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ON CHANGE OF VARIABLE
IN THE DENJOY-PERRON INTEGRAL (I)

BY

K. KRZYZEWSEKI (WARSAW)

This paper contains some theorems concerning change of variable
in the Denjoy-Perron integral. These theorems are a generalization of
Kartak’s results in this direction [1]. In the sequel we shall use the no-
tation and terminology of [2]. We begin by proving the following

Levua 1. Let F be a function defined on an interval [a, b] and deri-
vable at each point of a set B such that |F[F]| = 0. Then F'(x) = 0 almost
everywhere on E.

Proof. Let A be the set of derivability of F. On account of Theorem
o

4.2, p. 112, [2], A is measurable and therefore 4 = }' A,+H where each
n=1

4, i closed and H is of measure zero. In view of [2], Theorem 10.5, p.
235, we may assume that F is AC, on each A4,. Let F, be, for each po-
gitive integer #, the function which coincides with # at the points 4,
and is linear in the intervals continuous to 4,. Since |F,[H-4,]] =0
and since F, is AC on the smallest interval containing 4,, we have
F,(#) = 0 almost everywhere on F-4,. Hence, we obtain F'(z) =0
almost everywhere on B-4,, for n = 1,2, ... It is easy to see that this
completes the proof.

THEOREM 1. Let f be D, -integrable on [a, b] and ¢ be derivable almost
everywhere on [o, @] such that ¢[[¢, d]] C [a, b]. If the function ¢ = F(p),
where I is an indefinite D,-integral of f on [a, b], is ACG, on [¢, d], then
for every t, ¢ <t < d, the function f(p)o’ is D,-integrable on [c,t] and

[20] 14
(1) (D)) [ fla)ds = (D) [ flp)e (4)d ().
%) ¢

(1) Theorem 1 remains true for the Denjoy-Khintchine integral when we re-
place in it the ordinary derivability of ¢ by approximate derivability and require &
to be A0G on [e, d].


GUEST


100 K. KRZYZE?VSKI i
Proof. It is easy to see that it is emough to prove that

) &'(t) = flp(t)e' ()

almost everywhere on [¢, @]. Let 7' be the set of points at which ¢ and &
are derivable; moveover, let X be the set of # at which F' is derivable
and F'(x) = f(z). We clearly have |T;| = |X;| = 0, where T, = [¢, di—7
and X, = [a, b]—X. It is easy to see that (2) holds at each ¢ belonging
to T-T,, where T, = ¢7'[X]. Therefore it is enough to show that (2)
is also satigfied almost everywhere on 7'y = T'—1T,. For this purpose, we
shall prove that

(3) ) =9¢'(t) =0

almost everywhere on 7,. Since ¢[T,] c X, and I’ fullils condition (N),
we have |G[T,]| = lp[7T;]] = 0. Now it is enough to uge Lemma 1 to
obtain the required result.

LevMMA 2. Let a function G satisfy the following conditions:

(a) @ is continuous and fulfils condition (N) on [e, d),

(b) there ewists a funotion g whick i3 D-integrable on (¢, d] and such that
& (t) = g(t) at each point t at which the derivative G (1) ewists, emcept
perhaps those of o set of measure zero.

Then the function G is ACG, on [¢, d].

Proof. This lemma follows at once from [3], Theorem 8, p. 145.
THEOREM 2. Let f be a function which i D,-integradle on [a,b] and
let I be an mdﬂfume D, -integral of f on [a, b]. Further, let ¢ be a function
which is continuous, derivable almost everywhere, fulfils condition (N) on
lo,d] and is such that ¢[[c, &) C [a, b]. Then the following econditions
are equivalent:
(i) @ = F(p) is ACG, on [c, d],
(i) flp)p' ts D,-integrable on [c, d] and

(iil) f(p)p’ is D,-integrable on [c, d] (%).

Proof. Since, on account of Theorem 1, (i) implies (ii) and (ii) clearly
implies (iii), it is enough to show that (iii) implies (i). For this purpose,
in view of Lemma 2, it is enough to prove that (2) holds almost every-
where on the set of deriva,bility of G. But this can be shown by means of

the same argument as in the proof of Theorem 1.

