0.

Proof. It is clear that all one-atomic rings are H-homogeneous
and, consequently, by property IV of information, are H-equivalent.
Let 4 be a two-atomic H-homogeneous ring with the atoms o and b.
Let 4, 4, 4,, 4,, 4; and 4, have the same meaning as in condition T
of information. Since N(4,) = N(4,) =1, we have H(4,) = H(4,)
= H(0). Further, 4, = 4, = 4, = 4, which, according to (15), implies
the equality (H (4)—H (ﬁa)) H2(C)=10. But 4, is a proper subring
of 4 and, by property 11X, H(A,) < H(A). Thus the lagt equality implies
the assertion of the Lemma.

LeMMA 4. Let A be an H-homogeneous ring and ay, @y, by, by a system
of disjoint elements of A such that N a, b b =1 a A,
~4 and b4 b, ~A. Then

H([@1, b,]) = H([a; v o, b, wb,l).

Proof. Let ¢, ¢y,...,¢, and d;,d,, ..., d; he the systems of all
atoms of the rings (@, v b))~ A and (a,w by~ 4, respectively. We may
assume  fhat @y =eo,v... v, @y =d,v...ud,, by = 1wy,
by = dspyv...d;. By Lemma 1, the ring (@, wby~ 4 is H-homogen-
eous. Further, by Lemma 1, all the rings (¢, dy) 4, (eaody) A, ...,
(6x© &) ~ A are H-homogeneous. Since they are two-atomic rings, we have,
in virtue of property IV

(clvdl)f\A:1?'(02Udz)r\fl?l_.,.TIJ(ckud,C)r\A.

Hence, by Lemma 2, the ring o1V dyy egudy, .oy 0 dy] is H-homo-
geneous. Both rings (a,“b,)~4 _ and [o;vd;, 0, gy iy g dy] are
k-atomic. Consequently, according to IV,

(“xubl)“A&?[ﬂUdn 6y, .04 ).

We now define an isomorphism ¢ of (a,u b))~ 4 onto [e,vd,,
02V dgy ..y 0, d] by the equality ¢(¢) = oud)(j=1,2,..,k%). Taking

iom®

IN. I‘W'OR.JL-] LION WITHOUT PROBABILITY - 141

into account the H-homogeneity of both rings we get the equal'%ty
H(B) = H(p(B)) for amy subring B of (a;vb)nA. The equality
p([ay, by]) = [@y" @y, by v D] completes the proof of the Lemma.

LeMMA 5. For any H-homogeneous ring A and for any element aed
(&  0) the equality
. NanA4)
'H(A.) = Hla, (1" @) ~ A])+ 7T H(an 4)
holds. .
Proof. First let us suppose that N(a~4) = 1. Th.en, by Lemma 3,
HanA) =0 and the assertion of the Lemma is a direct consequence
of the equality 4 = [a, (L;\a)n A]. Now let us assume that N (an 4)
> 2. By Lemma 1, ¢~ 4 is an H-homogeneous ring and, cogsequenﬂy,
éontains a two-atomic H-homogeneous subring. Thus, a,efzordmg to III,
IV and V, H(a~ A) > 1. From H-homogeneity of A it follows that
H[ay, (Lo \ @)~ A]) = H([asy (L4 \ )~ 4]) and H(a,lm.A) = H (g~
~ A), whenever N (a;~A) = N(a;" A). Thus the expression

A(A)—H[o, 1L\ a)~ A])
(18) T H@n4)

: ; te the expression (18)
depends only on N(a~4) and N (a). Let us.dgno bh
bypf(N (ani), N(A4)). Mo prove our Lemma it is sufficient to show that

k .
(19) JUtym) = (e=2,8, 00w n = 2,8, ).

Since [Lly, (Le~1s)n4] =1, we have N([1s, (1 “La)~4]) =Il,
which, in view of Lemma 3, implies H([lA,(l,,\lA)r\A]) = 0. In
other words, we have proved the equality

(20) fo,m =1 (n=2,3,..).

Now let ¢ and b be a pair of disjoint elements of 4 guch that
N@anA) =2 and N(OnA)>2 Setting A, =anA, A= bjr\.zil:
Ay = (awb) A, A =[a,(L\0)~ AL, Ay =[b, (LN~ 4] Ay =
=[avb, (14\(awb))~A], we have the equalities

fiN(@an ), N(4)) = =~

H(A)—H(4,)
fIN@AA), W) ==

H(A)—H(4y)
H(Ay)

?

