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REMARK ON NON-COMPLEMENTED SUBSPACES
OF THE SPACE m(S)

BY
A. PELCZYNSK] (WARSAW) avp V.N. SUDAKOV (LENINGRAD)

In the sequel m(8) denotes the Banach space of all real-valued
hounded functions f(-) defined on an infinite set 8, with the norm |f}
= sup|f(s)]. Let my(8) denote the subspace of m(S) consisting of all

seS

such functions f(-) that {se8:[f(s)] > 2} < § for every ¢ > 0 (4 denotes
the cardinal of a set A).
" In this note we shall prove the following result:

THEOREM 1. There i3 mo projection (= continuous linear idempotent
operator) of m(8S) onto m,(S).

This theorem is a generalization of a well-known result of Philips
[6, p. 540] namely that there is no projection of m = m(N) onto its sub-
space ¢, = Mqy(N), where N denotes the set of all integers. The proof of
Theorem 1 is based on the following set-theoretical result, due to Sier-
piriski [7, p. 448]:

(*) Any set 8 of cardinal § > R, has a family of more than § sub-
sets, each of power §, such that the intersection of any two of them is of
power < J. -

1. Proof of Theorem 1. Suppose a contrario that there is a pro-
jeetion. P of m(S8) onto m,(S). Then the subspace p~'(0) of m(8) is
isomorphic to the quotient space m(§)/my(S). We shall prove that it is
impossible by showing that

(¥+) every total set of linear functionals on m ;S')/m.,(B’) has the po-
wer > 8.

On the other hand, the family (E,),,,g of all point funetionals on

m(8) is total over m(8), i. e. it &(f) = f(s) = 0, for every s in §, then
f=0.

~ To prove () we shall use some pmpertles of the Stone—(lech eon-
pactification. g8 of,th’e set § with discrete topology. We recall (see e. g.
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[2, chap. 6] that 8 is a topological space whose points are ultrafiltres
of subsets of 8. The topology in 8 is defined by taking the family of
all sets

FA={pEﬂS:A£_’p} (ACS),
a8 a bage for the closed sets. f8 is compact and extremally disconected,
i. e. the closure of each open set in AS is open. Let p, = {4 C §: sed},
for se8. Then p, is an ultrafilter and the mapping h:s—p, is a homeo-
morphism of § into a dense set of AS. This homeomorphism induces the
“natural” isometrical isomorphism between m(S) and the space ¢ (B8S)
— of all continuous real-valued functions on AS.

LemmA 1. Let us write
y8 = {pepS: if Aep, then & = §).

Then there is o family (U,),, of subsels of S such that

(i) U, is non-empty and open in the topology induced by BS in I
for aea,

(i) if oy # oy, then U, ~ U, =9,

(iii) a > 8.

Proof. Let (4,),, With @ > § be a family of subsets of § satisfying
the assertion of (*). Let us define

Uy=Wd,~ny8 (aca),

where k4, denotes the closure of the image of 4, under the homeomor-
phism 5.

Since 88 is extremally disconnected, %4,, as a closure of the open
get hd,, is open. Hence U, iz open in the topology induced by g8 in »8,
for aea, U, is non-void. Indeed, theve is an ultrafilter p, containing 4,
and such that, if Bep,, then B = 4, = §.

To prove (i) we observe that hd = {pefS: A ep}, for any subset 4
of §. Hence if a # e, and pehd, ~hd,,, then Ay ep, Ay ep and
4, ~4,ep. Since by definition 4,~4,<8, we have p¢pS. Thus
Uyn U, = . '

Levwa 2. Let C(yS) denote the space of all contimuous real-valued
functions on yS. Then

1. O(y8) 4s (isometrically) isomorphic 1o the space m (8) [me(8),

2. each total set of linear fumctionals on C(y8) has the power > 8.

Proof. Let f denote the function in 0(pS) corresponding under
the natural isomorphism to the funetion f in m(8), i e. f(8) = f(p,),
for any s in 8. We observe that fis in m,(8) if and only it f(p) = 0, for
any p in yS. We omit the simple checking of this fact. Let rf denote the
restriction of f to y8, for any S inm(8). Since y§ is closed in S, r maps
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C(f8) onto C(y8) (we apply Tietze’s extension theorem [2, p.18]). On
the other hand, the kernel of r consists of all funetions vanishing on 8.
Thus, by the preceding remark and a theorem of Banach [1, p. 37],
C(p8) is isomorphic to m(8S)/my(8).

Let (U.)., be the family of subsets satisfying the conditions
(i)-(iii) of Lemma 1. Since AS and a fortiori yS are zero-dimensional
topological spaces, we may assume without loss of generality that

(iv) U, is a closed open subset in y8, for aea.