A function F defined on an interval [a, ] will be termed L, with

a positive constant M on o set B C [a, b] if |F(2,)—F(#,) < M |w,—2|

whenever at least one of the points #,, #, belongs to E.

A function F defined on an interval [a, b] will be termed LG, ou

(1) holds,

(2) ‘Theorem 2 remains true for the Denjoy-Khintchine integral when we chinge
its formulation in a suitable way, see (}) on p. 99.
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this interval if [a,b] is expressible as the sum of a finite or denumerable
sequence of gets on each of which F is L,.

Now -we shall prove

THEOREM 3. In order that & function F be LG, on [a, b), it is necessary
and sufficient that the Dini derivates of F be finite at each point of the in-
terval [a, b]. )

Proof. The necessity of this condition is trivial; therefore we have
only to prove it sufficient. Let the Dini derivates of F be finite at each
point of [a, b]. Since then F is obviously continuous on [a, b], it follows
that for each # belonging to [a, b] there exists a positive number M (z)
such that |F(f)—F («) < M(2)f—2| holds for each te[a,d]. Let us
define sets H, in the following way:

= {w: M(z) < n,e <z < b},

We see that [a, b] = } F,and that F is L, on each B,. This completes
the proof. n=t

Now we shall prove two theorems concerning superposition of func--
tions ACG,.

THEOREM 4. Let F be LG, on an interval [a, b]. Then, for every func-
tion ¢ which is ACG, on an interval [a, d] and such that cp[[c , @] C [a, ],
the function G = F(p) is ACG, on [o, d].

Proof. We can express the interval [a, b] as the sum of a sequence
of sets F, on each of which F is L, with a constant M,. Let us put

T, = ¢~ [E,]. Since ¢ is ACG, we have T, = 3T, and ¢ is AC, on
k=1

each T, . Further, since ¢ is clearly continuous, it is enough to prove

that G is AC, on each T, ;. For this purpose, let {I,} be any finite se-

quence of non-overlapping intervals whose end-points a,, b, belong to
fixed T, ;. Now, for every interval [a,, b,] C I,, we have

G (by)—G(ap)| < My lp(bp)—p(ap)l,s
G (ap) — G (o) < Mylp(ap)—op(ap)].
By (4) we obtain 0(@;I,) < 2M,0(p; I,). It is evident that this
completes the proof.
Let us remark that, on account of the preceding theorem, every
function LG, is also ACG,. In order to establish the converse of Theorem 4
(or even a sglightly stronger assertion), we shall prove two lemmas.

LeMMa 3. Let F be o funciion defined on an interval [a, b] and lel
at least one of its Dini derivates be inﬁnite at @e¢fa, b]. Th(m there ewisis

(4)

a sequence {w,}, ¥ne[a, b] such that Z |, — @] < 00 but 2 [F (@) —F (@)
= J-o00.
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Proof. It is easy to see that there exists a sequence {%,} such that
Fpela, b], im %, = @y, B, 7 ¥, and
n
(5) | B (&) — T (@) = n2|F,— o] for n=1,2,...
Let {k;} be an increasing sequence of natural numbers such that
|, — 0| < 1/¢% for 4 =1,2,... There exists a sequence {I;} of natural
numbers such that

1

B 2 .
(6) 7 <lilwk¢_w0'<ﬁ for i=1,2,..

Let us define the sequence {w,} as follows:

oy =Ty, for 148 <n <8y,

i1
where 8, =k2 Iy (provided that I, = 0). We shall show that {#,} is the
=0

required sequence. In fact, by (6) we have

S a4 < i’%

N=1

and by (5) and (6) we have

Sit1
D) 1F(@)—F ()] >

n=1+8;

> 1K By — 0] >1

LeMMA 4. If o series ) o, with non-negative terms is divergent, then

n=1
there exists o sequeme {Nu} of d@'sjoim denumerable subsets of natural num-

bers N such that Z’N, N and 2, 6, = +oo for k=1,2,
Proof. It is ewdent that there exigts an increasing sequence {p;}

of natural numbers such that 2 o =11for1,2,...

(provided that
E=1+piy

Po=0). Let N = Z‘Bk where B;, are disjoint and denumerable. Then the
gequence {N;} where Np= Y n:l4+p,

<n < pg; nelN} is the re-
1eBy,

qmred one.