J( (@ v o a), ¥ (d)) =
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Thus, dividing both sides of equality (15) by H(4,)
obtain the formula

H(Az) H(4y), we

f(N((au b)~ 4), N(A)) =f(N(an4, N(A)))—l—f(N(nn A), N(4)).

Finally, taking into aceount the equation N{(awd)~A4) = N(an~A)+

+N (b~ A), we get the equality

(21) flly+ kg, m) = f(ky, n)+f(kg, n), whenever k, =2, ky >2

and bk < m.

Let n = 6. Setting f(2,n) ~2p we have, in view of (21), f(6,n)
= 2f(3,n) and f(6,n) = 3f(2,n) = 6p, which implies f(3,n) = 3p.
Bvery integer % > 2 can be expx'essed in the form % == 2r--3s, where
r=20,1,2,... and s = 0,1. By (21), we have the equality

Fls, m) = 7f(2, n)+f(3, n) = (2r435)p = Ip

Hence and from. (20) we get np = 1 and, consequently,

(k=2,3,...,n).

k
(22) f(k,n):; (kF=2,3,...,m; n=206,7,...).
Thus, for » > 6 equality (19) is proved.

Before proving the last equality for » < 6 we shall prove some
-auxiliary formulae.

Let B be an H-homogeneous ring and a,, a,, b,, b, be a system of
digjoint elements of B such that N(B) = 2n, N(a;~B) = N(a;nB)
=n—1, N ;~nB) =N(bynB)=1 and n >3. From (22) it follows

: that
F(¥ (@)~ B), ¥ (B)) = f(n, 2m) = 4.

Hence, by the definition of the function f, we get the equality

(23) H(B) = H{[a, by, (ayw by) ~ B])++H ((ay w by) ~ B).
The ring ¢ = (a;wb;) ~ B is a subring of both rings B and D =
= [8, by, (aywb;)n B Since [1gmnB, 1\ 1p] = D == [1g~ D, 1" 1g],
we have, in view of property II of information,
(24) H(B)—H([(a;wb) A B, ayby) = H(D)—H ([a, by, ag by)).
From the equality N((#,w)~B)= N((a,wb,)~B) and from
H-homogeneity of B we obtain the relation [, vb)~B,a,vb,]y
[(azub Y~ B, a;~b,]. Thus
(26) H(D

= H(Ia'lubn (%Vbz)"‘BI) = H([(al “b)~B, aﬁubg]).

icm
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Moreover, the rings (&, vb;)~ B and (a,“ b,) " B are H-equivalent.
Using Lemma 2, we infer that the two-atomic [a,d,, @y b,] is H-ho-
mogeneous and, by property V, H([a;wb,, a;wby]) =1. Hence and
from (23), (24) and (25) we obtain the formula

(26) H(B) = H{(a; b))~ B)+1.
In the same’ way we may prove the equality

(27) H{(a; v a;) ~ B) = H(a;~ B)+1.
Further, from (22) we get the equalities

F(¥ (@ < ) ~ B), ¥ (B)) = f(2(n—1), 20) = ”; ,

F(F By bo) A B), N(B)) = f(2, 2n) =

which, by the definition of f, imply

R

1
7

H(B) = H(["quaay (b1 bs)

—1
" H{(a; v a)) ~ B

and

H(B) = H([by by, (6, v a5) ~ B])+— H((blu by) ~B).

Since, by Lemma 1, the two-atomic ring (b, b,)~B is H-homo-
geneous, we have, in view of V, H((bywb;) ~B) =1. Thus, according
0 (27), the last equalities may be written in the form

n—1 n—1
(28) H(B) = H(|ay 3, (b, bs)~ B])+ TH(alr\B)—k— —

1
(29) H(B) = H([b1Vb2: (a’luaz)nB"}‘])"’ﬁ‘

Consider the rings B and F = [a, v a,, (b b)) ~ B]. They both
contain the ring B; = (b, wb,)~B. It is very easy to verify that
[1,~B,13\1p] = F = [1p ~ H, 15\ 1p,].
Taking into account the equalities
[1p,; (13 \1p,) " B] = [b, Y by, (ay v ay) n B],
[1p, (1z\1p)n H]
we obtain, in view of property II,
H(B)—H ([a,w agy (by by) ~ B))
= H([b,w by, (8~ @) ~ B)—H ([ay w a3y by b,]).

