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CoROLLARY. Let f be D,-integrable on [a, b]. In order that for every
fumction @ which is ACG, on an interval [c,d] and such that (p[[o, d]] C
C [a, b], the function f(p)g’ be D,-integrable on [¢,d] and (1) hold, it is
necessary amd sufficient that an indefinite D,-integral of f on [a, b] be the
Fumction LG.
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ON A REOURRENCE RELATION
BY

M. KUCZMA (CRACOW)

In the present paper we shall consider the recurrence relation
1 D1+ By = by

in which the sequence b, is given and a, is to be determined. Of course,
the sequence. ®, can be found in infinitely many ways. We may choose
arbitrarily the term z, and then the whole sequence x, will be uniquely
determined by relation (1). However, we shall prove that under suitable
assumptions there exists only one sequence x, fulfilling relation (1) and
an additional condition. In what follows all occurring sequences are
supposed to be real. i

For an arbitrary sequence @, we denote (as usual) by dea, the diffe-
rence

da, & Oy 1 — Gy«

Further, we define the successive iterates of the operator 4 by the rela-
tions
g, E AL q,,

20, % a,, »=10,1,2,...

Of eourse, the operator 4! coincides with the operator 4.
The purpose of the present note is to prove the following
THEOREM. If (for a certain r = 1) the terms A™' b, have & constant
sign, and for a certain positive integer p <r

() lim 475, = 0,
N—00

then there exists exactly one sequence m, such that the terms A"m, have
a constant sign, and relation (1) holds. This sequence is given by the formula

p-—-1 oo "
—1y —1p
3) 8 = Z%A’bn—k(—ép)—Z(—d)”A”bM,.

=) p2e)
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The proof of the above theorem will be based on some lemmas.
LeMMA X. For an arbitrary sequence &, we have
» v 241
(-—1) v v ('-1)
(4‘) 2"2}7}5{' {A an+l'}" 4 a’n} = by, — "—2[,‘_{—1_‘

=0

A, p=10,1,2,...

Proof. The proof will be by induction. For p = 0 formula (4) is evi-
dent. Assuming its validity for p—1 >0 we have for p

?

—1y . (=1 (=1
Z('z-,,_ﬁ)“‘{d an-H’i“A a/n} = a’n"‘ 2p Ana/‘n'i" 21’l+1 {Agn-l-l | Az:n}
=0
(_1)774-1 (__1)174-1

1] — -1
= Oy, — {AZ Qg1 Apan] = by — APt Gy y

op+1 op+1

which ecompletes the proof of the lemma.

The two following lemmas guarantee the uniqueness of the sequence
fulfilling relation (1) and some additional conditions.

Levma II. If o sequence o, satisfies relation (1) and (for o fized inte-
ger p = 1) fulfills the condition
(8) lim 42w, =0,

=00

then it must have form (3).

Proof. Applying the operation A* to both sides of relation (1)
we obtain

A2gy 1+ A m, = 47D,

Putting y‘,,,fl--z AP w, and cnif 4%b,, we have evidently A%@,.; = Yus1,
and thus the above relation may be written as

yn-(—l_l‘ Yn = Cy-.
According to (8) limy, = 0 whence, on account of the relation
N—>00

k

yn=2(

Pl

"‘1)v0'n+u+ ( _1)k+1

yn~|~}c-|-l

(eagily obtainable by induction) we have

= Z (“'1)”01»4-”

V=0

®) #a, = 3 (—1y .

=0
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Further, on account of (1) and of the definifion of the operators A°
we have for 0 <1< p

Ai$n+1+ Aim% == Atbm Aimn+1'—Aim1» = A By

whence

(1) Ao, = 34, — A" w,).

Using successively formula (7) for ¢=0,1,...,p—1, and taking
into account relation (6), we obtain formula (3), which was to be proved.

LemMA III. If for a fived integer p > 1 relation (2) holds, then a se-
quence &, satisfying relation (1) and such that the terms 4°, have a constant
sign, must have form (3).