TEEOREM 5. Suppose that a function F defined on an imterval [a,b]
has the following property: for every function ¢ which is AC on an interval
[6, @] and such that g|[c, d]] C [a, b], the superposition G = F(p) is A0G,
on [6,d]; then the function F is LGy on [a,b].
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Proof. Suppose, to the contrary, that F is not L@, on [a,b]. Then, on
account of Theorem 3 and Lemma 3, there exists a sequence {u,} and

a pomt 4, such that w,e[a,b], w,ela, b] and Z [y — @] < +o0 but
Z 1B (@) —F ()] =
tlonal subintervals of (0,1). It is easy to see that for each natural %
there exists a sequence {w(k’} of rational numbers from (0, 1) such that
wPel, for 4=1,2,... and w{® = «u for (i,k) # (s,n). Further,
let {¥;) be the sequence given by Lemma 4 applied to the series
D1 (@) —F (m0)]-

n=1

natural %, the function f,(n) establishes a one-to-one correspondence
between N, and the set of all natural numbers. By the definition of {a,}
the following proposition is true:

+4oo. Let {I.} be the sequence of all different ra-

Let us put a, = wiily for neN; where, for each

(7) For every interval I C (0, 1) Z‘ |E (#,) —F ()] = o0, where the

sequence |k,} is such that {a
belong to 1.

Let C be an arbitrary, perfect, non-dense set whose bounds are ¢
and d. Now, since there exists a one-to-one order preserving correspon-
dence between the set of all rational numbers of (0,1) and the
get of all intervals contiguous to €, by (7) we infer that there exists
a gequence {P,} of different intervals contiguous to ¢ such that

o) s @ subsequence of {a,} whose all terms

(8) For every portion K of C we have 3 |F(w,)—F ()] = +o0,
n=1

where {Py} is o subsequence of {P,} consisting of all intervals contiguous
to K which are terms of the sequence {P,}.

‘We may clearly suppose that F is continuous. Let us define a func-
tion ¢ as follows:

x, at t equal to the centre of P,,

¢(t) = { @, at ¢ belonging to [o, d]— ) int(P,),

n=l

linear in int(P,).

Since the series Zlm.n—wol is convergent, ¢ is AC on [¢, d). Furt;her

since g[[¢, 4]] C [a, b], the function @ = F(p) should be ACG, on [¢, d]
and in particular, on €. By (8) and Theorem 9.1 of [2], p. 233, since ,
0(G; P,) > |F(#,)—F(z,)|, for » = 1,2, ..., we find that & is not A0G,
on C. This completes the proof.

By Theorems 2, 4, and 5 we obtain the following
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CoROLLARY. Let f be D,-integrable on [a, b]. In order that for every
fumction @ which is ACG, on an interval [c,d] and such that (p[[o, d]] C
C [a, b], the function f(p)g’ be D,-integrable on [¢,d] and (1) hold, it is
necessary amd sufficient that an indefinite D,-integral of f on [a, b] be the
Fumction LG.
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ON A REOURRENCE RELATION
BY

M. KUCZMA (CRACOW)

In the present paper we shall consider the recurrence relation
1 D1+ By = by

in which the sequence b, is given and a, is to be determined. Of course,
the sequence. ®, can be found in infinitely many ways. We may choose
arbitrarily the term z, and then the whole sequence x, will be uniquely
determined by relation (1). However, we shall prove that under suitable
assumptions there exists only one sequence x, fulfilling relation (1) and
an additional condition. In what follows all occurring sequences are
supposed to be real. i

For an arbitrary sequence @, we denote (as usual) by dea, the diffe-
rence

da, & Oy 1 — Gy«

Further, we define the successive iterates of the operator 4 by the rela-
tions
g, E AL q,,

20, % a,, »=10,1,2,...

Of eourse, the operator 4! coincides with the operator 4.
The purpose of the present note is to prove the following
THEOREM. If (for a certain r = 1) the terms A™' b, have & constant
sign, and for a certain positive integer p <r

() lim 475, = 0,
N—00

then there exists exactly one sequence m, such that the terms A"m, have
a constant sign, and relation (1) holds. This sequence is given by the formula

p-—-1 oo "
—1y —1p
3) 8 = Z%A’bn—k(—ép)—Z(—d)”A”bM,.

=) p2e)
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