= [@; v @p, by wby],
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Hence and from (26), (28) and (29) we get the formula

o on—1 -

(30) H([a; v ag, by by)) = H{(ayw b)) ~ B)— — H(a,~ B).
By Lemma 4 we have

(31) H([ay, by)) = H ([t gy by bg]).

Finally, have

N(4)=mn, [a1, (L™ %)ﬂA]

getting 4 = (¢, V)~ B, we N(a;~4) = n—1,

[ay, b,] and, according to (30) and (31)
f(V (@~ 4), N (4)) ~—~’;-— Thus we have proved the equality

n—1 )
(32) f(u—1 n) = for n =3,
Now we shall prove equality (19) for »n = 2,3, 4, and 5. From (20)
and (32) we get f(2,2)=1, f(2,8)=1% f(3,8)=1, f(3,4)=

f(4,4) =1, f(4,8) =% and f(5,8) =1 by equality (21), 2f(2, 4)

~f(4 4), 2f2 5) =f(4,8), f(2,8)+f(3,5) = f(5,5). Hen09f2 4)
=1 f2,5) =% and f(3,5) =%, which completes the proof of the
Lemma.

LemMa 7. Let A be an H-homogeneous ring and let by, by, ..., b, be
a system of disjoint elements of A such that b, # 0 (k=1,2,...,n) and
byvbyv... by, =1, Then
B8 H(Iby by b)) = S D) 74y (0, ).

N(4)

=1

Proof. Let us introduce the notation

By = A, By = by, by ..., b, (LN (b ... w b)) ~ A
(t=1,2,...,n),
Ay = [, L\ b)n 4] (k=1,2,...,n).
By Lemma B, we have the equality
(84) H(A) = H(4;)+ %z H(by~A)  (b=1,2,..,n).
Let us congider the rings 4 and By, (k=1,2,...,n). Tho ring

= b~ A is a subring of both 4 and Bj.,. It is easy to see that
g~ 4,1~ 1g,] = [Or, La\1g,],
(1o, Bi_1y 1p,_ N 1g,] = [Ck, a0, 1

[y (La L) AT = 4., [Lgy, (g, Loy » Beal = By

icm
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Thus, by property II of information

H(A)—H(4y) = HBp)—H(By) (k=1,2,...,m).

Hence and from (34) we get the equalities

_ Nhn4)

H (By_»)—H( ¥ i)

H(bpyn4d) (k=1,2,..,n7),

which imply

H(A)—H([by, b3, ...» by]) = H(Bo)—H(B H(bk"‘A)

9= 20"

Taking into account the equality

2y N (b~ A)

y&

k=1

we obtain formula (33).

LeMMA 8. Let A be a ring from #, N(A) = 3 and let p, and p, be two
strictly positive probability measures on A. If for any triplet ay, ay, as of
disjoint elements of A satisfying the condition @, ayw ay = 14 we have
the equality

P1{@1)10g Dy (61) + Py (32) 108D (@) + D1 (@5)10g P1 (a5)
= (0110805 (61) -+ P2(@a) 108D (45) + P (@5) l0gps (a5), (32)

then p, = P,

Proof. Contrary to this statement let us suppose that there exists
an atom aeAd such that
(85) p1(a) # pa(a),

Consider the triplet a, = @, @, = 14\ @, a3 = 0. Then

p1(a)logp, (a)+(1—p;(a))log(L—p,(a))
= p4(a)10gps(a) + (L—pa(a))log (1 —pa(@))-

Since the funetion zloga+ (1—a)log(l—2) (0 <o < 1) is convex
and symmetric with respect to @ = %, the last equality a.nd (35) imply
(36) P1(a) = 1—py(a).

(22) We define the indeterminate form.0-log0 as having the value zero.