Let y, denote the characteristic function of U, (aea). By (iv) . are
continuous. Furthermore every countable sequence of different Yo
(¢=1,2,...) weakly converges to zero (because, by (ii), lixfnxai(p) =0

for any p in y8 and jix,l| = 1 for aea). Hence, if £* is a linear funetional
on O(yS), then the set {aca:&*(y,) # 0} is countable. Thus, i (E3)eat
is a family of functionals of power A equal to or less than §, then

{aea: & (x,) # 0 for some Aed} < 8. Hence, by (iii), there is an a, such

that & (x4,) = 0 for any 2 in A.

Theorem 1 is an immediate consequence of Lemmas 1 and 2.

2. COROLLARY. Lot 8, < N, < § and let m(S|N,) denote the subspace of
m(8) of all functions x(.) such that {seS: |z(s)] >z} < N, for any & > 0.
Then there is no projection of m(S) onto m(S|N,).

Proof. Suppose a contrario that there is a projection P of m(S)
onto m (8|¥,). Let 8, be a subset of § with §, = &,. Let P,f = f ‘L, for any
fin m(8IR,), where z5, denotes the characteristic function of §,. It is easily
seen that P,is a projection of m(S|R,) onto m(8,|§,). Hence P,-P pro-
jects m(S) onto m(8;|N,). Thus, m(S) having the Hahn-Banach exten-
sion property [6, Corollary 7.1.], m(S,|¥.) also has this property. Thus,
by [1, p. 941, if m(8;]R,)is imbedded in any B-space X, then there is a pro-
jection of X onfo m(8;|R;). But it contradicts Theorem 1, as m(Sy|§,)
= m,(8y).

In the particular case of putting in Corollary § = <0, 1> and ¥, = X,
we obtain the solution of P 309 (see [B5]).

3. Remarks. 1° The original proof of Philips cannot be generalized
to the case § >¥,. Grothendieck [3, p.168] has shown that Philips
original proof is, in fact, based on the following property (G) which is
a feature of the space m(XN) but not of the space ¢, = my(N):

(@) If (=) is & sequence of linear functionals on a B-space X and
limay (@) = 0, for any @ in X, then (2}) weakly (with respect to second con-

n

jugate space) converges io 0.
It is easily checked that if 8 > N, > 8,, then m(S|N,) satisfies (G).
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2° It follows from Grothendieck’s result quoted above that there is
no linear continuous mapping of m onto ¢,. Moreover, every linear map-
ping of m into ¢, is compact.

P 351. Let ¥, <X, < §. Does there exist a linear mapping of m(S)
onto its subspace m(S|X,)? (We recall that m(8|8,) denotes the space of
all functions f(-) in m(8) such that {seS: |f(s)] > ¢} < §;, for any & > 0.)

We note that there is a mapping T of the space m(S) into m(8|R,)
such that

U {se8:(TH () > 3) > M.

fem(s)
This may easily be deduced from. the foilowing result comunicated to us
by prof. C. Ryll-Nardzewski:

Let § = ¥,. Then, under the assumption of the continuum hypothesis
there exists @ fam'ily (Va)aea (@ = Ry) of findie-additive set functions with,

{aeas v (4) ;éO} R, for any 4 CS8. *

8° It is interesting to compare our result with the following genera-
lization — due to Griinbaum [4] — of the theorem of Sobezyk [8] con-
cerning projections onto ¢,.

Let § =8, > Ry, lot the space m(S|R,) be isomorphically embedded
into a B-space X and let the quotient space X/m(8|¥,) contain a dense
get of cardinality < §,. Then there exists a projection of X onto m (S|N,).
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ON BOUNDED SETS IN F-SPACES
BY

{*. BESSAGA axp 8. ROLEWICZ (WARSAW)

A subset Z of a metric linear space X is called bounded if
limsup (0, tx) = 0. If every bounded subset of X is compact (i.e. its
0 xeZ

closure is compact), then X is called a metrisable Montel space.

J. Dieudonné [2] proved that every locally convex metrisable Montel
space is separable. Using the .continuum hypothesis Diendonné showed
in his paper [3] that there is & non-complete locally convex linear metric
space which is not separable but every bounded set in this space is sepa-
rable.

In this paper we prove that Diendonné’s theorem on the separabi-
lity of Montel spaces is valid in the case of arbitrary metrisable Montel
spaces; we also give an example of a non-separable complete linear metric
space in which every bounded set is separable. The construction of this
example is also based on continuum hypothesis. The problem whether
there exist B-spaces (i. e., according to [5], locally convex complete
metrie linear spaces) having this property is still open.

1. TesorEM. Bvery meirisable Montel space is separable.

Proof. Let X be non-separable linear metrio space and. Z an arbi-
trary uncountable set in X, such that

(1) 0(2,2) =206 >0 for z,2eZ, z#£7.

Let us define the sequence of quasi-norms (Hyers [4], see also
Bourgin [1] and Rolewicz [6]) by

[#], = inf{t >0: ¢(0,1r) = 1/n}, @eX.
It is obvious that a set 4, 4 C X, is bounded if and only if

(2) ' sup[a;]n <o (n=1,2,..).
Since Z >¥,, we can find such M, >0 that Z, =Z~ {weX:
[#]; < M,} is uncountable. Further we can define by induction a sequence
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