Proof. Replacing # by n-+% in relation (1) and then applying to both
sides of (1) the operation 47 we obtain

kg 0
A4 Cpypp1+ A0 = Apbn-)-ky

whence we have by (2)
(8) lim{A”w,,+k+1 + Apm,.+k} = 0.
k—s00

Since the terms A”#,., have a constant sign, it follows from (8) that

lim A%#, = 0,
N—>00

whence on account of lemma II we obtain formula (3). This completes
the proof.

Now we proceed to prove the theorem formulated in the beginning
of this paper.

Proof of the theorem. Since A™*'b, have a constant sign and
r >p >1, the terms A7*'d, have a constant sign for » sufficiently
large, and consequently, the sequence 4”5, is monotonic for » sufficiently
large. Thus the series

2 (=1 dh, .

p=0

converges, since it is an alternating series.
Consequently formula (3) actually defines a sequence #,. We have

1 Yo
9) By = 2 2,“ e Y 2( —1)1A%b,,,,

ve=() y=1
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Whence
Aa, |"+1 , )p Z[ —1y14%h } = APh
n == 21’_\_] ,, T n+vv op n
(=]
(=1 ., (=1 . (=1
= 2 2"-1‘-1 4 +lb”'+ 227—1 Z (“'1) Apb’n g op — A‘)bw
V=0 Fpmry
n-2 <]
(=1 ., (=1 Y
D A O LT
v=0 =0

Repeating this procedure applied successively for
p-times, we obtain finally

Aw,, A2z, , ete.

Apmn = (“‘1)vApr -p e
Applying the operation 4™” to both sides of the above equality
we get

Arwn = Z’U‘ (
r=0

The series occurring on the right-hand side of the above relation may
be also written in the form

o i o0
= Dby s Abyn) = — 3T A,

p=() r=0
Since the terms A''d,. ., have a constant sign, the terms A”m, also
have a constant sign. Moreover, we have by (3) and (9)

)"’

— 1)v Arhbn-u .

p—1

1y )
pr + Ty = Z (QM) (8 byn - A+ &

V=0

Anbw H

whence, according to lemma I,

) Lyt 2y = b,,.

Consequently, the sequence x, defined by formula (3) actually has all
the desired properties. The uniqueness of such a gequence follows from
lemma IIT in view of the fact that condition (2) and the inequality » > p
imply the relation

lim A"b, = 0.

This completes the proof.

Regu par la Rédaction le 24. 9. 1960 ; en version modifide le 21. 2, 1961
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SUR QUELQUES GENERALISATIONS
DES NOMBRES PSEUDOPREMIERS

PAR

A. ROTEKIEWICZ (VARSOVIE)

Soient ¢ >0 et b > 0 des entiers tels que a > U et (a,d) = 1. Con-
sidérons une fonction f(n) & valeurs entiéres positives, définie pour tout
entier n >0 et assujettie 3 la condition

1) (p—1, f(n) | (np)

pour tout p premier tel que pfzn. On a alors les théorémes suivants:
THEOREME 1. 8%l emiste un n, premier tel que 2 < f(n) > %o,

| /" — B 6t f(n) >n—1 pour n >mn,, il emiste aussi, pour tout

entier s > 1, un n composé, produit de s nombres premiers distinots, et tel

que

(2) nld™ ™,

TuEOREME 2. 8l emiste un n, pair tel que f(ny) >2 et f(n
pour m = ny, €t qui satisfail & Pune des conditions
{3) g @/ T2 gl () +1

(4) nolaf(“o) — bf("‘o),

) = n—1

il ewiste aussi une infinité de nombres pairs satisfaisant & (3) ou & (4)
respectivement.

On a le théoréme (T) suivant (}):

(T) 8 & >0, b >0 e m >2 sont des entiers iels que a >b e
(@, d) = 1, alors, sauf le cas o% & = 2, b = 1 et m = 6, le nombre a™— b™
& un dwzsem p premier (dit pmmfbt'af) tel que mip—1 et que p ne divise
le nombre o —b* pour aucun & =1, 2,...,m—1,

LeMuMe. Sous les mémes hypotheses, zl existe un p premier tel que

pla"—b" & mip—1.

(1) Cf. (2], p. 386. Ce théordme a 6té démontré par Birkhoff et Vandiver [1].
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