Collogquium Mathematicum IX 10
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Since N (4) > 3, there exist two disjoint elements b and ¢ such that
b#0,¢%#0and boe=14\0. First let us assume that p,(h) = p,(b)
and p,(c) = pa(c). Then we have the equality

P:(6) = 1—p1(b)—p1(6) = L—pa(b) —Pa(0) = Pa(@),
which contradicts inequality (35). Consequently, p,(b) # pa(b) or .pl((;)
= py(c). By symmetry, we may suppose that p,(b) 5= p.(b). Now iden-
tical reasoning to that which led to equality (36) gives p, (b) = 1—py(D).
Hence and from (36), according to the strict positivity of p,, we get
— 91 (D) = Py(a)+pa(b)—1 = —py(0) <0,

P1(6) = L—pa(a)—

which is impossible. The Lemma is thus proved.

Proof of the theorem. We know that the class # containg a se-
quence 0y, 04, ... of H-homogeneous rings such that N(0n) =n (n =1,

). Put L(n) =H(0,) (n=1,2,...). Let a be an atom of Cpy1.
Then, by Lemma 1, the ring (14 +1\a)r\ Cpy is H- homogeneous and, of
course, n-atomic. Thus, by property IV of information, (1g,,, ™ @)~ Capn
5, which implies

H((1g,,, \ ) Onys) = L(n).
Sinee (1¢,,, ™ a) ~ 0y, i8 a proper subring of Cy41, We have, in
virtue of IIT, ‘

37 Ln) < Ln+1l) (n=1,2,...).
, @y, be a system of disjoint elements of Cpm guch

and

Now let ay, ag, ...
that @, v ayw... vty =1g,,,

(38) N(a;n Opm) =n  (j g ey M)

Obviously, 8~ Cpm gy @~ Onm (5, % =1, 2, ..., m), and, by Lemma 2,
the ring [y, ) ..., &y it H-homogeneous and, by (38), n-atomie. Thus

(40) H{a;~COpm) = L(n) (j=1,2,...,m).

Using Lemma 7, we obtain ‘the relation

(Lo, oy a]) = ) o O]

&1 " N (Onm) (H () —H (@~ O}

iom
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Hence, in view of (38), (39) and (40), we have the equation

L(m)-+L(n) = Linm) (n,m=1,2,...).

It is well known (22) that every solution of this equation satisfying
condition (37) is of the form L(n) = ulogn, where u is a positive con-
stant. By property V, 1 = L(2) = u. Thus
(41) L(n) = logn.

Now let 4 be an H-homogeneous ring and B, its subring. Assume
that 1z = 1, and denote by b, b,, ..., b, all the atoms of B,. Obviously,

By = [by, by, ..., b,] and, by Lemma 1, all the rings b; ~ 4 (j = 1,2,...,7)
are H-homogeneous. Thus, by (41), we have
H(A) =logN(4), H(bn~A)=1logN(b~n4A) (j=1,2,...,n).
Further, applying Lemma 7, we get
N(bp~4) N(bp~A)

H(B,) = éj

k=1

(42)

N(4) N(4)

We define a probability measure pp, on B, by means of the formula

N(anA)

(43) TN@E)

Ppy, = (aeBy).

It is easy to verify that if B, is a subring of C (Cesfy), then

Pole)
Polls,)

P5,(0) = (aeBy).

Moreover, by (42),

(44) By) = — D ps(bi)logps (i),

k=1

where by, by, ..., b, are atoms of B,. Thus we have defined a probability
measure pp, for any ring B, from 4y in such a way that equalities (16)
and (17) hold.

Now let A be an arbitrary ring from 5 and N (4)
rity of information, there exists a sequence 4,, 4,, ..

= 3. By regula-
. of rings belonging

() Cf., e.g., [8], p.9, 10.
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to #y such that lim o (4,, 4) = 0. We may assume that om(4,, 4) <1,
V>0

i. e. the rings A anl 4, (r = 1,2,...) are isomorphic. By the definition

of pg for every integsr r there exists an isomorphism g, of 4, onto 4

such that for any subring B of 4

LmH (g

300

(45) (B)) = H(B).

, &, be the system of all atoms of 4. We shall prove
n) the sequence

Let ay, a5, ...
that for any j (j =1,2,...,

i46) Dpaleri(a))  (r=1,2,..)

(s convergent. Since the sequence (46) iy bounded, each of its subse-
quences containg a convergent subsequence. Denoting the limit of such

0(j=1,2,...,n).

(@i, ay, =0 if 8 # m),

a subsequence by p(a;), we have Ep (a;) = 1 and p(a;) >
Moreover, setting p(a; « a;, 2‘ p(a;,)
8=1

from (43), (44) and (45) we get the equality

LN a’%

H([a, b,¢]) = —p(a)logp(a)—p(b)logp (b)—p(e)logp (),

where a,b,c¢ is an arbitrary triplet of disjoint elements of 4 and
aubue =14. Hence, by Lemma 8, p(a;) is the limit of any convergent
subsequence of (46). Thus, the sequence (46) itself is convergent to p(ay).
Setting for any element a = a; v a;, v ...V, (@, @, =0 for s = m)

k
= >'pla,),
8=1
we get a probability measure on A such that, according to (44) and (45),
n
H(A) = — > pa(a)logpa(a).
Fa=l
Moreover, for any subring B of 4 the formula
pa(d)
Pa(ls)

determines a probability measure on B such that, according to (43), (44)
and (458),

P5(d) = (beB)

H(B) = — > ps(by)logps(by),

Fe=1

icm
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where by, by, ..., by are atoms of B. Hence and from property III, it
follows that all the measures p, are strictly positive. Thuy we have
defined probability measures for any ring A satisfying the inequality
N(4) > 38 and for any its subring. These probability measures satisfy
conditions (16) and (17) and, consequently, by (16), every probability
measure on g subring B of 4 is uniquely determined by the probability
measure on A. By (*+), the clags of all rings A from s satisfying the
inequality N (4) >3 and all their subrings coincides with the whole
class #. Thus to prove the uniqueness of py (4 i) it is sufficient to
prove this for rings satisfying the condition N (A4) > 3. But the last sta-
tement is a direct consequence of Lemma 8. In fact, for any triplet
@y, Gy, @y Of disjoint elements of such a ring A satisfying the equa,hty
a,va,vay =1, we have

H([ay; @5 a5]) = —Pu(@1) 108D 4 (1) —P.4(03) 10gp.1 (A} — 0.4 (a3) logpA(ua)~
On the other hand, for every probability measure p4 on A sa,msfymg

(16) and (17) we have the same equality:

H([ay, g, @3]) = —Da(ay) logp .4 (“1)—5’A(“2) 108D 4 (@g) — D s (5) 108D 4 (@) -
Consequently, in view of Lemma 8, p, — p4. The Theorem is thus

proved.

Added in proof. The term “informational coefficient of correla-
tion” (see p. 133) was also proposed by E. H. Linfoot in his paper
An informational measure of correlation, Information and Control 1(1957),
p. 85-89.
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ON PAIRS OF INDEPENDENT RANDOM VARIABLES
WHOSE QUOTIENTS FOLLOW SOME ENOWN DISTRIBUTION

BY

I. KOTLARSKI (WARSAW)

1. Introduction. Some important probability distributions encoun-
tered in mathematical statistics ave defined as probability distributions
of a quotient of two independent random variables. So are the distribu-
tions of Student as well as those of Fisher’s variance ratios. A question
suggests itself if the distributions of nominators and denominators of the
quotients in question are determined uniquely, up to a multiplication by
a constant factor or to a passage to reciprocals of the random variables
involved by the distribution of the guotient. The simplest problem is
connected with the Oauchy distribution, the probability density of
which is -

1 1
© 1422

(—oo < & < 00).

It turns out to be the distribution of a quotient of two independent
random variables having the same normal distribution symmetrical
about zero, or, in other words, to be Student’s distribution with one
degree of freedom. This problem has been studied by Mauldon [7], Laha
[4, B, 61, Steck [8], Kotlarski [3] to the effect that there is no such uni-
queness — there are many non-normal distributions symmetrical about
zero such that a quotient of two independent random variables having .
such distribution has Cauchy distribution. Another case — where nomi-
nators and denominators have gamma distributions — has been con-
sidered by Mauldon [7]. He has shown that also in this case there is no
uniqueness of the above mentioned kind and thus has shown the ambi-
guity phenomenon for Fisher’s, or, as some say, Snedecor’s F distribu-
tions.

In this paper we are considering the more general case of quotients
U = X%:X®, where X; and X, are independent random -variables
having gamma distributions and ¢,, ¢, are real numbers not equal to 0.
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